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1 Introduction

1.1 Motivation

Analyzing connectivity of brain regions through data re�ecting neuronal activity is an
inverse problem that can be approached with a two component model, whose parameter
distribution is estimated with Bayesian inference, based upon [21], utilizing an Expec-
tation Maximization (EM) algorithm to estimate the parameter distribution under the
given data. Dynamic Causal Modeling (DCM) is a procedure that allows to make these
deductions about the interaction between neuronal populations as found in the brain, by
testing hypothesis on the coupling beween these regions of the brain. Given an experi-
ment that encourages the activity of the brain regions in question, DCM estimates the
parameters of the inverse model that simulates the neuronal activity and thus can verify
or falsify this hypothesis.

Dynamic Causal Modeling came into being in 2003 through a research paper by Karl
Friston (see [17]). This was an extension of former research in the analysis of fMRI time
series. Before, in a series of articles from 2000 to 2001 (see [14],[16],[15], [13]), the analysis
of a single brain region with the hemodynamic Balloon model by the means of parameter
estimation was established. Dynamic Causal Modeling combined this single region model
with a multi region model that negotiates the coupling between the considered regions,
while the hemodynamic (single region) model then converts the output of the multi
region model to a measured response. In 2006 the concept of Dynamic Causal Modeling
was extended from fMRI to EEG/MEG with a new mathematical model (see [6]). This
model was initially developed by Jansen ([27]). In 2003 and 2005 ([8],[5]) this Jansen
model was re�ned from a single region model to a multi region model by Oliver David
and Karl Friston, and was named the neural mass model, which was then extended with
various improvements (for example see [46],[30]).

1.2 Overview and Goal

The goal of this work is to summarize the inverse models of DCM for two methods of data
acquisition (fMRI and EEG/MEG) and outline the composition of the employed EM-
algorithm for the parameter distribution estimation procedure, as well as improving this
algorithm in terms of performance. Furthermore, this work is accompanied by a modular
implementation of the presented methods, that is tested with synthetic and real-life data
(provided by the WWU Institute of Physiology I in Münster) and benchmarked against
the original EM-algorithm.
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My work consists of three parts. The �rst part presents the mathematical foundations
of the discussed models and methods. The second part describes the implementation of
the developed program as well as notes on the algorithmic methods that were used. The
third part summarizes the tests with arti�cial and real data time series.
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2 Inverse Modeling for Neuronal Activity

2.1 Concept

Dynamic Causal Modeling (DCM) is based on a parametrized, inverse, two component
model. The neuronal activity and the coupling between the considered neuronal popula-
tion is described by the dynamic submodel. The forward submodel converts the output
of the dynamic submodel to a response that emulates measured signals. The parameters
of these (sub-)models (dynamic and forward) are then estimated to �t the recorded data
with a bayesian statistical inference approach, which approximates the distribution of
the parameters utilizing an EM-algorithm.
The two data acquisition methods considered are functional Magnetic Resonance Imag-

ing (fMRI) and Electroencephalography (EEG). The EEG model can also be applied to
Magnetoencephalography (MEG). For further information about the data acquisition
methods see [28].

2.1.1 Prior Probability Distribution

The parameter estimation is based on a bayesian approach that approximates the dis-
tribution of parameters under the given data, which was recorded during the associated
experiments. The bayesian statistical inference requires a prior probability distribution
on the parameters that are to be estimated. The prior probability distribution, or short
prior, on the parameters is assumed to be gaussian und thus will be speci�ed in terms of
expectation and variance. Each of the presented submodels has a table of prior expecta-
tion and prior variance included, which are incorporated into the parameter distribution
estimation process (see 2.3.1.2).

2.2 The Inverse Model

The inverse model consists of two submodels. The �rst submodel, the dynamic submodel,
simulates the coupling of brain regions under deterministic input, which is provided by
the experiment. The second submodel, a forward system, converts the simulated neuronal
activity of the dynamic submodel to a measured response. The dynamic and forward
submodel for fMRI and EEG di�er quite signi�cantly. The more simple fMRI model
could be used for EEG with an adapted forward submodel, but since the EEG data
conveys more information it can consequently be simulated with a more complex model.
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2.2.1 The Dynamic Submodel

The dynamic submodel is a dynamic system that represents the change in the neuronal
states of the observed brain regions over time. External control, in this case the input,
u(t) is given in example by block pulses as applied during the corresponding experi-
ments. The number of considered brain regions is denominated by l, while the number
of exogenous inputs is referred to by m.

2.2.1.1 The fMRI Dynamic Submodel1

The dynamic submodel, or neuronal state equation, for fMRI represents the change in
neuronal activity over time. This model can handle two types of input. First, the direct
input into a region, which changes the neuronal state itself. Second, the latent input that
scales the coupling between brain regions. Under the assumption that the underlying
neuronal network is a deterministic dynamic system, with l neuronal states zi=1...l, m
inputs uk=1...m and parameters Θ, the corresponding dynamic system is given by:

ż = F (z, u,Θ) z ∈ Rl, u ∈ Rm (2.1)

The vector z consists of the l neuronal states. The vector u holds the m input sources
and Θ represents the parameters of the model. F is an unknown nonlinear function
describing the change of neuronal activity over time. The function F can be approximated
by its Taylor series using the �rst order terms as well as the bilinear second order term.

F (z, u,Θ) ≈ F (0, 0,Θ) +
δF

δz
z +

δF

δu
u+

δ2F

δzδu
zu (2.2)

This approximation can be reparametrized to a directed graph with l nodes, as pre-
sented in [17] and [48]. Each node represents the neuronal state of a brain region.

ż ≈ δF

δz
z +

δF

δu
u+

∑
k

uk
δ2F

δzδuk
z (2.3)

= Az + Cu+
∑
k

ukB
kz

A ∈ Rl×l

C ∈ Rl×m

Bk ∈ Rl×l, k = 1 . . .m

The matrix A symbolizes the connectivity between brain regions, while matrices Bk

describe for each input source uk the input induced change in connectivity. Matrix C
depicts the direct in�uence of input on the neuronal states. Now, a connection from the

1established in [17]
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i-th region to the j-th region is given by the element aji of matrix A. A connection that is
strengthened or weakened by input source k from region i to j is de�ned by bkji of matrix

Bk. An input of input source k into region i is declared by the component cik of matrix C.

Figure 2.1: Sample fMRI dynamic submodel con�guration

Stability

Without the controlling input u, this bilinear system can be considered uncontrolled
and thus the indicator for stability, the maximal Lyapunov Exponent, reduces to the real
part of the eigenvalues of A, as described in [22]. If the real part of the largest eigenvalue
of A is negative then the system remains stable.

max
i

(Re(λi(A))) < 0 (2.4)

Under the assumption that all self-connections, described by the diagonal elements
of the matrices A (and B), in the neuronal network are equal-valued (see [17]), the
negativity of the eigenvalues can be ensured by normalizing A through multiplication
with a scalar value that leaves the diagonal values of matrix A at aii = −1. If the o�-
diagonal elements of A are constraint this can easily be seen by the Gerschgorin Circle
theorem.

Â = σA =

−1 â12 . . .
â21 −1
...

. . .

 (2.5)

B̂k = σBk =

b̂
k
11 b̂k12 . . .

b̂k21 b̂k22
...

. . .


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The input induced connectivity matrices Bk are also scaled by σ as they are closely
related to A by representing the same connections, only increased or decreased by input.

Prior Distribution

The priors on the coupling parameters are presumed to be distributed uniformly and
independently. Consequently, the prior values can be expressed through their expecta-
tion and variance. The means of the parameters aij,i6=j , b

k
ij and cik are all set to zero. The

variances of aij,i6=j and b
k
ij are chosen, depending on the number of observed regions, to

make negative values for the coupling parameters unlikely. As explained in the appendix
of [17] the variance va,b is determined by:

va,b =
l(l − 1)

Φ−1χ (pa,b)
(2.6)

with Φ−1χ being the inverse cumulative χ2
l(l−1) distribution, and pa,b being the probabil-

ity that the sum of squared o�-diagonal components (
∑

i 6=j a
2
ij ) of A remains less than

l
l−1 . The variance of input parameters cik is set to one. The scaling parameter σ has
a mean of one and also a variance selected to make it impropable to become negative.
Again following [17] the variance vσ is computed by:

vσ =
( 1

Φ−1N (pσ)

)2
(2.7)

with Φ−1N being the inverse cumulative normal distribution and pσ being the probability
for σ to remain positive.

Parameters

The parameters of the fMRI dynamic submodel are the matrix components of the connec-
tivity matrix A (except the diagonal entries), of the input induced connectivity matrices
Bk, and the direct input matrix C, as well as the scalar σ normalizing A and B.

ΘD,MRI = {σ, ai,j,i6=j , bki,j , ci,k} (2.8)

All these parameters can be concatenated to a parameter vector.

θD,MRI =
(
σ, a12, . . . , all−1, b

1
11, . . . , b

l
ll, c11, . . . , clm

)
∈ Rl(l−1)+mll+ml (2.9)
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Parameter Description Prior Mean Prior Variance

aij Connectivity 0 see (2.6)
bij Induced Connectivity 0 see (2.6)
cik Input 0 1
σ Scaling 1 see (2.7)

Figure 2.2: Table of parameters with corresponding priors for the fMRI dynamic
submodel

Constant Description Value

aii Self-Connectivity −1

Figure 2.3: Table of constants for the fMRI dynamic submodel

2.2.1.2 The EEG Dynamic Submodel2

The dynamic submodel for EEG, named neural mass model, was originally based on the
Jansen model as described in [27] and re�ned by Oliver David and Karl Friston in [8], [5]
and [6]. This neuronal state equation of the EEG dynamic submodel are built upon the
tripartitioning of a considered brain region (supragranular-layer, infragranular-layer and
granular-layer-4). This tripartitioning models three neuronal subpopulations, labeled an
excitatory subpopulation of interneurons, an inhibitory subpopulation of interneurons
and an excitatory output subpopulation of pyramidal cells.

excitatory subpopulation ← Forward Coupling / Extrinsic Input
granular-layer-4 ← Lateral Coupling

l (Intrinsic Coupling)
excitatory pyramidal supopulation ← Backward Coupling

supragranular layer ← Lateral Coupling
l (Intrinsic Coupling)

inhibitory subpopulation ← Backward Coupling
infragranular layer ← Lateral Coupling

Figure 2.4: Tripartitioned cortex region with arriving input

The neural mass model is a combination of two operators. The �rst of these operators
is a convolution of the arriving input u(t) with an impulse response he,i(t), the second is
a sigmoid function S(x).

2established in [5], [6] and extended in [46]
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Figure 2.5: The impulse responses hi(t) and he(t)

Figure 2.6: The sigmoid function S(x)
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he,i(t) =

{
He,i
τe,i

t exp (− t
τe,i

) (t ≥ 0)

0 (t < 0)
(2.10)

S(x) =
2e0

1 + exp (−rx)
− e0 (2.11)

The index of the impulse response marks it as excitatory (he(t)) or inhibitory (hi(t))
with their corresponding synaptic parameters He,τe and Hi,τi respectively. The param-
eters He,i represent the maximum post-synaptic potential, while the parameters τe,i are
lumped time constants embodying various temporal delays as described in [5].

x = he,i(t) ∗ u(t) (2.12)

The convolution of the arriving input u(t) with the impulse response he,i(t) results in
the average membrane potential, that equates to the potential that would be measured
directly at the cortex region. This transformation leads to a second-order ordinary dif-
ferential equation, which can be transformed into a system of two �rst order di�erential
equations as follows:

ẍ(t) =
He

τe
u(t)− 2

τe
ẋ(t)− 1

τ2e
x(t) (2.13)

⇒

{
ẋ0(t) = x1(t)

ẋ1(t) = He
τe
u(t)− 2

τe
x0(t)− 1

τ2e
x1(t)

The sigmoid S(x) converts the average membrane potential (back) to an average �ring
rate, that causes the neurons to emit an action potential. The two (constant) parameters
e0 and r control the shape of the sigmoid, at which the constant e0 represents the
maximum �ring rate and r determines the slope of the sigmoid.
Applying this representation to the tripartitioning of a neuronal population results in
the neural mass model in its state-space representation for a single region:

ẋ1 excitatory subpopulation
ẋ4

γ1 ↑ ↓ γ2
ẋ2
ẋ5
ẋ0 excitatory output subpopulation
ẋ3
ẋ6

γ3 ↑ ↓ γ4
ẋ7
ẋ8 inhibitory subpopulation

Figure 2.7: Illustrated tripartitioning by equations
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ẋ1 = x4 (2.14)

ẋ4 =
He

τe
(u(t) + γ1S(x0))−

2

τe
x4 −

1

τ2e
x1

ẋ2 = x5

ẋ5 =
He

τe
γ2S(x1)−

2

τe
x5 −

1

τ2e
x2

ẋ0 = x5 − x6
ẋ3 = x6

ẋ6 =
Hi

τi
γ4S(x7)−

2

τi
x6 −

1

τ2i
x3

ẋ7 = x8

ẋ8 =
He

τe
γ3S(x0)−

2

τe
x8 −

1

τ2e
x7

x0 depicts the pyramidal cell depolarization of membrane potentials, which can be
considered the output of the system re�ecting a signal which is proportional to measured
potentials (EEG signals).

The intrinsic coupling between subpopulations and the relation of the intrinsic coupling
among each other has been determined experimentally (see [27]) and set to γ2 = 4

5γ1 and
γ3 = γ4 = 1

4γ1. The governing intrinsic connection parameter γ1 can di�er signi�cantly
under various constraints to the model.

In order to extend this single region model to multiple regions, the extrinsic input into
a single region has to be split into input from other regions and experimental exogenous
input. The coupling of two regions is assumed to follow a set of connection rules, as
described in [5] which comprises three types of connections.
These three kinds of extrinsic coupling types of the neural mass model are de�ned as

forward, backward and lateral connections. All connections originate in the agranular
layers (infra- and supergranular) and pass through the granular layer-4. The forward
(or bottom-up) connections end in the target regions granular-layer-4. The backward
(or top-down) connections connnect to the target regions infra- and supergranular lay-
ers. Finally, the lateral connections terminate in all three subpopulations of the target
region. Exogenous input is treated like a forward connection, arriving in granular-layer-4.
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ẋ1 ẋ1 ẋ1 ẋ1 ẋ1 ẋ1
ẋ4 ẋ4 ẋ4 ẋ4 ẋ4 ẋ4

γ1 ↑↓ γ2 ↗ γ1 ↑↓ γ2 γ1 ↑↓ γ2 γ1 ↑↓ γ2 γ1 ↑↓ γ2 ↗ γ1 ↑↓ γ2
ẋ2 ẋ2 ẋ2 ẋ2 ẋ2 ẋ2
ẋ5 ẋ5 ẋ5 ẋ5 ẋ5 ẋ5
ẋ0 ẋ0 ẋ0 → ẋ0 ẋ0 → ẋ0
ẋ3 ẋ3 ẋ3 ẋ3 ẋ3 ẋ3
ẋ6 ẋ6 ẋ6 ẋ6 ẋ6 ẋ6

γ3 ↑↓ γ4 γ3 ↑↓ γ4 γ3 ↑↓ γ4 ↘ γ3 ↑↓ γ4 γ3 ↑↓ γ4 ↘ γ3 ↑↓ γ4
ẋ7 ẋ7 ẋ7 ẋ7 ẋ7 ẋ7
ẋ8 ẋ8 ẋ8 ẋ8 ẋ8 ẋ8

Figure 2.8: Coupling rules for the Neural Mass Model. From left to right: forward,
backward and lateral connections.

ẋ1 = x4 (2.15)

ẋ4 =
He

τe
((CF + CL + γ1I)S(x0) + CUu)− 2

τe
x4 −

1

τ2e
x1

ẋ2 = x5

ẋ5 =
He

τe
((CB + CL)S(x0) + γ2S(x1))−

2

τe
x5 −

1

τ2e
x2

ẋ0 = x5 − x6
ẋ3 = x6

ẋ6 =
Hi

τi
γ4S(x7)−

2

τi
x6 −

1

τ2i
x3

ẋ7 = x8

ẋ8 =
He

τe
((CB + CL + γ3I)S(x0))−

2

τe
x8 −

1

τ2e
x7

Note that now each xi is a vector with l components, while the l× l-matrices CF , CB
and CL represent the forward, backward and lateral connections, similar to the fMRI
dynamic submodel. As the self-connectivity of each population will be controlled by the
intrinsic coupling parameters γ1,2,3,4, the diagonals of the matrices C

F , CB, CL remain
zero.

Next, the gain and the transmission delays are included. The gain is represented by
a set of matrices Gk, one for each of the k events during the experiment. The diagonal

elements gkii scale the excitatory maximum postsynaptic potentials H
(i)
e as suggested in

[46]. The o�-diagonal elements gkij,i 6=j scale the contributions of the coupling matrices
by multiplication through the Hadamard-product, in example Gk ◦CF , Gk ◦CB, Gk ◦CL.
The gain matrix associated with the �rst event has constant elements of one; by this the
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subsequent events are scaled relative to the �rst. The gain matrices are similar to the
matrices Bk of the fMRI dynamic submodel; they represent experiment related changes
which can scale the intrinsic and extrinsic connectivity. Also the intrinsic and extrinsic
transmission delays are included. These transmission delays, ∆ii for intrinsic delays,
∆ij for extrinsic delays, are applied to the sigmoid arguments, by which the neuronal
state equation becomes a system of delay di�erential equations. Finally, the excitatory
synaptic parameters are individualized for each brain region, embodied by matrices T ,
W and Y .

ẋ1 = x4(t) (2.16)

ẋ4 = T ((CF + CL) ◦GkS(x0(t−∆ij)) + γ1S(x0(t−∆ii)) + CUu(tp))−Wx4 − Y x1
ẋ2 = x5(t)

ẋ5 = T ((CB + CL) ◦GkS(x0(t−∆ij)) + γ2S(x1(t−∆ii)))−Wx5 − Y x2
ẋ0 = x5(t)− x6(t)
ẋ3 = x6(t)

ẋ6 =
Hi

τi
(γ4S(x7(t−∆ii)))−

2

τi
x6 −

1

τ2i
x3

ẋ7 = x8

ẋ8 = T ((CB + CL) ◦GkS(x0(t−∆ij)) + γ3S(x0(t−∆ii)))−Wx8 − Y x7

T = diag(
H

(0)
e

τ
(0)
e

gk00, . . . ,
H

(l)
e

τ
(l)
e

gkll)

W = diag(
2

τ
(0)
e

, . . . ,
2

τ
(l)
e

)

Y = diag(

(
1

τ
(0)
e

)2

, . . . ,

(
1

τ
(l)
e

)2

)

Input

Experimental input into the system is given by u(tp) where tp denotes the peristimu-
lus time. This input, which is the same for each region, is then scaled by the vector CU .
Since exogenous input acts like a forward connection, it in�uences the same partition as
the forward connections, and is given by:

u(tp) = (ηη12 /Γ(η1))t
η1−1 exp(−η2tp) +

∑
r

ιr cos(2π(r − 1)tp) (2.17)

The �rst part is a gamma distribution that generates an input delay of η1η2 seconds, the
second part a discrete cosine set (see 2.2.3.2), emulating input �uctuations as described
in [6]. This is of order eight, but omitting the 0-th order term, in which the contributions
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of each term is scaled by the parameter ιr. This is a major di�erence to the dynamic
submodel for fMRI, where the input as de�ned by the experiment enters the neuronal
state equation, while here the input during the experiment rather de�nes timespans for
the event-related bursts generated by u(tp).

Stability

Important to the stability of the system is the sigmoid S(x). It ascertains a stable
�xed-point during the abscence of input. To prevent oscillatory behaviour of the system,
the con�guration of the connections has to be chosen carefully. Therefore, during the
parameter distribution estimation, this is ensured through the priors which encourage
forward over backward and backward over lateral connections.

Parameters

The parameters of the EEG dynamic submodel are the matrix components of the forward,
backward and lateral connection matrices (except their diagonals), the input vector CU ,
the gain matrices, the excitatory synaptic potentials, lumped rates and extrinsic trans-
mission delays.

ΘD,EEG = {cFi,j,i6=j , cBi,j,i6=j , cLi,j,i6=j , gk,i,j , cUi , He, τe,∆ij} (2.18)

All these parameters are also concatenated to a parameter vector.

θD,EEG =
(
cFi,j,i6=j cBi,j,i6=j cLi,j,i6=j gk,i,j,k>1 cUi H

(i)
e τ

(i)
e ∆ij η1,2 ιr

)
(2.19)

∈ Rl(l−1)+(k−1)ll+3l+11

Prior Distribution

Following [6] the priors for the coupling matrix are chosen to encourage forward over
backward and backward over lateral connections, to ensure the stability of the estimated
system. Most of the parameters are assumed to have a positive domain; to enforce the
parameters positivity, the natural logarithm of the parameters mean is estimated. An
example of this is given below. For a parameter Ξ, assuming it is distributed gaussian,
with a prior mean of ξ and prior variance σ, a zero centered mean is estimated, then
exponentiated and scaled by its actual prior mean ξ.

Ξ ≈ N(ξ, σ)→ Ξ ≈ ξ exp(N(0, σ)) (2.20)

This is equivalent to a log-normal prior distribution.
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Parameter Description Prior Mean Prior Variance

cFij Forward Extrinsic Coupling∗ 32 Hz 0.5

cBij Backward Extrinsic Coupling∗ 16 Hz 0.5

cLij Lateral Extrinsic Coupling∗ 4 Hz 0.5

gijk Coupling Gain∗ 1 0.5
cUi Extrinsic Input∗ 1 Hz 0.5
He Excitatory Postsynaptic Potential∗ 4 mV 0.0625
τe Excitatory Lumped Rate∗ 0.008 s 0.0625

∆ij Extrinsic Conduction Delay∗ 0.016 s 0.0625
η1 Input Shape and Scale 1∗ 1 s 0.0625
η2 Input Shape and Scale 2∗ 16 s 0.0625
ιr Input Fluctuation 0 1

Figure 2.9: Table of parameters with corresponding priors for the EEG dynamic sub-
model (taken from [6]). The parameters of which the log-normal distribution
is estimated are marked with ∗.

Constant Description Value

e0 Sigmoid Shift 0.5 s−1

r Sigmoid Shape 0.56 mV−1

γ1 Intrinsic Coupling 1 128.0 Hz
γ2 Intrinsic Coupling 2 4

5γ1 = 102.4 Hz
γ3 Intrinsic Coupling 3 1

4γ1 = 32.0 Hz
γ4 Intrinsic Coupling 4 1

4γ1 = 32.0 Hz
Hi Inhibitory Postsynaptic Potential 32.0 mV
τi Inhibitory Lumped Rate 0.016 s

∆ii Intrinsic Conduction Delay 0.002 s

Figure 2.10: Table of constants for the EEG dynamic submodel (taken from [6]).

Note

The constants of this model, especially the inhibitory synaptic parameters Hi, τi and
the intrinsic conduction delay ∆ii can also be included in the set of parameters if the
necessity for more parameters arises. In the case of Hi, τi and ∆ii the prior means trans-
fer from their constant value and the prior variances are the same as for He, τe and ∆ij

respectively.

2.2.2 The Forward Submodel

The forward submodel converts the neuronal state of the observed brain region, which
is the output of the dynamic submodel, to a signal that can be compared to a measured
response. In case of fMRI data the forward model is a system of di�erential equations,
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in case of EEG data it is simply a linear transformation. In both model variants (fMRI
and EEG) each of the neuronal states has an individual forward system attached.

2.2.2.1 The fMRI Forward Submodel

The fMRI, or hemodynamic, forward submodel is based upon the Balloon-Windkessel-
Model as presented in [14], [13] and [17]. This submodel generates a Blood Oxygen Level
Dependency (BOLD) response that can be compared to recorded fMRI data. As it is
describing change in saturation of oxygen within the blood it is also called hemodynamic
model. This model consists of a system of four ordinary di�erential equations and an
output function. The normalized in�ow f , which change is given by the vasodilatory
signal s, is the input to the system of venomous volume v and deoxyhemoglobin content
q, that compose the output of the BOLD signal.
The vasodilatory signal s receives the input z, �attens it with the damped signal itself

and the scaled and shifted normalized �ow.

ṡ = z − κs− γ(f − 1) (2.21)

The signal causes the normalized in�ow.

ḟ = s (2.22)

The normalized venomous volume is the di�erence of (normalized) in�ow and out�ow.

τ v̇ = f − fout (fout = v
1
α ) (2.23)

The normalized deoxyhemoglobin content intake is also modelled by a di�erence of
in�ow and out�ow.

τ q̇ = f
E(f, ρ)

ρ
− fout

q

v
(E(f, ρ) = 1− (1− ρ)

1
f ) (2.24)

The output function is a weighted sum of v and q that generate the BOLD signal.

y = V0(β1ρ(1− q) + β2(1−
q

v
) + (β3ρ− β4)(1− v)) (2.25)

The constant V0 denotes the Resting Blood Volume Fraction and β1...4 symbolize the
weights for the summands. The values for these constants are given in the table below
an were taken from [17]. The following schematic illustrates the hemodynamic system.
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z
↓
ṡ

l
ḟ

↙ ↘
v̇ −→ q̇

↘ ↙
y

Figure 2.11: The hemodynamic fMRI forward submodel

Together these equations compose the hemodynamic forward system for the i-th region

ṡi = zi − κsi − γ(fi − 1) (2.26)

ḟi = si

τ v̇i = fi − fout (fout = v
1
α
i )

τ q̇i = fi
E(fi, ρ)

ρ
− fout

q

v
(E(fi, ρ) = 1− (1− ρ)

1
fi )

yi = V0(β1ρ(1− qi) + β2(1−
qi
vi

) + (β3ρ− β4)(1− vi))

For a more expedient computation this can be slightly simpli�ed:

ṡi = zi − κsi − γ(fi − 1) (2.27)

ḟi = si

v̇i =
1

τ
(fi − v

1
α
i )

q̇i =
1

τ

fi
ρ

(1− (1− ρ)
1
fi )− v

1
α
−1

i qi

yi = V0(β1ρ(1− qi) + β2(1−
qi
vi

) + (β3ρ− β4)(1− vi))

Parameters

The hemodynamic forward model of a single region i has �ve parameters:

θF,MRI
i = {κi, γi, τi, αi, ρi} (2.28)

20



Now combining these hemodynamic parameters of each region into one parameter
vector results in:

θF,MRI =
(
κi, γi, τi, αi, ρi

)
∈ R5l (2.29)

Prior Distribution

The priors and constants for the hemodynamic forward model are given in the table
below.

Parameter Description Prior Mean Prior Variance

κ Rate of Signal Decay 0.65 s−1 0.015
γ Rate of Flow Dependent Elimination 0.41 s−1 0.002
τ Hemodynamic Transit Time 0.98 s 0.0568
α Grubbs Exponent 0.32 0.0015
ρ Resting Oxygen Extraction Fraction 0.34 0.0024

Figure 2.12: Table of parameters with corresponding priors for the fMRI forward sub-
model (taken from [17]).

Constant Description Value

V0 Blood Volume 0.02
β1 Volume Weight 1 7.0
β2 Volume Weight 2 2.0
β3 Volume Weight 3 2.0
β4 Volume Weight 4 0.2

Figure 2.13: Table of constants for the fMRI forward submodel (taken from [17]).

2.2.2.2 The EEG Forward Submodel

The EEG forward submodel is a simple linear transformation of the dynamic submodels'
output as opposed to the hemodynamic system that consists of a system of ordinary
di�erential equations. Only an invasive method will be considered. Here the electrodes
are implanted on top of the cortex regions and measure the potentials directly from
the cortex surface. In this case the forward submodel reduces to a mere scaling of the

depolarization output x
(i)
0 . This transformation is given by:

y = kix
(i)
0 (2.30)

for a region i.
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Parameters

The forward parameters are just the set of scaling parameters, one for each of the l
states.

ΘF,EEG
i = {ki} (2.31)

For all regions, these parameters are also conjoined into a parameter vector.

θF,EEG =
(
k0 . . . kl

)
∈ Rl (2.32)

Prior Distribution

The prior expectation and variance for the contribution parameter is given in the ta-
ble below.

Parameter Description Prior Mean Prior Variance

ki contribution 1.0 1.0

Figure 2.14: Table of parameters with corresponding priors for the EEG forward
submodel

2.2.3 The Combined Model

Combining the dynamic and forward submodels leads to the full inverse model. This
combined model consists of the dynamic submodel mediating the coupling among the
brain regions while the l forward submodels will convert each neuronal states' output to
a signal that can be compared to a measured signal.

2.2.3.1 The Data Model

The combined model, dependent on the combined parameters θ̃ = θD+F and the input
u, can then be described by a function y = h(θ̃, u) generating an output signal y. The
error in data acquisition is modelled by an additive Gaussian error (vector) ε with zero
mean. Then the data model is given by:

y = h(θ̃, u) + ε (2.33)

The parameters are assumed to have (almost) Gaussian distribution, meaning the
parameters will be treated as independent random variables. For the estimation some
prior knowledge about these parameters will be useful and is speci�ed through prior mean
ηθ̃ and prior covariance Cθ̃ and is listed in the respective tables of the submodels.
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2.2.3.2 Drift

As an extension to the data model, a drift component is added (see [17]), simulating low
frequency drifts as well as a constant term. The drift is given by a discrete cosine set
(similar to the one used for the input �uctuations in the dynamic submodel for EEG in
2.17).

Discrete Cosine Set

A r-th order discrete cosine set as described in [12] essentially stretches the �rst r
2

periods of a cosine to a given length T = tN and generates N discrete cosine values at
positions t. A discrete cosine set of order r for N time steps and a time step width of t
is given by:

fr(t) =

√
2

N
cos(rπ

t

N
) t = 1 . . . N (2.34)

whereat the 0-th order term is only a constant.

Figure 2.15: Discrete Cosine Sets of Order 1 To 3 (N = 10)

Drift Design Matrix

Taking one discrete cosine set for each neuronal state up to a chosen order r, which
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is stretched over the whole time series, with discrete components at each timestep t leads
to the following matrix X with the corresponding scaling parameters β:

X =



f10 (0) . . . f1r (0) 0

0
. . .

...
... f l0(0) . . . f lr(0)

...

...
f10 (N) . . . f1r (N) 0

0
. . .

...
... f l0(N) . . . f lr(N)


, β =



β10
...
β1r
...
βl0
...
βlr


(2.35)

This drift matrix will be included in the parameter estimation algorithm (2.3.1.2),
while the parameters β will be included in the set of estimated parameters. Since each
brain region gets its own set of drift parameters this leads to an additional rl parameters
which are conjoined to the drift parameter vector θβ .

2.2.3.3 Extended Data Model

The drift will be included in the data model as follows:

y = h(θ, u) +Xβ + ε (2.36)

This extended data model will be the basis for the estimation process.

2.2.3.4 Parameter Overview

The sets of parameters from the dynamic submodel, the forward submodel, and the drift
are combined to an overall parameter vector.

θ̃D+F+β =

θDθF
θβ

 (2.37)

All these parameters are to be estimated to �t the data. The following section will
explain how this can be achieved.

2.3 Parameter Estimation and EM-Algorithm

Since a statistical approach is used to make inferences about the parameters of the model,
not the parameters, but their distribution is estimated. This parameter distribution is
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approximated to �t the experimental data. The resulting distribution speci�ed in terms
of its �rst two moments, is called posterior or conditional probability distribution. The
aim of the estimation procedure is to determine conditional means and (co-)variances for
all parameters of the model.

2.3.1 Mean and Covariance Estimation

Under the assumption that the parameters are distributed uniformly and independently
(gaussian), they can be described through mean and covariance. Following [16], the
estimation of posterior mean and posterior covariance will be presented.

2.3.1.1 The Bayesian Approach

Starting with the Bayes theorem:

p(θ | y) =
p(y | θ)p(θ)

p(y)
(2.38)

As the evidence p(y) is a normalizing factor the following holds:

p(θ|y) ∝ p(y|θ)p(θ) (2.39)

This means that the posterior distribution is proportional to the likelihood times the
prior distribution. The above formula will be the basis for the algorithm estimating the
conditional probability or posteriors of the parameters θ through the likelihood under
the given data y and the prior distribution.

2.3.1.2 Mean Estimation

An estimation of the full or combined model is given by:

h(θ, u) = h(η
(k)
θ|y )+J(θ − η(k)θ|y ) (2.40)

J =
δh(η

(k)
θ|y )

δθ

This local linear approximation estimates the full model through the derivation by
the parameters furthermore refered to as parameter-jacobian. Applying Bayes theorem,
under Gaussian assumption for the parameters, and utilizing a multivariate normal dis-
tribution3,

pθ(x) = exp(
1

2
(x− η)TC−1(x− η)) (2.41)

3omitting the normalizing term ((2π)
dim(θ)

2 |C|
1
2 )−1
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the above, as described in [16], leads to:

p(y|θ) ∝ exp(−1

2
((y − h(η

(k)
θ|y ))− J(θ − η(k)θ|y ))TC−1ε ((y − h(η

(k)
θ|y ))− J(θ − η(k)θ|y ))

(2.42)

p(θ) ∝ exp(−1

2
(θ − ηθ)TC−1θ (θ − ηθ))

⇒ p(θ|y) ∝ exp(−1

2
(θ − η(k+1)

θ|y )TC−1θ|y (θ − η(k+1)
θ|y ))

With the prior expectation ηθ, the prior covariance Cθ, the error covariance Cε, the
conditional mean estimates

η
(k+1)
θ|y = η

(k)
θ|y + Cθ|y(J

TC−1ε (y − h(η
(k)
θ|y )) + C−1θ (ηθ − η

(k)
θ|y )) (2.43)

and the conditional covariances

Cθ|y = (JTC−1ε J + C−1θ )−1 (2.44)

This can be used to set up an iterative algorithm based upon the Gauss-Newton method
(ordinary-least-squares-estimator). The additionally available prior information needs to
be incorporated into the algorithm, and also the drift, which parameters are supposed
to be estimated as well.

Starting with ordinary-least-squares-estimator:

ȳ = y − h(η
(k)
θ|y ) (2.45)

J =
δh(η

(k)
θ|y )

δθ

η
(k+1)
θ|y = η

(k)
θ|y + (JJT )−1Jy

Including the covariance into the above algorithm, it becomes the weighted-least-
squares-estimator:

ȳ = y − h(η
(k)
θ|y ) (2.46)

J =
δh(η

(k)
θ|y )

δθ

Cθ|y = (JTC−1ε J)−1

η
(k+1)
θ|y = η

(k)
θ|y + Cθ|y(J

TC−1ε ȳ)

Following [21] (p.259f) the prior expectation and the prior variance can be included
into the algorithm. This leads to the augmented4 weighted-least-squares-estimator.

4as named in [16]
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ȳ =

(
y − h(η

(k)
θ|y )

ηθ − η
(k)
θ|y

)
(2.47)

J =
δh(η

(k)
θ|y )

δθ

J̄ =

(
J
1

)
Cε =

(
Cε 0
0 Cθ

)
Cθ|y = (J̄T C̄−1ε J̄)−1

η
(k+1)
θ|y = η

(k)
θ|y + Cθ|y(J̄

T C̄ε
−1
ȳ)

Finally the drift is added into the the design matrix:

ȳ =

(
y − h(η

(k)
θ|y )

ηθ − η
(k)
θ|y

)
(2.48)

J =
δh(η

(k)
θ|y )

δθ

J̄ =

(
J X
1 0

)
Cε =

(
Cε 0
0 Cθ

)
Cθ|y = (J̄T C̄−1ε J̄)−1

η
(k+1)
θ|y = η

(k)
θ|y + Cθ|y(J̄

T C̄ε
−1
ȳ)

This is essentially a Bayesian regression with a known covariance matrix as described
in [21] (p.255) and an extended design matrix (see [17]).

2.3.1.3 Covariance Estimation

As the covariance matrix Cε is usually unknown, it has to be estimated as well. First
it is parametrized by hyperparameters λi, which scale their respective associated basis
components Qi. Then the covariance matrix Cε is a sum of the matrices Qi scaled by the
covariance hyperparameters λi. Together the hyperparameters λi form a hyperparameter
vector λ ∈ Rl.

Cε =
l∑
i

λiQi (2.49)
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The matrices Qi, representing a basis set for the hyperparameters λi, are a Kronecker
product of the unit matrix V , of dimension n× n (n being the number of datapoints of
the time series) with the matrices (δij)i=j=l. The latter are matrices that have only one
non-zero element, which is positioned on the i-th diagonal element.

Qi = V ⊗ (δij)i=j=l ∈ Rln×ln (2.50)

Adding the priors to the covariance matrix as it was done in [21] with the residual
vector and design matrix in the mean estimation, results in the extended covariance
matrix:

C̄ε =

(∑l
i λiQi 0
0 Cθ

)
(2.51)

The hyperparameters λi are esitmated with a Scoring algorithm. This is essentially a
Newton's method applied to �nd maximum values.

P = C−1ε − C−1ε J̄Cθ|yJ̄
TC−1ε (2.52)

gi =
δF

δλ(k)
= tr(− δF

δC−1ε
C−1ε QiC

−1
ε ) = −1

2
tr(PQi) +

1

2
ȳTP TQiP ȳ

Hij =
δ2F

δλ2ij
=

1

2
tr(PQiPQj)− ȳTPQiPQjP ȳ

λ(k+1) = λ(k) +H−1g

The function F , of which the derivatives are taken, is the negative free energy ([16])
or variational free energy ([35]) of the system given by:

F (p̃(θ), λ) = Ep̃[ln p(θ, y|λ)]− Ep̃[ln p̃(θ)]. (2.53)

The use of Fisher information replaces the second derivative with its expectation.
This variant of the Scoring algorithm reduces the necessary computations and is called
Fisher-Scoring algorithm.

P = C−1ε − C−1ε X̄Cθ|yX̄
TC−1ε (2.54)

gi =
δF

δλi
= tr(− δF

δC−1ε
C−1ε QiC

−1
ε ) = −1

2
tr(PQi) +

1

2
ȳTP TQiP ȳ

〈Hij〉 =
〈
− δ2F

δλ2ij

〉
= −1

2
tr(PQiPQj)

λ(k+1) = λ(k) − 〈H〉−1g

This algorithm is derived in full detail in [16].
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2.3.2 The EM-Algorithm

The aim of the parameter estimation process is to maximize the (log-) likelihood of the
estimated posteriors. As the covariance is unknown, the posterior estimation is done
with a two step procedure called EM-algorithm (Expectation Maximization). The E-
Step (Expectation) estimates the posterior mean ηθ|y while holding the hyperparameter
vector λ �xed. The M-Step (Maximization) then estimates the hyperparameters λ while
keeping the posteriors ηθ|y �xed. The EM-algorithm can be summarized (see [35],[16]),
with some conditional density p̃(θ), as follows:

E-Step: p̃← max
p̃
F (p̃(θ), λ) (2.55)

M-Step: λ← max
λ

F (p̃(θ), λ)

Combining the estimation of posterior mean ηy|θ and covariance hyperparameters λ
leads to the EM-algorithm as it was provided by [16], [13] and [17] which in turn is based
on [24], [9] and [35].

while(K < c) (2.56)

{
E-Step:

ȳ =

(
y − h(η

(k)
θ|y )

ηθ − η
(k)
θ|y

)

J =
δh(η

(k)
θ|y )

δθ

J̄ =

(
J X
1 0

)
C̄ε =

(∑l
i λ

(k)
i Qi 0
0 Cθ

)
Cθ|y = (J̄T C̄−1ε J̄)−1

∆ηθ|y = Cθ|y(J̄
T C̄ε

−1
ȳ)

η
(k+1)
θ|y = η

(k)
θ|y + ∆ηθ|y
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M-Step:

P = C̄−1ε − C̄−1ε J̄Cθ|yJ̄
T C̄−1ε

gi = −1

2
tr(PQi) +

1

2
ȳTP TQiP ȳ

Hij = −1

2
tr(PQiPQj)

∆λ = 〈H〉−1g
λ(k+1) = λ(k) −∆λ

}

The starting values for the parameters are the priors, for the hyperparameters they
are selected small enough to make a positive de�nite (J̄T C̄−1ε J̄) likely.

η
(0)
θ|y = ηθ (2.57)

λ
(0)
i = 0.001

The convergence condition K was suggested in [13] to be the length of the update to
the conditional parameter vector.

K = ‖∆ηθ|y‖ (2.58)

2.3.2.1 Improved EM-Algorithm

In case of large sets of recorded data the above algorithm holds two problems. First, the
residual forming matrix P in the M-step will not only get very large, but also very dense
if not even fully populated. Second, in the above form the algorithm calculates the same
matrix products multiple times. All improvements that will be made next are centered
around the following three identities. These basic linear algebra identities will be used
to rearrange matrix products into a more e�cient order.

Lemma 1. (Matrix Product Identity) Given two matrices A ∈ Rm×n and B ∈ Rn×o then

(AB)T = BTAT (2.59)

holds.

Proof. An Element of the Matrix Product is given by:

(ab)Tij =
∑
k

ajkbki =
∑
k

bkiajk =
∑
k

bTika
T
kj = (bTaT )ij (2.60)
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Lemma 2. (Trace of a Product) Given two matrices A ∈ Rm×n and B ∈ Rn×m then

tr(AB) =
∑
i

∑
j

aijbji (2.61)

holds.

Proof. An Element of the Matrix Product is given by:

(ab)ij =
∑
k

aikbkj (2.62)

For the trace only the diagonal elements are required:

(ab)ii =
∑
k

aikbki (2.63)

Summing up all diagonal elements completes the proof:

∑
i

(ab)ii =
∑
i

∑
k

aikbki (2.64)

Lemma 3. (Cyclic Permutations of Trace Arguments) Given three matrices A ∈ Rm×n, B ∈
Rn×o, C ∈ Ro×m then

tr(ABC) = tr(BCA) = tr(CAB) (2.65)

holds.

Proof. First rewriting the argument:

D := BC ⇒ tr(ABC) = tr(AD) (2.66)

Applying Lemma 2 leads to:

tr(AD) =
∑
i

∑
j

aijdji =
∑
j

∑
i

aijdji =
∑
j

∑
i

djiaij = tr(DA) (2.67)
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Next, a step-by-step transformation of the original EM-algorithm, split by E-step and
M-step, is presented. Starting with the original E-step:

ȳ =

(
y − h(η

(k)
θ|y )

ηθ − η
(k)
θ|y

)
(2.68)

J =
δh(η

(k)
θ|y )

δθ

J̄ =

(
J X
1 0

)
C̄ε =

(∑l
i λ

(k)
i Qi 0
0 Cθ

)
Cθ|y = (J̄TC−1ε J̄T )−1

∆ηθ|y = CθJ̄C
−1
ε ȳ

η
(k+1)
θ|y = η

(k)
θ|y + ∆ηθ|y

Now, the number of transpostions is reduced and intermediate results are saved for
later use in the (improved) M-Step. Then the improved E-Step is given by:

ȳ =

(
y − h(η

(k)
θ|y )

ηθ − η
(k)
θ|y

)
(2.69)

J =
δh(η

(k)
θ|y )

δθ

J̄ =

(
J X
1 0

)
C̄ε =

(∑l
i λ

(k)
i Qi 0
0 Cθ

)
J̄A = C−1ε J̄

J̄B = J̄A
T

Cθ|y = (J̄BJ̄)−1

D̄ = Cθ|yJ̄
B

∆ηθ|y = D̄ȳ

η
(k+1)
θ|y = η

(k)
θ|y + ∆ηθ|y

Some of these changes might seem ine�cient as they actually increase the number
of operations, but combined with the following improved M-step they reduce a lot of
computations. Even more important than the performance gain of the algorithm is the
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prevention of the computation of the product (C−1ε J̄)T (Cθ|yJ̄
TC−1ε ), that is necessary

for the residual forming matrix P in the M-Step, as this will likely produce a very large
and dense matrix.

Again starting with the original M-step:

P = C−1ε − C−1ε J̄Cθ|yJ̄
TC−1ε (2.70)

gi = −1

2
tr(PQi) +

1

2
ȳTP TQiP ȳ

Hij = −1

2
tr(PQiPQj)

∆λ = 〈H〉−1g
λ(k+1) = λ(k) −∆λ

Removing the unnecessary multiplications with constants:

P = C−1ε − C−1ε J̄Cθ|yJ̄
TC−1ε (2.71)

gi = ȳTP TQiP ȳ − tr(PQi)

Hij = tr(PQiPQj)

∆λ = 〈H〉−1g
λ(k+1) = λ(k) + ∆λ

Cycling the trace arguments by applying Lemma 2 to have the more sparse matrix
�rst:

P = C−1ε − C−1ε J̄Cθ|yJ̄
TC−1ε (2.72)

gi = (P ȳ)TQi(P ȳ)− tr(QiP )

Hij = tr(QiPQjP )

∆λ = 〈H〉−1g
λ(k+1) = λ(k) + ∆λ

Sorting by precomputed vectors and matrices from the E-step:

P = C−1ε − (J̄TC−1ε )T (Cθ|yJ̄
TC−1ε ) (2.73)

gi = (P ȳ)TQi(P ȳ)− tr(QiP )

Hij = tr(QiPQjP )

∆λ = 〈H〉−1g
λ(k+1) = λ(k) + ∆λ
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Rearranging the matrix traces, utilizing the additivity of the matrix trace as well as
the distributivity of the matrix multiplication leads to:

py = C−1ε ȳ − (J̄TC−1ε )T (Cθ|yJ̄
TC−1ε )ȳ (2.74)

gi = pTyQipy − tr(QiC
−1
ε ) + tr((Cθ|yJ̄

TC−1ε )Qi(J̄
TC−1ε )T )

Hij = tr(QiC
−1
ε QjC

−1
ε )

− tr(QiC
−1
ε Qj(J̄

TC−1ε )T (Cθ|yJ̄
TC−1ε ))

− tr(QjC
−1
ε Qi(J̄

TC−1ε )T (Cθ|yJ̄
TC−1ε ))

+ tr((Cθ|yJ̄
TC−1ε )Qi(J̄

TC−1ε )T )(Cθ|yJ̄
TC−1ε )Qj(J̄

TC−1ε )T )

∆λ = 〈H〉−1g
λ(k+1) = λ(k) + ∆λ

Finally preventing double calculations by precomputations:

QAi = QiC
−1
ε (2.75)

QBi = Qi(J̄
TC−1ε )T

QCi = (Cθ|yJ̄
TC−1ε )QBi

py = C−1ε ȳ − (J̄TC−1ε )T (Cθ|yJ̄
TC−1ε )ȳ

gi = pTyQipy − tr(QAi ) + tr(QCi )

Hij = tr(QAi Q
A
j )

− tr(QAj Q
B
i (Cθ|yJ̄

TC−1ε ))

− tr(QAi Q
B
j (Cθ|yJ̄

TC−1ε ))

+ tr(QCi Q
C
j )

∆λ = 〈H〉−1g
λ(k+1) = λ(k) + ∆λ

Reusing the matrices that were computed in the improved E-step, results in the im-
proved M-step:
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QAi = QiC
−1
ε (2.76)

QBi = QiJ̄
A

QCi = D̄QBi

py = C−1ε ȳ − J̄A∆ηθ|y

gi = pTyQipy − tr(QAi ) + tr(QCi )

Hij = tr(QAi Q
A
j )− tr((QAj Q

B
i )D̄)− tr((QAi Q

B
j )D̄) + tr(QCi Q

C
j )

∆λ = 〈H〉−1g
λ(k+1) = λ(k) + ∆λ

These improvements prevent the very ine�cient multiplication J̄AD̄ = (C−1ε J̄)T (Cθ|yJ̄
TC−1ε )

as these expressions are only evaluated inside a trace (of a product of matrices) which
can be computed without actually calculating the matrix product utilizing Lemma 2.
Combining the improved E-step and improved M-step leads to the improved EM-

algorithm. This variant of the algorithm prevents (relatively) large and dense matrices
and as a side-e�ect reduces the number of overall operations signi�cantly, since the
matrices Qi are diagonal matrices without fully populated diagonals.

2.3.3 Posterior Probabilities

Having computed the conditional expectation and covariance, the posterior probability
of the parameters can be determined with:

pp = ΦN

(y − cT ηθ|y√
cTCθ|yc

)
. (2.78)

The vector c speci�es contrasts for the conditional parameters ηθ|y. γ is a threshold
to which the probability of it being exceeded is calculated as described in [13] and [17].
ΦN is the cumulative normal distribution. The contrast c, in example, could be selected
to give the average over all parameters, exclude or highlight certain parameters.
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while(K < c) (2.77)

{
E-Step:

ȳ =

(
y − h(η

(k)
θ|y )

ηθ − η
(k)
θ|y

)

J =
δh(η

(k)
θ|y )

δθ

J̄ =

(
J X
1 0

)
C̄ε =

(∑l
i λ

(k)
i Qi 0
0 Cθ

)
J̄A = C−1ε J̄

J̄B = J̄A
T

Cθ|y = (J̄BJ̄)−1

D̄ = Cθ|yJ̄
B

∆ηθ|y = D̄ȳ

η
(k+1)
θ|y = η

(k)
θ|y + ∆ηθ|y

M-Step:

QAi = QiC
−1
ε

QBi = QiJ̄
A

QCi = D̄QBi

py = C−1ε ȳ − J̄A∆ηθ|y

gi = pTyQipy − tr(QAi ) + tr(QCi )

Hij = tr(QAi Q
A
j )− tr(QAj QBi D̄)− tr(QAi QBj D̄) + tr(QCi Q

C
j )

∆λ = 〈H〉−1g
λ(k+1) = λ(k) + ∆λ

}

Figure 2.16: Improved EM-algorithm
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3 Implementation

3.1 Paradigms

This implementation of Dynamic Causal Modeling is realized in C++ to achieve a good
overall performance and utilize parallelization to further improve the execution time.
Furthermore the submodel system classes are implemented modularly to allow easy ex-
tensions of the mathematical models and also free combinations of di�erent dynamic and
forward submodels.

3.1.1 Parallelization

Three parts of the program code are particulary well suited for parallelization. First, the
matrix multiplication, with its general (for sparse matrices worst case) complexity of n3.
Second, the computation of the parameter-jacobian in the E-step of the EM-algorithm
and �nally the calculation of the elements of δF

δλi
and δ2F

δλ2ij
in the M-step of the EM-

algorithm. In all three cases the parallelization involves exclusively spreading passes of
"for-loops" to di�erent threads. Further parallelization of blocks of the EM-algorithms
did not proof to speed up the overall time consumption. The parallelization itself was
implemented with the OpenMP library.

3.1.2 Modularization

One important point of this implementation is the modularization of the submodels. This
not only allows an easy extension with further dynamic and forward submodels, but also
the possibility to estimate data with di�erent submodel combinations by a mere change
of the �le extension of the dataset.

3.1.3 The Layout

The DCM Implementation consists mainly of seven major classes. They are, in the order
they are instantiated:

• Import - interprets the given parameter or data �le and con�guration �le

• Feed - controls and distributes the input for the dynamic system

• System - represents the combined dynamic and forward system

• Drift - generates a drift matrix and handles the associated parameters
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• Output - writes the di�erent output �les

• Solver - computes the systems of (ordinary) di�erential equations

• Bayes - estimates parameters from data with EM-algorithm

Furthermore two minor classes:

• Vector - dense vector

• Matrix - sparse matrix

Figure 3.1: Class diagram of the DCM implementation

3.2 Description of Implemented Classes

3.2.1 Speci�cation and Data Import Class5

This class processes the raw data or simulation �les as well as the con�guration �le.
In the case of a simulation �le, the system speci�cation, the parameters, and the input
time series are read. For a raw data �le, the system speci�cation is determined by the

5The source code �le of the import class is src/import.hh
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�le header (�rst row), the data and input time series are sorted and read. Finally, the
series step size and time series length is computed. The Import class decides by the �le
extension whether it should interpret it as a simulation �le for a simulation (.dcm) or as
a data�le for an estimation (.eeu). The con�guration �le is named dcm.ini.

3.2.2 Data Feed Provider Class6

The Feed class preprocesses the input and prerecorded data, manages the input distribu-
tion to the dynamic system and data distribution to the EM-algorithm. The constructor
expects a reference to the system speci�cation structure and a pointer to the input and
data array; both are provided by the Import class. The datapoints can be scaled to �t
the correct magnitude, in example milli Volt (mV) in case of EEG data.

3.2.3 Drift Generator Class7

This class provides the drift generated by discrete cosine sets grouped into a global
drift matrix and the associated parameters. The global drift matrix is assembled by the
constructor. Upon request also a local drift matrix (by timestep) can be returned, in
example for use in the Solver class.

3.2.4 Combined System Class8

The combined system class holds both dynamic and forward systems. This bundles the
access for the solver to a single call. The use of modular dynamic and forward systems is
enabled by this class, as both these member classes have to be derived from an interface
de�ning base class.

3.2.5 Modularized Dynamic System Classes

As this Implementation accepts di�erent types of dynamic systems, a common virtual
base class is implemented to force each actual dynamic system class derived from this
base class to provide a certain interface.

3.2.5.1 Dynamic Base Class9

The dynamic base class Dynbase provides an abstract interface for all derived dynamic
systems. This interface comprises all necessary methods that are requested by the gov-
erning System class.

6The source code �le of the feed class is src/feed.hh
7The source code �le of the drift class is src/drift.hh
8The source code �le of the system class is src/system.hh
9The source code �le of the dynamic base class is src/dynbase.hh
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3.2.5.2 Dynamic EEG System Class10

Derived from the dynamic base class Dynbase, this class implements the dynamic system
as described in 2.2.1.2. The righthand-side is implemented as shown in (2.16). The initial
value as well as the initial back states for the delays are set to zero vectors.

3.2.6 Modularized Forward System Classes

As for the dynamic system, the forward system classes are also derived from a common
virtual base class for the same reasons as above.

3.2.6.1 Forward Base Class11

The forward base class Forbase provides an abstract interface for all derived forward
systems. Similar to the dynamic base class Dynbase this class holds all methods that are
requested by the System class.

3.2.6.2 Forward EEG Class12

Derived from the forward base class Forbase, it implements the forward system as de-
scribed in 2.2.2.2. As this is not a system of di�erential equations, most of the methods
are dummies.

3.2.7 Solver Class13

The Solver class o�ers methods to integrate the dynamic and forward systems through
the interface of the System class. The drift, as generated by the Drift class, is applied
from this class. The employed Runge-Kutta integration technique is described next.

3.2.7.1 Runge-Kutta-Fehlberg

For the integration of systems of ordinary di�erential equations, the Runge-Kutta-Fehlberg
(RKF5) method is used. This is an explicit Runge-Kutta method of order �ve as decribed
in [25]. Below the Butcher's Tableau corresponding to the used RKF5 method is given:

10The source code �le of the dynamic eeg class is src/dyneeg.hh
11The source code �le of the forward base class is src/forbase.hh
12The source code �le of the forward eeg class is src/foreeg.hh
13The source code �le of the solver class is src/solver.hh
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Figure 3.2: Runge-Kutta-Fehlberg (5th order) Butcher's Tableau

3.2.8 Output Class14

This class holds the output data of the dynamic and forward systems after the last
integration of the system. It provides functionality to generate three types of output:

• Data Output, columnwise sorted input, error, output from dynamic and forward
system, as well as the original data

• Plot Output, GnuPlot Script allowing to visualize the datapoints in the data output

• Parameter Output, a plain text�le listing the parameters and their estimated pos-
terior values

3.2.9 Bayes Class15

The Bayes class implements the improved EM-algorithm, as described in (2.77) and can
compute the posterior probabilities to a given contrast. Some implementation details to
the EM-algorithm will be given below.

3.2.9.1 The Parameter-Jacobian

To calculate the parameter-jacobian matrix J for the EM-algorithm, a straightforward
�rst-order (forward) �nite di�erence approach is used.

J =
δh(z, u, θ)

δθ
≈ h(z, u, θ + k)− h(z, u, θ)

k
(3.1)

14The source code �le of the output class is src/output.hh
15The source code �le of the bayes class is src/bayes.hh
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Though a second-order �nite di�erence scheme would be signi�cantly more accurate,
due to the long assembly time of the parameter-jacobian with

J =
δh(z, u, θ)

δθ
≈ h(z, u, θ + k)− h(z, u, θ − k)

2k
(3.2)

this would be very ine�cient, since the model would have to be integrated twice,
for h(z, u, θ + k) and h(z, u, θ − k). The computation of the parameter-jacobian was
parallelized by segmenting J columnwise and solving for each perturbed parameter.

3.2.9.2 The EM-Algorithm

In the EM-algorithm the variance matrix C̄ε is only needed in its inverted form. As C̄ε
is a diagonal matrix, it can naturally be inverted very swiftly by inverting the diagonal
entries. Also the assembly of C̄ε can be sped up with combined scalar multiplication and
matrix addition (SAXPY) operations. The inversion of J̄BJ̄ (improved E-step) and the
solving of ∆λ = H−1g ⇔ H∆λ = g (M-step) are both accomplished with the Cholesky
decomposition.
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4 Numerical Experiments and Validation

with Real and Arti�cial EEG Data

4.1 Preliminary Remark

The numerical experiments that were conducted to test the validity of the implemented
parameter estimation, the required integration scheme and the combined dynamic and
forward model includes two test series. First, a series of arti�cial EEG data, which was
simulated with the implemented program. Second, a series of real life (EEG) data. The
data, the associated hypothesis and background information was provided by Prof. Dr.
Hans-Christian Pape, Dr. Thomas Seidenbecher and Dr. Jörg Lesting of the WWU
Institute of Physiology I in Münster. This data was gathered in the course of fear
experiments on conditioned mice conducted by Rajeevan Narayanan.

4.2 Arti�cial EEG Data

The arti�cial data experiments are grouped in two sets. First, simple 2-Region networks
testing the connection types. Second, 3-Region networks testing the interaction of dif-
ferent connection types. All simulated datasets were downsampled to 8 ms. The rather
less interesting parameters are kept at the prior value. Input was restricted to the �rst
region only.

4.2.1 2-Region Tests

Initially three simple networks consisting of two regions were simulated and estimated
to test the three connection types (forward, backward and lateral). For these tests of
a duration of 800 ms with two input events that lasted for 300 ms was chosen, which
was restricted to the �rst region. Next, these three cases will be presented with their
schematic and the (simulated) EEG curves.

4.2.1.1 Forward Coupling Test16

Figure 4.1: Forward Coupling Test Schematic

16see syn_2f.dcm and syn_2f.eeu
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The �rst test includes a single forward connection17 from the �rst to the second re-
gion. Below are the graphs of the simulated EEG curve and the di�erence between the
simulated curve and the estimated curve.

Figure 4.2: Top: EEG curve for the forward coupling test of the �rst (red) and second
(green) region. Bottom: Di�erence between the simulated and estimated
EEG curves.

The maximum error in the estimated curve is 7%, the average error is 1.5%.

4.2.1.2 Backward Coupling Test18

Figure 4.3: Backward Coupling Test Schematic

The second test includes a single backward connection19 from the �rst to the second
region. Below are the graphs of the simulated EEG curve and the di�erence between the
simulated curve and the estimated curve.

17solid arrows
18see syn_2b.dcm and syn_2b.eeu
19dashed arrow
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Figure 4.4: Top: EEG curve for the backward coupling test of the �rst (red) and second
(green) second. Bottom: Di�erence between the simulated and estimated
EEG curves.

The maximum error in the estimated curve is 6%, the average error is 0.7%.

4.2.1.3 Lateral Coupling Test20

Figure 4.5: Lateral Coupling Test Schematic

The third test includes a single lateral connection21 from the �rst to the second region.
Below are the graphs of the simulated EEG curve and the di�erence between the simu-
lated curve and the estimated curve.

20see syn_2l.dcm and syn_2l.eeu
21dotted arrow
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Figure 4.6: Top: EEG curve for the lateral coupling test of the �rst (red) and second
(green) region. Bottom: Di�erence between the simulated and estimated
EEG curves.

The maximum error in the estimated curve is 6%, the average error is 0.8%.

4.2.2 3-Region Tests

To test combinations of di�erent connections �ve networks consisting of three regions
were simulated. Similar to the two region tests a duration of 800 ms and two input
events that lasted for 300 ms were chosen. Again input was restricted to the �rst region.

4.2.2.1 Forward-Lateral Test22

Figure 4.7: Forward-Lateral Test Schematic

22see syn_3a.dcm and syn_3a.eeu
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For the �rst test the region that receives input distributes it evenly via forward con-
nections17 to the other two regions. The receiving two regions are connecting with a
uni-directional lateral connection21. Below are the graphs of the simulated EEG curve
and the di�erence between the simulated curve and the estimated curve.

Figure 4.8: Top: EEG curve for the forward-lateral test of the �rst (red), the second
(green) and the third (blue) region. Bottom: Di�erence between the simu-
lated and estimated EEG curves.

The maximum error in the estimated curve is 10%, the average error is 2.7%.

4.2.2.2 Chained Forward Test23

Figure 4.9: Chained Forward Test Schematic

23see syn_3b.dcm and syn_3b.eeu
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For the second test the region that receives input relays it via a forward connection17

to the second region, which in turn transmits it to the third region through a forward
connection17. Below are the graphs of the simulated EEG curve and the di�erence
between the simulated curve and the estimated curve.

Figure 4.10: Top: EEG curve for the chained forward test of the �rst (red), the sec-
ond green) and the third (blue) region. Bottom: Di�erence between the
simulated and estimated EEG curves.

The maximum error in the estimated curve is 18%, the average error is 4.4%.

4.2.2.3 Forward-Lateral and Backward-Lateral Test24

Figure 4.11: Forward-Lateral and Backward-Lateral Test Schematic

24see syn_3c.dcm and syn_3c.eeu
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For the third test the region that receives input distributes it via a forward connection17

to the second and via a backward19 connection to the third. Both receiving regions are in
turn coupled through a lateral connection21 with the �rst region. Below are the graphs
of the simulated EEG curve and the di�erence between the simulated curve and the
estimated curve.

Figure 4.12: Top: EEG curve for the forward-lateral and backward-lateral test of the �rst
(red), the second (green) and the third (blue) region. Bottom: Di�erence
between the simulated and estimated EEG curves.

The maximum error in the estimated curve is 9%, the average error is 0.9%.

4.2.2.4 Forward-Backward and Lateral-Lateral Test25

Figure 4.13: Forward-Backward and Lateral-Lateral Test Schematic

25see syn_3d.dcm and syn_3d.eeu
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For the fourth test the region that receives input distributes it via a forward connection17

to the second, which connects back to the �rst with a backward connection19. The third
region is connected through a bidirectional lateral connection21 with the �rst. Below are
the graphs of the simulated EEG curve and the di�erence between the simulated curve
and the estimated curve.

Figure 4.14: Top: EEG curve for the forward-backward and lateral-lateral test of the �rst
(red), the second (green) and the third (blue) region. Bottom: Di�erence
between the simulated and estimated EEG curves.

The maximum error in the estimated curve is 11%, the average error is 1.5%.

4.2.2.5 Full Connectivity Test26

Figure 4.15: Full Connectivity Test Schematic

26see syn_3e.dcm and syn_3e.eeu
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For the �fth test the region that receives input is connected with forward connections17

with the other two and both connect back to the �rst via backward connections19. The
second region is furthermore connected to the third through a lateral connection21 and
and third with the second via a forward connection17. Below are the graphs of the
simulated EEG curve and the di�erence between the simulated curve and the estimated
curve.

Figure 4.16: Top: EEG curve for the full connectivity test of the �rst (red), the sec-
ond (green) and the third (blue) region. Bottom: Di�erence between the
simulated and estimated EEG curves.

The maximum error in the estimated curve is 11%, the average error is 1.8%.

4.2.3 Conclusion

The �rst negative peak, which occurs at the beginning of an input stimulus, is related
to the downsampling, which might displace the precise point in time where the input
stimulus begins, and also to the sudden change of input and the consequential rise of
energy in the dynamic system underlying the (dynamic sub-) model. The subsequent
sinuous di�erences, due to the change in energy in the other regions, seem to be a
damped oscillation.

4.3 Real EEG Data

The real life EEG data was recorded during fear experiments as described in [44], [29]
and [42]. These were conducted with freely behaving mice, that were conditioned to
experience fear when an auditory stimulus is presented. The complete experiment for
one subject consisted of eleven sessions. The �rst three sessions are used to adapt (�rst
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day) and condition (second day) the subject to the auditory stimulus with a sensoric
stimulus (electric foot shock). A presentation of the auditory stimulus combined with a
sensoric stimulus is marked CS+, without a sensoric stimulus is marked CS−. A day
after the conditioning, six trials labeled R1 to R6 were conducted each 30 min apart.
Those lasted for 360 s with eight stimulus presentation (four CS− and four CS+) for
a duration of 10 s with a inter-stimulus period of 20 s. A day later two more sessions
labeled E1 and E2 are conducted, structured equal to the session R1 to R6. For an
overview of this experiment see the supplementary data to [29]. Analyzed was the �rst
stimulus block marked CS+ of the sessions R1 and R6.

4.3.1 Hypothesis

Three brain regions are considered, the lateral amygdala (AMY), the �rst cornu ammonis
region (CA1) of the hippocampus and the prefrontal cortex (PFC). The constraints on
the connectivity of these three considered brain regions is given by full connectivity
between all regions as well as all regions being able to receive the experimental input.
The hypothesis on this network is given by the lateral amygdala being the source of
activitiy relayed to the CA1 which propagates to the PFC for the session R1, and a
similar lower connectivity between these three regions for the session R6.

4.3.2 Data Preprocessing

During a single session the amplitudes of interest could be hidden beneath other signals
generated by other concurrent processes in the same or a nearby cortex region. To
emphasize the actual Event-Related Potentials (ERP), a set of data is generated by
averaging over all available datasets of the same experimental session (see [2]), in this
case over all sessions R1 during the �rst CS+ to generate the �rst dataset, and over all
sessions R6 also during the CS+ for all ten testsubjects. This lessens the representation
of random or unrelated e�ects of the individual trials. Furthermore the data was low-pass
�ltered to re�ect the frequencies of interest, as well as downsampled to 8 ms.

4.3.2.1 Full CS+ Block Analysis

This �rst estimation is applied to the �rst CS+ block with a duration of ten seconds of
the averaged R1 and R6 sessions.
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Figure 4.17: Estimation (green) of the complete �rst CS+ block of the ERP (red) over
all R1 sessions.
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Figure 4.18: Estimation (green) of the complete �rst CS+ block of the ERP (red) over
all R6 sessions.
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To �t the estimated curve to the data, a rather high order of the drift had to be
chosen. To obtain a more accurate estimation of the coupling, a window of a single
second is estimated next.

4.3.2.2 Partial CS+ Block Analysis

For this estimation of the �rst CS+ block, the time series is truncated to the second
second of the full ten second block of the averaged R1 and R6 sessions. For the averaged
R1 session the estimation leads to the following curve:

Figure 4.19: Measured EEG curve (green) and estimated EEG curve (red) of the second
second of the �rst CS+ block of the ERP.

The dominating estimated connections are presented next in the following schematic.

Figure 4.20: Coupling schematic of the estimated data, presenting the dominant coupling.
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The estimation of the averaged R6 session is given by the following curve:

Figure 4.21: Measured EEG curve (green) and estimated EEG curve (red) of the second
second of the �rst CS+ block of the ERP.

The dominant estimated connections are presented next in the following schematic.

Figure 4.22: Coupling schematic of the estimated data, presenting the dominant coupling.

4.3.2.3 Experimental Discussion

The estimated coupling veri�es the hypothesis on the connectivity of the considered
brain regions. Additionally, a connection from the prefrontal cortex to the amygdalar is
estimated for the averaged R1 session, and a connection from the prefrontal cortex to the
�rst cornu ammonis region for the averaged R6 region. The dominating connections of
the averaged R6 session are about 9

20 in strength compared to the averaged R1 session.
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4.3.2.4 Mathematical Discussion

The truncated time series is estimated more accurate, matching most of the peaks of the
data with a relative low order drift. The current model seems incapable of estimating the
progression of a measured EEG curve for long time series, especially if this time series
comprises a single stimulus spanning the whole time series. The concept of adaptation,
which might be necessary to estimate time series of this length, is not taken into account
for this model, in particular the dynamic submodel for EEG. The measured curve can only
be followed, if a very high order drift is used, which compensates for these shortcomings.
Though this roughly approximates the measured EEG curve, it does not re�ect the
connectivity of the brain regions, since the peaks of the data are primarily matched by
the drift. For shorter time series, the current model matches the data with a low order
drift.

4.4 Performance Analysis

To test the performance gain of the parallelization and the improved EM-algorithm the
arti�cial EEG data was evaluated in four variants with a preselected number of ten
iterations of the EM-algorithm. First, the original EM-algorithm as presented in [16],
[13] and [17]. Second, the original EM-algorithm with parallelization27. Third, the
improved EM-algorithm as described in (2.77). Fourth, the improved EM-algorithm
with parallelization27.

Desktop original EM original EM improved EM improved EM
System28 (1 Thread) (3 Threads) (1 Thread) (3 Threads)

Syn_2f (see 4.2.1.1) 270.79 s 135.90 s 55.29 s 36.83 s
Syn_2b (see 4.2.1.2) 269.28 s 139.77 s 55.84 s 36.46 s
Syn_2l (see 4.2.1.3) 269.87 s 137.51 s 55.28 s 30.81 s
Syn_3a (see 4.2.2.1) 1565.94 s 618.06 s 135.05 s 79.67 s
Syn_3b (see 4.2.2.2) 1583.37 s 626.23 s 135.25 s 78.99 s
Syn_3c (see 4.2.2.3) 1581.86 s 625.29 s 133.61 s 78.09 s
Syn_3d (see 4.2.2.4) 1564.45 s 641.86 s 136.53 s 80.09 s
Syn_3e (see 4.2.2.5) 1587.07 s 627.42 s 136.77 s 80.52 s

Figure 4.23: Comparision of the original and improved EM-algorithm variants with and
without parallelization on a desktop computer

27As described in (3.1.1)
28Intel Atom 330 - a Dual-Core (In-Order) Processor with Hyperthreading (logical Quad-Core) and

2GB of RAM
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Workstation original EM original EM improved EM improved EM
System29 (1 Thread) (22 Threads) (1 Thread) (22 Threads)

Syn_2f (see 4.2.1.1) 74.68 s 33.43 s 8.38 s 2.73 s
Syn_2b (see 4.2.1.2) 74.61 s 32.92 s 8.44 s 2.66 s
Syn_2l (see 4.2.1.3) 74.40 s 33.12 s 9.97 s 2.41 s
Syn_3a (see 4.2.2.1) 498.78 s 169.14 s 21.57 s 5.39 s
Syn_3b (see 4.2.2.2) 495.31 s 167.75 s 21.66 s 5.35 s
Syn_3c (see 4.2.2.3) 499.30 s 166.36 s 21.50 s 5.52 s
Syn_3d (see 4.2.2.4) 500.64 s 168.26 s 21.68 s 5.44 s
Syn_3e (see 4.2.2.5) 496.84 s 168.27 s 21.56 s 5.33 s

Figure 4.24: Comparision of the original and improved EM-algorithm variants with and
without parallelization on a workstation computer

Workstation improved EM
System29 Syn_3e (see 4.2.2.5)

1 Thread 21.56 s
2 Threads 13.46 s
3 Threads 12.39 s
4 Threads 9.37 s
5 Threads 8.02 s
6 Threads 6.79 s
7 Threads 5.59 s
8 Threads 5.08 s
9 Threads 8.26 s
10 Threads 4.50 s
11 Threads 4.64 s
12 Threads 4.65 s
13 Threads 5.32 s
14 Threads 5.54 s
15 Threads 5.42 s
16 Threads 6.97 s
17 Threads 5.38 s
18 Threads 5.36 s
19 Threads 5.52 s
20 Threads 4.83 s
21 Threads 4.92 s
22 Threads 5.33 s

Figure 4.25: Comparison of runtime with varying numbers of threads on a workstation
computer

29Intel Xeon 5660 - a 12-Core (Out-Of-Order) Processor with Hyperthreading (logical 24-Core) and
96GB of RAM
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Both measures, either parallelization or the improved EM-algorithm, enhance the over-
all performance of the parameter distribution estimation independent from each other.
Especially noteworthy is that the improvements to the EM-algorithm have a bigger im-
pact on the runtime than the parallelization of the original EM-algorithm. This is due
to the massive amount of �oating-point operations that are not computed. On a desk-
top computer the runtime can be reduced to almost a twentieth with the parallelized
improved EM-algorithm compared to the not parallelized original EM-algorithm. On a
workstation this reduction can be even almost the factor hundred. The parallelization
seems to be optimal with ten threads. For systems with more neuronal states, signi�-
cantly longer time series or other measures that change the size of the design matrix J̄ ,
in example a higher order of drift or more parameters, the number of threads that results
in the lowest runtime can be higher.

4.5 Outlook

Besides the modi�cations of the EEG dynamic submodel as presented in [34] and [33],
which would include an adaptation to a stimulus, a new upgrade from this (bi-)linear
model to a nonlinear model could be made. This can conceptionally be based on the
nonlinear extension of the dynamic submodel for fMRI as developed in [48], encompass-
ing a mechanism by which the neuronal state of a region can in�uence the coupling of
others. Developing a nonlinear dynamic submodel for EEG could allow the modeling of
faster changes in connectivity. Additionally or alternatively the gain matrices Gk can
be parametrized through polynomials allowing more complex input induced changes in
connectivity. This could, especially for time series with long stimulus durations, estimate
the change in coupling better than the current constant gain matrices.

Moreover the comparison of di�erent models could be incorporated to determine the
evidence of an estimated model like described in [38]. With the model comparison,
in example the drift order or intrinsic connectivity �tting the data best can be deter-
mined. A major acceleration of the EM-algorithm can be made utilizing ordered subsets
as described in [26]. A problem of the current variant of the EM-algorithm is, that
the hyperparameter estimation can produce negative weights for the parameter estima-
tion. This can lead to non positive de�nite design matrices that consequently cannot
be decomposed by the Cholesky decomposition. To prevent this, a modi�cation to the
covariance component estimation similar to the hyperparametrization described in the
appendix of [18] can be made. This would require a reformulation of the hyperparameter
estimation. To further reduce the runtime of the program, the Cholesky decomposition
could be parallelized. Finally, the solver could be parallelized as well and equipped with
adaptive timesteps, for example with RKF45 or RKF56.
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5 Appendix

5.1 Program Usage

The program can be started from the linux command line via ./dcm dat/simu.dcm for
simulations or ./dcm dat/data.eeu. Additionally it can be chosen which states are
enabled to receive extrinsic input by adding a binary as second argument. For example:
./dcm /dat/data.eeu 110, assuming data.eeu is a dataset of three states, the �rst two
states will be able receive input the third state is excluded from the set of parameters
and set to zero. Omitting this second argument is equivalent to all regions being able to
receive extrinsic input.

5.2 Dependencies

Required packages are:

• libgomp1 available in most repositories,

• gcc (Version: >=4.2 ) available in most repositories,

• gnuplot (Version: >=4.4 ) available in most repositories (only for data visualiza-
tion)

5.3 Program and Source Code License

The source code is licensed under the zlib-license. Following is the license text:

Copyright (c) 2011 Christian Himpe

This software is provided 'as-is', without any express or implied warranty. In no event
will the author be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including com-
mercial applications, and to alter it and redistribute it freely, subject to the following
restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you
wrote the original software. If you use this software in a product, an acknowledgment in
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the product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepre-
sented as being the original software.

3. This notice may not be removed or altered from any source distribution.

5.4 Abbreviations

DCM Dynamic Causal Modeling
fMRI functional Magnetic Resonance Imaging
EEG Electroencephalography
ERP Event Related Potential
MEG Magnetoencephalography
BOLD Blood Oxygen Level Dependency
EM Expectation Maximization
RKF5 5th-Order Runge-Kutta-Fehlberg
SAXPY Scalar Alpha times X Plus Y
AMY Amygdala
CA1 Cornu Ammonis 1st Region
PFC Prefrontal Cortex

5.5 Symbol Index

Kronecker Product ⊗
Hadamard Product ◦
Convolution Operator ∗
Matrix Trace tr
Diagonal Matrix diag
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