
PACO 2017 Extended Abstract

Comprehensive Memory-Bound Simulations
on Single Board Computers

Christian Himpe1 Tobias Leibner2 Stephan Rave3

Numerical simulations of increasingly complex models, demand grow-
ing amounts of (main) memory. Typically, large quantities of memory
are provided by workstation- and server-type computers, but in turn
consume massive amounts of power. Model order reduction can reduce
the memory requirements of simulations by constructing reduced order
models, yet the assembly of these surrogate models itself often requires
memory-rich compute environments. We resolve this deadlock by care-
ful algorithmic design of the model reduction technique. The presented
empirical-cross-Gramian-based model reduction comprises two phases;
in a first phase the empirical cross Gramian matrix is computed, sec-
ondly, a singular value decomposition of this system Gramian matrix
reveals a low-rank projection, which can be applied to the original full
order model. This model reduction approach can be realized econom-
ically memory-wise using the HAPOD algorithm, and we demonstrate
its applicability on a low-end single board computer device.

1 Introduction

Numerical simulations of models based on parametric differential equations are an impor-
tant tool in science and engineering. A common scenario is the repeated (multi-query,
many-query) simulation for different parameters. Using high fidelity resolutions or more
comprehensive models usually results in large-scale systems, which may even need to be
processed on distributed memory systems due to memory or computational constraints.
Such multi-node compute clusters consume wast amounts of power.

Model reduction can overcome computational complexity constraints by constructing
algorithmically reduced order models. Yet, the assembly of the reduced model may require
significant memory resources. Especially, data-driven model reduction techniques for the
reduction of the time-domain representation of nonlinear systems need to simulate the
full order model multiple times.

This work demonstrates that dense model reduction algorithms can be adapted to
memory-constraints environments, not only by using reduced order models for the applica-
tion simulation, the “online-phase”; but also for the assembly of the reduced order model,

1Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Com-
plex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg,
himpe@mpi-magdeburg.mpg.de

2Institute for Computational and Applied Mathematics, Westfälische Wilhelms Universtät, Einstein-
strasse 62, 48149 Münster,
tobias.leibner@uni-muenster.de

3Institute for Computational and Applied Mathematics, Westfälische Wilhelms Universtät, Einstein-
strasse 62, 48149 Münster,
stephan.rave@uni-muenster.de

1

mailto:himpe@mpi-magdeburg.mpg.de
mailto:tobias.leibner@uni-muenster.de
mailto:stephan.rave@uni-muenster.de


PACO 2017 Extended Abstract

the so-called “offline phase”. Hence, a full-cycle memory economic simulation environ-
ment is provided. Due to the memory-resource independence, low-power or power-aware
platforms become applicable for complex simulations.

In the scope of this work, input-output system models of the following form are con-
sidered:

ẋ(t) = f(x(t), u(t)),

y(t) = g(x(t), u(t)), (1)

x(0) = x0,

which consist of a dynamical system given by an ordinary differential equation (ODE)
and an output function. This class of models maps an input function u : R≥0 → RM via
the state trajectory x : R≥0 → RN , that is the solution to the ODE with the vector field
f : RN × RM → RN , to the output trajectory y : R≥0 → RQ resulting from the output
functional g : RN × RM → RQ.

2 Model Order Reduction (MOR)

Given an input-output system (1), an associated reduced order model has the form:

ẋr(t) = fr(xr(t), u(t)),

yr(t) = gr(xr(t), u(t)),

xr(0) = xr,0,

with a reduced state xr : R≥0 → Rn, n� N , a reduced vector field fr : Rn×RM → Rn, a
reduced output functional gr : Rn×RM → RQ and an approximate output yr : R≥0 → RQ,
such that ‖y − yr‖ � 1. Various methods exist to obtain such a reduced order model.
In the scope of this work we will focus on a data-driven approach from the class of
projection-based model order reduction methods.

2.1 Projection-Based MOR

A popular class of model reduction methods uses truncated projections to construct re-
duced order models. The aim in projection-based model order reduction is to find a set
of projections to, and back from, a coordinate system in which its base vectors are or-
dered by importance in some sense, so that lesser relevant directions can be truncated.
Practically, a projection-based reduced order model to (1) is given by:

ẋr(t) = V1f(U1xr(t), u(t)),

yr(t) = g(U1xr(t), u(t)),

xr(0) = V1x0,

with the truncated reconstructing projection U1 ∈ RN×n, and the truncated reducing
projection V1 ∈ Rn×N , which are bi-orthogonal: V1U1 = In.

2



PACO 2017 Extended Abstract

2.2 Cross-Gramian-Based MOR

To delineate the subsequent nonlinear model reduction approach, the underlying linear
model reduction technique is briefly summarized. Given a square (M = Q), linear system:

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

x(0) = x0,

with a linear vector field consisting of A ∈ RN×N , B ∈ RN×M , and a linear output
functional, C ∈ RQ×N , the cross Gramian matrix [2] is defined as:

WX :=

∫ ∞
0

eAtBC eAt dt ∈ RN×N .

Following the approximate balancing technique in [9], a singular value decomposition
(SVD) of this cross Gramian,

WX
SVD
= UDV

yields the projections U ∈ RN×N and V ∈ RN×N . Truncating N − n columns of U
and rows of V based on the magnitude of singular values Dii ∈ R≥0 gives the truncated
reconstructing projection U1 ∈ RN×n and truncated reducing projection V1 ∈ Rn×N . The
latter may be obtained by truncating V (Petrov-Galerkin approach) or using Uᵀ

1 (Galerkin
approach). For further details on balancing methods, see [1].

2.3 Empirical-Cross-Gramian-Based MOR

A cross Gramian matrix can also be computed for nonlinear systems in data-driven man-
ner, which is motivated by the following representation of the linear cross Gramian,

WX =

∫ ∞
0

(eAtB)(eA
ᵀtCᵀ)ᵀ dt,

as a product of the primal and dual (adjoint) impulse responses. For nonlinear systems, an
adjoint system is generally not readily available as for linear systems. Yet, a cross Gramian
can be computed purely based on state and output trajectory data: the empirical cross
Gramian [6], which in a simplified variant is given by:

ŴX :=
1

M

M∑
m=1

∫ ∞
0

Ψm(t) dt ∈ RN×N , (2)

Ψm
ij (t) = (xmi (t)− x̄mi )(yjm(t)− ȳjm) ∈ R.

The xmi (t) symbolizes the i-th state component for a simulation with the m-th perturbed
input component, while yjm(t) symbolizes the m-th output component for a simulation
with j-th perturbed initial state component, and x̄mi , ȳjm are averages of the respective
trajectory components. for further details see [4].

3 Memory-Economic Computation

A major drawback of the empirical Gramians in general and the empirical cross Gramian
in particular, is their dense structure of full order N . In this section we describe a
memory-economic algorithm to compute the SVD of the empirical cross Gramian without
assembling the full order cross Gramian.

3



PACO 2017 Extended Abstract

3.1 Memory-Economic Empirical-Cross-Gramian-Based

The definition of the empirical cross Gramian (2) can be computed column-wise [5]:

WX =
(
ωX,1 . . . ωX,n

)
∈ RN×N ,

ωX,j =
1

M

M∑
m=1

∫ ∞
0

ψmj(t) dt ∈ RN×1,

ψmj
i (t) = (xmi (t)− x̄mi )(yjm(t)− ȳjm) ∈ R.

Thus the empirical cross Gramian can be assembled in blocks of columns, without any
exchange of data between the steps of computing the column blocks. Following, an algo-
rithm is presented to compute the singular vectors from the partitioned empirical cross
Gramian incrementally, so only one partition has to kept in memory.

3.2 Memory-Economic SVD

The column-wise partitioning of the empirical cross Gramian is now reused to obtain the
full empirical cross Gramian’s left singular vectors U1 associated to the dominant singular
values, via a proper orthogonal decomposition (POD). The matrix of singular vectors
acts as the truncated reconstructing projection and its transpose as truncated reducing
projection. In the scope of this work we restrict ourselves to Galerkin projections V = Uᵀ,
but Petrov-Galerkin-type projections are computable in a similar manner.

3.2.1 Hierarchical Approximate POD

To obtain the left singular vectors of the empirical cross Gramian, given in a column-wise
block partitioning, a method related to the SVD, the hierarchical approximate proper
orthogonal decomposition (HAPOD) from [5] is utilized.

The HAPOD algorithms allows to compute the dominant left singular vectors U1 of a
given column-wise partitioned data-set, for example incrementally, such that the mean
`2 projection error is bounded from above by ‖WX − U1U

ᵀ
1WX‖`2 < ε. Given an upper

bound ε and a partitioning WX = [ω1, . . . , ωS], with ωs containing Ks columns, this “live
HAPOD” computes as:

û0 := {},

[ωs, ûs−1]
SVD
= usdsvs → ûs := usd̂s, d̂s,ii =

{
ds,ii ds,ii < ε2Ks

√∑s
j=1 Kj

S

0 else

U1 := ûS → V1 = Uᵀ
1 .

The combination of the partitioned empirical cross Gramian with the live HAPOD
allows a computation of a low-rank reducing Galerkin projection and hence a projection-
based reduced order model in a memory economic manner, as the full empirical cross
Gramian is never needed and the partitioned only requires communication to forward
reduced base components.

4



PACO 2017 Extended Abstract

4 Numerical Example

To illustrate this memory-economic model reduction technique combining the empirical
cross Gramian with the HAPOD, a nonlinear hyperbolic network model is utilized,

ẋ(t) = A tanh(Kx(t)) +Bu(t),

y(t) = Cx(t),

x(0) = 0.

Exemplary, a sparse but stable system matrix A ∈ R1024×1024, a sparse random input
matrix B ∈ R1024×1, a random output matrix C ∈ R1×1024, and a diagonal random gain
matrix K ∈ R1024×1024, Kii = U[0,1] is selected for this test.

This model is reduced using the conjoined methods of the empirical cross Gramian and
the HAPOD on four different compute systems:

• Desktop Computer:

CPU AMD A10-7800 (64-bit Quad-Core x86-64) @ 3.9Ghz

SIMD AVX, FMA3 & FMA4

RAM 32GB DDR3-2133 (dual rank & dual channel)

• Thin Client:

CPU AMD A12-9800E (64-bit Quad-Core x86-64) @ 3.1Ghz

SIMD AVX2, FMA3 & FMA4

RAM 32GB DDR4-2133 (dual rank & dual channel)

• Single Board Computer 1:

CPU Allwinner H3 (32-bit Quad-Core ARM Cortex A7) @ 0.8Ghz

SIMD NEON, VFP4

RAM 0.5GB DDR3-1600 (single rank & single channel)

• Single Board Computer 2:

CPU Allwinner H5 (64-bit Quad-Core ARM Cortex A8a) @ 0.8Ghz

SIMD NEON, VFP4

RAM 0.5GB DDR3-1600 (single rank & single channel)

using emgr - empirical Gramian framework [3] in GNU Octave [10] with OpenBLAS [8]
via FlexiBLAS [7].

In Figure 1 average power draw under load for each of the systems is depicted, as well
as the computational time and consumed energy for the partitioned and unpartitioned
(one partition of order 1024) empirical-cross-Gramian-based computation.

5



PACO 2017 Extended Abstract

A10 A12 H3 H5
0

20

40

60

80

100

120

CPU

Lo
ad

 P
ow

er
 D

ra
w

 [W
]

16 32 64 128 256 1024
10^2

10^3

10^4

10^5

Partition Size

T
im

e 
[s

]

16 32 64 128 256 1024
6

8

10

12

14

16

18

Partition Size

E
ne

rg
y 

C
on

su
m

pt
io

n 
[W

h]

Figure 1: Comparison of power draw under load, computational time (offline phase) and
energy consumption on different compute systems and partitionings.

The power draw during computational load among the four architectures ranges from
the 111 W (A10), over 47 W (A12), 9.2 W (H5) to 3.5 W (H3). Even though the A12
requires 23% more time on average than the A10 to obtain the solution, the A12 consumes
only about half the energy. The H3 requires expectedly significantly longer computational
time but still consumes less energy than the A10, while the H5 halves the runtime of the
H3 and is almost on par with the most efficent A12 in terms of energy consumption. It
should be emphasized that the H3 is a 32-bit (ARM) architecture and additional factors,
such as cooling have to be considered more carefully than on x86 platforms, hence this
comparison is not completely fair.

The partitioning has a minor effect on computational time and energy consumption:
Longer times and more energy are required for small partition sizes. For larger partition
sizes a slight reduction in time and thus energy consumption can be observed. Overall,
the combination of partitioned empirical cross Gramian and hierarchical approximate
proper orthogonal decomposition enables model reduction in compute- or memory-limited
environments such as single board computers at little to no additional cost.

Acknowledgements

This work is supported by the German Federal Ministry for Economic Affairs and En-
ergy, in the joint project: “MathEnergy – Mathematical Key Technologies for Evolving
Energy Grids”, sub-project: Model Order Reduction (Grant number: 0324019B).

References

[1] A. Antoulas, Approximation of Large-Scale Dynamical Systems, vol. 6 of Advances
in Design and Control, SIAM Publications, Philadelphia, PA, 2005.

[2] K. V. Fernando and H. Nicholson, On the structure of balanced and other
principal representations of siso systems, IEEE Trans. Autom. Control, 28 (1983),
pp. 228–231.

[3] C. Himpe, emgr – EMpirical GRamian framework (Version 5.0).
http://gramian.de, 2016.

6

http://gramian.de


PACO 2017 Extended Abstract

[4] , emgr - the Empirical Gramian Framework, arXiv e-prints 1611.00675, Cornell
University, 2016. cs.MS.

[5] C. Himpe, T. Leibner, and S. Rave, Hierarchical approximate proper orthogonal
decomposition, arXiv e-prints 1607.05210, Cornell University, 2016. math.NA.

[6] C. Himpe and M. Ohlberger, Cross-Gramian based combined state and parameter
reduction for large-scale control systems, Mathematical Problems in Engineering,
2014 (2014), pp. 1–13.

[7] M. Köhler and J. Saak, FlexiBLAS - A flexible BLAS library with runtime
exchangeable backends, Tech. Rep. 284, LAPACK Working Note, Jan. 2014.

[8] OpenBLAS. http://www.openblas.net.

[9] D. C. Sorensen and A. C. Antoulas, The Sylvester equation and approximate
balanced reduction, Numer. Lin. Alg. Appl., 351–352 (2002), pp. 671–700.

[10] The Octave Developers, GNU Octave. http://octave.org.

7

http://www.openblas.net
http://octave.org

	Introduction
	Model Order Reduction (MOR)
	Projection-Based MOR
	Cross-Gramian-Based MOR
	Empirical-Cross-Gramian-Based MOR

	Memory-Economic Computation
	Memory-Economic Empirical-Cross-Gramian-Based
	Memory-Economic SVD
	Hierarchical Approximate POD


	Numerical Example

