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This work introduces the empirical cross-gramian for multiple-input-multiple-output systems. The cross-gramian is a tool for
reducing the state space of control systems, by conjoining controllability and observability information into a single matrix
and does not require balancing. Its empirical gramian variant extends the applicability of the cross-gramian to nonlinear
systems. Furthermore, for parametrized systems, the empirical gramians can also be utilized for sensitivity analysis or parameter
identification and thus for parameter reduction. This work also introduces the empirical joint gramian, which is derived from the
empirical cross-gramian. The joint gramian allows not only a reduction of the parameter space but also the combined state and
parameter space reduction, which is tested on a linear and a nonlinear control system. Controllability- and observability-based
combined reduction methods are also presented, which are benchmarked against the joint gramian.

1. Introduction

The evaluation of large-scale dynamical systems, which arise,
for example, from complex networks or discretized partial
differential equations, may require model reduction due to
limitations in computing power or memory. A reduction
of the state space generates a surrogate model resembling
the same dynamics up to a small error. For parametrized
systems, the model order reduction has to take into account
the associated parameter space to ensure the validity of
the reduced order model. If the parameter space is of high
dimension, a repeated evaluation at various locations of the
parameter space, for example, during optimization of inverse
problems, may also necessitate a model reduction, yet for
the parameter space. This contribution is concerned with
combined state and parameter reduction, targeting models
with high-dimensional state and parameter spaces.

The efficient reduction of large-scale nonlinear con-
trol systems is a challenging task, especially in the case
of parametrized systems, with high-dimensional state and
parameter spaces, where a combined reduction of parameters
and states may be required to allow repeated evaluation. For
instance, an inverse problem on a neural network with many

nodes and unknown connectivity,modeled as a parametrized
nonlinear control system, requires long runtimes during
parameter estimation due to system size and parameter
count. Large-scale neural networks havewidespreaduse, such
as forward control problems on artificial neural networks or
inverse problems on biological neural networks. A real-life
example is the reconstruction of connectivity between brain
regions from activity measurements like EEG or fMRI (see,
e.g., [1]).

To lower computational complexity, the parameter and
state spaces are to be confined to low-dimensional sub-
spaces without affecting the systems dynamics significantly.
Projection-based model order reduction techniques are con-
cerned with determining projections to such subspaces,
mapping the high-dimensionalmodel to a reduced order low-
dimensional surrogate model.

The methods presented in this work are rooted in bal-
anced truncation [2] and proper orthogonal decomposition
(POD) [3]. As an alternative to the here presented method
using empirical gramians, another class of balancing-related
approaches focuses on solving Lyapunov and Sylvester equa-
tions (see, e.g., [4]). For parametrized systems, the reduced-
basis also method [5] should be noted here.
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Since the number of a systems inputs and outputs usually
remains fixed, the maps to and from the intermediary states
characterize the reducibility of a system [6]. The balanced
truncation approach, introduced in [2], balances a system
in terms of controllability and observability, where control-
lability quantifies how well a state is driven by the input
and observability quantifies how well changes in a state
are reflected in the output. Excluding the least controllable
and observable states by truncating the balanced system, a
reduced order mapping from inputs to outputs is approxi-
mated.

A linear time-invariant control system is composed of a
linear dynamic system and a linear output transformation:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(1)

with states 𝑥(𝑡) ∈ R𝑛, input or control 𝑢(𝑡) ∈ R𝑚, and outputs
𝑦(𝑡) ∈ R𝑜. The system matrix 𝐴 ∈ R𝑛×𝑛 transforms the
states, the input matrix 𝐵 ∈ R𝑛×𝑚 introduces external input
or control, and the output matrix 𝐶 ∈ R𝑜×𝑛 transforms the
states to the outputs.

Controllability and observability can be assessed through
the associated controllability gramian𝑊

𝐶
:= ∫

∞

0

𝑒

𝐴𝑡

𝐵𝐵

𝑇

𝑒

𝐴
𝑇
𝑡

𝑑𝑡 and observability gramian 𝑊

𝑂
:= ∫

∞

0

𝑒

𝐴
𝑇
𝑡

𝐶

𝑇

𝐶𝑒

𝐴𝑡

𝑑𝑡.
Classically,𝑊

𝐶
and𝑊

𝑂
are computed as the smallest positive

semi-definite solutions of the Lyapunov equations 𝐴𝑊
𝐶
+

𝑊

𝐶
𝐴

𝑇

= −𝐵𝐵

𝑇 and 𝐴

𝑇

𝑊

𝑂
+ 𝑊

𝑂
𝐴 = −𝐶

𝑇

𝐶, respectively.
To make a compound statement about controllability and
observability, 𝑊

𝐶
and 𝑊

𝑂
have to be balanced [7]. The

singular values of the resulting balanced gramian correspond
to the Hankel singular values of the system, with their
magnitude describing how controllable and observable the
associated state is.

This work focuses on cross-gramian-based methods for
model reduction, which combine controllability and observ-
ability information into one gramian and is elaborately
described in [8]. The cross-gramian 𝑊

𝑋
:= ∫

∞

0

𝑒

𝐴𝑡

𝐵𝐶𝑒

𝐴𝑡

𝑑𝑡

was introduced in [9] and corresponds to a solution of the
Sylvester equation 𝐴𝑊

𝑋
+𝑊

𝑋
𝐴 = −𝐵𝐶.

An alternative to solving the Lyapunov or Sylvestermatrix
equations, apart from the analytic approaches, for example,
in [10], is the method of empirical gramians, which was
introduced in the works [11, 12] and enables the compu-
tation of gramian matrices also for nonlinear systems by
mere basic vector and matrix operations. This concept was
extended among others in [13] providing more general input
signals. Particularly noted should be [14, 15] for developing
the empirical cross-gramian for single-input-single-output
(SISO) systems in the context of sensitivity analysis.

In this paper the empirical cross-gramian is generalized
to be applicable to multiple-input-multiple-output (MIMO)
systems. For the gramian-based parameter reduction, the
groundwork has been laid by [16] from the observability
and by [17] from the controllability point of view. From the
cross-gramian perspective of parameter reduction, a new
gramian, namely, the joint gramian, is introduced in this
work. Furthermore, the concept of gramian-based combined

state and parameter reduction is established. Using empirical
gramians, it is shown that combined reduction allows efficient
model order reduction of linear and nonlinear control sys-
tems.

To begin, the cross-gramian and its properties are
reviewed in Section 2. Next, the empirical cross-gramian
for MIMO systems is developed in Section 3. Section 4
introduces combined state and parameter reduction in two
variants: first, an observability- and, second, a controllability-
based approach; the former is enhanced to a cross-gramian-
based combined reduction, which is presented in Section 5.
Finally, numerical experiments are conducted in Section 6
comparing the newly presented methods for a linear and
nonlinear neural network as well as a nonlinear benchmark
problem.

2. Review of the Cross-Gramian

A brief review of the cross-gramian along with its application
to model reduction of linear time-invariant control systems
is given next. The cross-gramian 𝑊

𝑋
(also known by the

symbol𝑊
𝐶𝑂

) was introduced in a sequence of works [9, 18–
23] and encodes controllability and observability into a single
gramian matrix, defined as the product of controllability and
observability operator, it can only be computed for square
(a system with the same number of inputs and outputs) and
asymptotically stable systems:

𝑊

𝑋
:= ∫

∞

0

𝑒

𝐴𝑡

𝐵𝐶𝑒

𝐴𝑡

𝑑𝑡. (2)

Equivalently, the cross-gramian is given as a solution to the
Sylvester equation 𝐴𝑊

𝑋
+ 𝑊

𝑋
𝐴 = −𝐵𝐶. Approximate solu-

tions for the Sylvester equation were discussed in [24–26]. If
the system is also symmetric, the following relation between
the cross, the controllability, and observability gramian holds
[9]:

𝑊

2

𝑋
= 𝑊

𝐶
𝑊

𝑂
󳨐⇒

󵄨

󵄨

󵄨

󵄨

𝜆 (𝑊

𝑋
)

󵄨

󵄨

󵄨

󵄨

=
√
𝜆 (𝑊

𝐶
𝑊

𝑂
).

(3)

While a SISO system is always symmetric [9], a linearMIMO
system not only requires the same number of inputs and
outputs, but also the system gain 𝐺 = −𝐶𝐴

−1

𝐵 has to be
symmetric [24]; then a symmetric transformation 𝐽, with
𝐴𝐽 = 𝐽𝐴

𝑇 and 𝐵 = 𝐶

𝑇

𝐽 exist. Trivially, for 𝐽 = 1 the system
would be restricted by 𝐴 = 𝐴

𝑇 and 𝐵 = 𝐶

𝑇; such a system is
called state space symmetric.

As presented in [9], the trace of the cross-gramian equals
half the gain of a SISO system (𝐴, 𝑏, 𝑐) where now 𝑏 ∈ R𝑛×1

and 𝑐 ∈ R1×𝑛:

tr (𝑊
𝑋
) = −

1

2

𝑐𝐴

−1

𝑏. (4)

Because the trace equals the sum of eigenvalues, the cross-
gramians eigenvalues are associated with the system gain (4).
This result was used in [14, 15] for parameter identification
purposes, using the system gain as a sensitivity measure. An
extension of (4) from [9, Theorem 3] for MIMO systems is
developed (see also [27]) next.
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Corollary 1. Given a linear, square, asymptotically stable
MIMO system, then the trace of the cross-gramian relates to
the system gain as follows:

tr (𝑊
𝑋
) = −

1

2

tr (𝐶𝐴−1

𝐵) . (5)

Proof. For an asymptotically stable system, the trace of the
cross-gramian, in the form of (2), is given by

tr (𝑊
𝑋
) = tr(∫

∞

0

𝑒

𝐴𝑡

𝐵𝐶𝑒

𝐴𝑡

𝑑𝑡)

= ∫

∞

0

tr (𝑒𝐴𝑡𝐵𝐶𝑒𝐴𝑡) 𝑑𝑡

= ∫

∞

0

tr (𝐶𝑒𝐴𝑡𝑒𝐴𝑡𝐵) 𝑑𝑡

= tr(∫
∞

0

𝐶𝑒

2𝐴𝑡

𝐵𝑑𝑡)

= tr(𝐶∫
∞

0

𝑒

2𝐴𝑡

𝑑𝑡𝐵)

= tr(𝐶(−1
2

𝐴

−1

)𝐵)

= −

1

2

tr (𝐶𝐴−1

𝐵) .

(6)

Employing the cross-gramian instead of controllability
and observability gramian means only a single gramian has
to be computed. And since no balancing is required, the
truncation procedure can be simplified to a direct truncation
([28], [8, Ch. 12.3]). A balancing transformation can be
approximated by the singular value decomposition (SVD) of
the cross-gramian.The approximated Hankel singular values
of the diagonal matrix𝐷 are sorted by the controllability and
observability of the states. A projection to a subspace of the
state space is then given by truncation of 𝑈 and 𝑉:

𝑊

𝑋

SVD
= 𝑈𝐷𝑉 = (𝑈

1
𝑈

2
) (

𝐷

1
0

0 𝐷

2

)(

𝑉

1

𝑉

2

) . (7)

The matrices 𝑈,𝑉 ∈ R𝑛×𝑛 are partitioned based on a
threshold 𝜖 ≤ 2∑

𝑛

𝑘=𝑟+1
𝐷

2,𝑘𝑘
into 𝑈

1
∈ R𝑛×𝑟, 𝑈

2
∈

R𝑛×(𝑛−𝑟) and 𝑉

1
∈ R𝑟×𝑛, 𝑉

2
∈ R(𝑛−𝑟)×𝑛. This leads to

the following reduced order model (here the (one-sided)
Galerkin projection is used, since the (two-sided) Petrov-
Galerkin projection may produce unstable reduced order
models):

̃

𝐴 = 𝑈

𝑇

1
𝐴𝑈

1
,

̃

𝐵 = 𝑈

𝑇

1
𝐵,

̃

𝐶 = 𝐶𝑈

1
, 𝑥

0
= 𝑈

𝑇

1
𝑥

0
,

󳨐⇒ {

̇

𝑥̃ (𝑡) =

̃

𝐴𝑥 (𝑡) +

̃

𝐵𝑢 (𝑡) ,

𝑦 (𝑡) =

̃

𝐶𝑥 (𝑡) .

(8)

Apart from truncation-basedmodel reduction, the cross-
gramian has applications, for example, in system identifica-
tion [10] and decentralized control [29–31] by computing a

participation matrix (see [32]) based on the cross-gramian.
Lastly, the cross-gramian also has the benefit of convey-
ing more information than controllability and observability
gramian, since the system’s Cauchy index is given by the
cross-gramian’s signature [19].

3. Empirical Cross-Gramian

In this section the empirical cross-gramian for MIMO sys-
tems is introduced. For general, possibly nonlinear, control
systems of the form

𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡)) ,

𝑦 (𝑡) = 𝑔 (𝑥 (𝑡) , 𝑢 (𝑡)) ,

(9)

with states 𝑥(𝑡) ∈ R𝑛, input or control 𝑢(𝑡) ∈ R𝑚, outputs
𝑦(𝑡) ∈ R𝑜, a vector field 𝑓 : R𝑛

× R𝑚

→ R𝑛, and an
output function 𝑔 : R𝑛

× R𝑚

→ R𝑜, the procedure from
Section 2 is not viable. In [11, 12, 33] the concept of empirical
(controllability and observability) gramians was introduced.
This is a PODmethod based solely on state space simulations
of the system [34]. These empirical gramians correspond
to the classic gramians for linear systems as shown in [11].
Subsequently this approach and its field of application were
advanced by [32, 35–37]. Because the empirical gramians can
be aligned to the operating region of the underlying system
in terms of initial states and input or control, the empirical
gramians carry more detailed information on the system [38]
than the gramians computed as solutions ofmatrix equations.

Empirical gramians are based on averaging the response
of a system that is perturbed in inputs and initial states.
Initially, the perturbed input was restricted to a delta impulse
𝑢(𝑡) = 𝛿(𝑡), which was broadened to more general input con-
figurations in [13] under the name of empirical controllability
covariance matrix and empirical observability covariance
matrix.

Thenecessary perturbation sets are systematically defined
next; these should reflect the operating range of the under-
lying system. 𝐸

𝑢
and 𝐸

𝑥
are sets of standard directions for

the inputs and initial states. Sets 𝑅
𝑢
and 𝑅

𝑥
are orthogonal

transformations (rotations) to these standard directions of
inputs and initial states, respectively, while 𝑄

𝑢
and 𝑄

𝑥
hold

scales to these directions:

𝐸

𝑢
= {𝑒

𝑖
∈ R

𝑗

;

󵄩

󵄩

󵄩

󵄩

𝑒

𝑖

󵄩

󵄩

󵄩

󵄩

= 1; 𝑒

𝑖
𝑒

𝑗 ̸= 𝑖
= 0; 𝑖 = 1, . . . , 𝑚} ,

𝐸

𝑥
= {𝑓

𝑖
∈ R

𝑛

;

󵄩

󵄩

󵄩

󵄩

𝑓

𝑖

󵄩

󵄩

󵄩

󵄩

= 1; 𝑓

𝑖
𝑓

𝑗 ̸= 𝑖
= 0; 𝑖 = 1, . . . , 𝑛} ,

𝑅

𝑢
= {𝑆

𝑖
∈ R

𝑗×𝑗

; 𝑆

𝑇

𝑖
𝑆

𝑖
= 1; 𝑖 = 1, . . . , 𝑠} ,

𝑅

𝑥
= {𝑇

𝑖
∈ R

𝑛×𝑛

; 𝑇

𝑇

𝑖
𝑇

𝑖
= 1; 𝑖 = 1, . . . , 𝑡} ,

𝑄

𝑢
= {𝑐

𝑖
∈ R; 𝑐

𝑖
> 0; 𝑖 = 1, . . . , 𝑞} ,

𝑄

𝑥
= {𝑑

𝑖
∈ R; 𝑑

𝑖
> 0; 𝑖 = 1, . . . , 𝑟} .

(10)

Along the lines of the empirical controllability gramian
and empirical observability gramian [11], the empirical cross-
gramian for SISO systems was introduced in [14]. In this
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work, as a new contribution, the empirical cross-gramian is
generalized to squareMIMO systems. Hence, the scope of the
cross-gramian is extended to nonlinear control systems and
provides an alternative nonlinear cross-gramian to [10]. For
a general (possibly nonlinear) MIMO system with dim(𝑢) =
dim(𝑥) the empirical cross-gramian is defined as follows.

Definition 2 (empirical cross-gramian). For sets 𝐸
𝑢
, 𝐸

𝑥
, 𝑅

𝑢
,

𝑅

𝑥
, 𝑄

𝑢
, and 𝑄

𝑥
, input 𝑢 during steady state 𝑥 with output

𝑦, the empirical cross-gramian ̂

𝑊

𝑋
relating the states 𝑥ℎ𝑖𝑗 of

input𝑢ℎ𝑖𝑗(𝑡) = 𝑐

ℎ
𝑆

𝑖
𝑒

𝑗
𝛿(𝑡)+𝑢 to output𝑦𝑘𝑙𝑏 of𝑥𝑘𝑙𝑏

0
= 𝑑

𝑘
𝑇

𝑙
𝑓

𝑏
+𝑥,

is given by

̂

𝑊

𝑋
=

1

󵄨

󵄨

󵄨

󵄨

𝑄

𝑢

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑅

𝑢

󵄨

󵄨

󵄨

󵄨

𝑚

󵄨

󵄨

󵄨

󵄨

𝑄

𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑅

𝑥

󵄨

󵄨

󵄨

󵄨

⋅

|𝑄𝑢|

∑

ℎ=1

|𝑅𝑢|

∑

𝑖=1

𝑚

∑

𝑗=1

|𝑄𝑥|

∑

𝑘=1

|𝑅𝑥|

∑

𝑙=1

1

𝑐

ℎ
𝑑

𝑘

𝑇

𝑙
∫

∞

0

Ψ

ℎ𝑖𝑗𝑘𝑙

(𝑡) 𝑑𝑡 𝑇

𝑇

𝑙
,

Ψ

ℎ𝑖𝑗𝑘𝑙

𝑎𝑏
(𝑡) = 𝑓

𝑇

𝑎
𝑇

𝑇

𝑙
Δ𝑥

ℎ𝑖𝑗

(𝑡) 𝑒

𝑇

𝑗
𝑆

𝑇

𝑖
Δ𝑦

𝑘𝑙𝑏

(𝑡) ∈ R,

Δ𝑥

ℎ𝑖𝑗

(𝑡) = (𝑥

ℎ𝑖𝑗

(𝑡) − 𝑥) ,

Δ𝑦

𝑘𝑙𝑏

(𝑡) = (𝑦

𝑘𝑙𝑏

(𝑡) − 𝑦) .

(11)

Essentially, the empirical cross-gramian is an averaged
cross-gramian over snapshots with the specified perturba-
tions in input and initial states around steady state input 𝑥(𝑢)
and steady state output 𝑦(𝑥).

Next, similar to [11, 14], the equality of the cross-gramian
and the empirical cross-gramian for linear MIMO control
systems are shown next.

Lemma 3 (empirical cross-gramian). For any nonempty sets
𝑅

𝑢
, 𝑅

𝑥
, 𝑄

𝑢
, and 𝑄

𝑥
the empirical cross-gramian ̂

𝑊

𝑋
of an

asymptotically stable linear control system is equal to the cross-
gramian.

Proof. For an asymptotically stable linear control system, the
input-to-state and state-to-output maps are given by

Δ𝑥 (𝑡) = 𝑥 (𝑡) = 𝑒

𝐴𝑡

𝐵𝑢 (𝑡) ,

Δ𝑦 (𝑡) = 𝑦 (𝑡) = 𝐶𝑒

𝐴𝑡

𝑥

0
;

(12)

thus,

Ψ

ℎ𝑖𝑗𝑘𝑙

𝑎𝑏
= 𝑓

𝑇

𝑎
𝑇

𝑇

𝑙
(𝑒

𝐴𝑡

𝐵𝑐

ℎ
𝑆

𝑖
𝑒

𝑗
) 𝑒

𝑇

𝑗
𝑆

𝑇

𝑖
(𝐶𝑒

𝐴𝑡

𝑑

𝑘
𝑇

𝑙
𝑓

𝑏
)

= 𝑐

ℎ
𝑑

𝑘
𝑓

𝑇

𝑎
𝑇

𝑇

𝑙
𝑒

𝐴𝑡

𝐵𝐶𝑒

𝐴𝑡

𝑇

𝑙
𝑓

𝑏
,

󳨐⇒ Ψ

ℎ𝑖𝑗𝑘𝑙

= 𝑐

ℎ
𝑑

𝑘
𝑇

𝑇

𝑙
𝑒

𝐴𝑡

𝐵𝐶𝑒

𝐴𝑡

𝑇

𝑙
,

󳨐⇒

̂

𝑊

𝑋
=

1

󵄨

󵄨

󵄨

󵄨

𝑄

𝑢

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑅

𝑢

󵄨

󵄨

󵄨

󵄨

𝑚

󵄨

󵄨

󵄨

󵄨

𝑄

𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑅

𝑥

󵄨

󵄨

󵄨

󵄨

⋅

|𝑄𝑢|

∑

ℎ=1

|𝑅𝑢|

∑

𝑖=1

𝑚

∑

𝑗=1

|𝑄𝑥|

∑

𝑘=1

|𝑅𝑥|

∑

𝑙=1

∫

∞

0

𝑒

𝐴𝑡

𝐵𝐶𝑒

𝐴𝑡

𝑑𝑡

= ∫

∞

0

𝑒

𝐴𝑡

𝐵𝐶𝑒

𝐴𝑡

𝑑𝑡

= 𝑊

𝑋
.

(13)

As for the other empirical gramians, this proof is only
valid for impulse input, yet a similar approach to [13] can
be used to extend the empirical cross-gramian, yielding
an empirical cross-covariance matrix by allowing general
discrete input signals. The snapshots 𝑥ℎ𝑖𝑗 and 𝑦

𝑘𝑙𝑏 can not
only be computed as simulations on demand but also be
included from observed experimental data. In case the data is
collected at discrete times 𝑡 in regular intervals Δ𝑡, following
[39], a discrete representation of the empirical cross-gramian
is given here too.

Definition 4 (discrete empirical cross-gramian). For sets 𝐸
𝑢
,

𝐸

𝑥
, 𝑅

𝑢
, 𝑅

𝑥
, 𝑄

𝑢
, and 𝑄

𝑥
, input 𝑢 during steady state 𝑥 with

output 𝑦, the discrete empirical cross-gramian W
𝑋
relating

the states 𝑥ℎ𝑖𝑗 of input 𝑢ℎ𝑖𝑗(𝑡) = 𝑐

ℎ
𝑆

𝑖
𝑒

𝑗
𝛿(𝑡) + 𝑢 to output 𝑦𝑘𝑙𝑏

of 𝑥𝑘𝑙𝑏
0

= 𝑑

𝑘
𝑇

𝑙
𝑓

𝑏
+ 𝑥, is given by

W
𝑋
=

1

󵄨

󵄨

󵄨

󵄨

𝑄

𝑢

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑅

𝑢

󵄨

󵄨

󵄨

󵄨

𝑚

󵄨

󵄨

󵄨

󵄨

𝑄

𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑅

𝑥

󵄨

󵄨

󵄨

󵄨

⋅

|𝑄𝑢|

∑

ℎ=1

|𝑅𝑢|

∑

𝑖=1

𝑚

∑

𝑗=1

|𝑄𝑥|

∑

𝑘=1

|𝑅𝑥|

∑

𝑙=1

Δ𝑡

𝑐

ℎ
𝑑

𝑘

𝑇

𝑙

T

∑

𝑡=0

Ψ

ℎ𝑖𝑗𝑘𝑙

𝑡
𝑇

𝑇

𝑙
,

Ψ

ℎ𝑖𝑗𝑘𝑙

𝑎𝑏,𝑡
= 𝑓

𝑇

𝑎
𝑇

𝑇

𝑙
Δ𝑥

ℎ𝑖𝑗

𝑡
𝑒

𝑇

𝑗
𝑆

𝑇

𝑖
Δ𝑦

𝑘𝑙𝑏

𝑡
∈ R,

Δ𝑥

ℎ𝑖𝑗

𝑡
= (𝑥

ℎ𝑖𝑗

𝑡
− 𝑥) ,

Δ𝑦

𝑘𝑙𝑏

𝑡
= (𝑦

𝑘𝑙𝑏

𝑡
− 𝑦) .

(14)

Computational complexity depends largely on the number of
scales and rotations of perturbations as well as the order of
integration used to generate the snapshots 𝑥ℎ𝑖𝑗 and 𝑦𝑘𝑙𝑏.

The empirical cross-gramian enables state reduction for
square nonlinear control systems without an additional bal-
ancing procedure using direct truncation, where the approx-
imately balancing projection 𝑈 is computed by an SVD and
truncated to 𝑈

1
, analogous to (7):

𝑥̇ (𝑡) = 𝑈

𝑇

1
𝑓 (𝑈

1
𝑥 (𝑡) , 𝑢 (𝑡)) ,

𝑦 (𝑡) = 𝑔 (𝑈

1
𝑥 (𝑡) , 𝑢 (𝑡)) .

(15)

Like POD, to quantify how close the subspace obtained
by reduction is approximating the state space, a measure of
total preserved energy [11, 40] can also be employed here:

̃

𝐸 =

∑

𝑘

𝑖=1
𝜎

𝑖

∑

𝑛

𝑖=1
𝜎

𝑖

,
(16)

for 𝑘 retained states of an 𝑛-dimensional model with 𝑛 − 𝑘

truncated states related to the 𝑛 − 𝑘 lowest singular values of
the empirical cross-gramian 𝜎

𝑖
(𝑊

𝑋
).
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4. Combined State and Parameter Reduction

Two methods for combined reduction, allowing simultane-
ous reduction of state and parameter spaces, are proposed:
an observability-based and a controllability-based ansatz. For
parametrized general control systems with parameters 𝜃 ∈

R𝑝:
𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡) , 𝜃) ,

𝑦 (𝑡) = 𝑔 (𝑥 (𝑡) , 𝑢 (𝑡) , 𝜃) ,

(17)

in [16], the identifiability gramian was introduced (in [41]
a similar concept is presented), which extends the concept
of observability from states to parameters. Augmenting the
states of a given system by its parameters 𝜃 as constant
components, the parameters are treated like states:

̇

𝑥̆ (𝑡) = (

𝑥̇ (𝑡)

̇

𝜃 (𝑡)

) = (

𝑓 (𝑥 (𝑡) , 𝑢 (𝑡) , 𝜃)

0

) ,

𝑦 (𝑡) = 𝑔 (𝑥 (𝑡) , 𝑢 (𝑡) , 𝜃) ,

𝑥̆

0
= (

𝑥

0

𝜃

) .

(18)

The initial states 𝑥̆
0
are also augmented by the given param-

eter value 𝜃, yielding: 𝑥̆(𝑡) ∈ R𝑛+𝑝. The identifiability of
the parameters is obtained through the observability of these
parameter-states by the augmented observability gramian:

̆

𝑊

𝑂
= (

𝑊

𝑂
𝑊

𝑀

𝑊

𝑇

𝑀
𝑊

𝑃

) ∈ R
(𝑛+𝑝)×(𝑛+𝑝)

, (19)

with the state observability gramian 𝑊

𝑂
∈ R𝑛×𝑛, the

parameter observability gramian𝑊
𝑃
∈ R𝑝×𝑝, and a mixture

matrix 𝑊
𝑀

∈ R𝑛×𝑝. From the observability gramian of this
augmented system, the identifiability gramian𝑊

𝐼
∈ R𝑝×𝑝 can

be extracted via the Schur complement:

𝑊

𝐼
= 𝑊

𝑃
−𝑊

𝑇

𝑀
𝑊

𝑂

−1

𝑊

𝑀
. (20)

For an approximation of the identifiability gramian 𝑊

𝐼
, the

parameter observability gramian 𝑊

𝑃
≈ 𝑊

𝐼
itself is often

sufficient. The identifiability is then given as the observ-
ability of the parameters, through the singular values of
𝑊

𝐼
or approximately by 𝑊

𝑃
, respectively. Instead of using

the identifiability information for parameter identification
as in [16, 42], a projection to the dominant parameter
subspace is computed from𝑊

𝐼
. Similar to the cross-gramian

approach, a singular value decomposition of the approximate
identifiability gramian yields the reduced parameters ̃𝜃:

𝑊

𝐼

SVD
= ΠΔΛ = (

Π

1

Π

2

)(

Δ

1
0

0 Δ

2

) (Λ

1
Λ

2
) ,

󳨐⇒

̃

𝜃 = Π

𝑇

1
𝜃, Π

1

̃

𝜃 ≈ 𝜃.

(21)

The partitioning depends on the singular values in Δ. A trun-
cation of the projection Π results in the reduced parameters
̂

𝜃 and the associated parameter reduced order model:
̇

𝑥̃ (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡) , Π

1

̃

𝜃) ,

𝑦 (𝑡) = 𝑔 (𝑥 (𝑡) , 𝑢 (𝑡) , Π

1

̃

𝜃) .

(22)

Next, a combined reduction of state and parameter
space is introduced. With the identifiability gramian-based
parameter reduction, first, the parameter space of the system
is reduced. The observability of the states is encoded in the
augmented observability gramian too; it can be extracted as
the upper-left 𝑛×𝑛matrix from ̆

𝑊

𝑂
. Then, after computation

of a controllability gramian 𝑊

𝐶
, the state space is reduced

by balanced truncation (balanced truncation provides two-
sided truncated projection matrices 𝑈

1
and 𝑉

1
; see [43]).

This results in an observability-based combined state and
parameter reduction:

̇

𝑥̃ (𝑡) = 𝑉

1
𝑓 (𝑈

1
𝑥 (𝑡) , 𝑢 (𝑡) , Π

1

̃

𝜃) ,

𝑦 (𝑡) = 𝑔 (𝑈

1
𝑥 (𝑡) , 𝑢 (𝑡) , Π

1

̃

𝜃) .

(23)

Similarly, a controllability-based combined reduction can
be achieved by a parameter reduction using the sensitivity
gramian from [44] for additive partitionable systems:

𝑓 (𝑥, 𝑢, 𝜃) = 𝑓 (𝑥, 𝑢) +

𝑝

∑

𝑘=1

𝑓 (𝑥, 𝜃

𝑘
) ,

󳨐⇒ 𝑊

𝐶
= 𝑊

𝐶,0
+

𝑝

∑

𝑘=1

𝑊

𝐶,𝑘
,

𝑊

𝑆
= (

tr (𝑊
𝐶,1
) 0

d
0 tr (𝑊

𝐶,𝑝
)

) ∈ R
𝑝×𝑝

,

(24)

which is based on [17, 45] and treats the parameters as
additional inputs. By the sensitivity gramian, controllability
information on the parameters is provided, which also allows
a parameter reduction, again by a singular value decompo-
sition of 𝑊

𝑆
. Since an approximate controllability gramian

𝑊

𝐶
is also computed in process (24), after computation of

an observability gramian𝑊
𝑂
, the parameter reduced system

is reduced in states by balanced truncation. This results
in a controllability-based combined state and parameter
reduction.The controllability-based combined reduced order
model has the same form as the observability-based reduced
model (23).

5. Joint Gramian and Combined Reduction

In addition to controllability- and observability-based com-
bined reduction, a cross-gramian-based combined reduction
is proposed next, which, for symmetric control systems, is
enabled by the empirical cross-gramian for MIMO systems
from Section 3. Aggregating the computation of controlla-
bility and observability, not only for states like the cross-
gramian but also for identifiability of parameters, leads to a
reduction and identification method requiring a new single
gramian. Here, the same augmented system (18) is used. The
systems symmetry is not affected by the augmentation with
the constant (parameter-) states, since in terms of a linear
system the system components {𝐴, 𝐵, 𝐶} are expanded with
zeros. This leads to the following new gramian matrix, which
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utilizes the cross-gramian and thus unifies controllability and
observability of states and parameters.

Definition 5 (joint gramian). The joint gramian 𝑊

𝐽
is the

cross-gramian of a square augmented system; see (18).

The joint gramian also has a 2 × 2 block structure:

𝑊

𝐽
= (

𝑊

𝑋
𝑊

𝑀

𝑊

𝑚
𝑊

𝑃

) ∈ R
(𝑛+𝑝)×(𝑛+𝑝)

, (25)

with the state cross-gramian 𝑊

𝑋
∈ R𝑛×𝑛, the parameter

cross-gramian 𝑊
𝑃
∈ R𝑝×𝑝, and the mixture matrices 𝑊

𝑀
∈

R𝑛×𝑝

,𝑊

𝑚
∈ R𝑝×𝑛. The parameter-states are uncontrollable,

yielding 𝑊

𝑃
= 0 and 𝑊

𝑚
= 0, since no inputs affect the

augmented states. Thus a Schur complement of the joint
gramian to extract the parameter associated lower right block
matrix will always be zero:

𝑊 ̇𝐼
= 𝑊

𝑃
−𝑊

𝑚
𝑊

−1

𝑋
𝑊

𝑀
= 0 − 0 𝑊

−1

𝑋
𝑊

𝑀
= 0. (26)

Yet, the identifiability information on the parameters is
encoded in the nonzero mixture matrix 𝑊

𝑀
. By taking the

symmetric part of the joint gramian 𝑊

𝐽
= 0.5 (𝑊

𝐽
+ 𝑊

𝑇

𝐽
),

one obtains the cross-identifiability gramian𝑊 ̈𝐼
:

𝑊 ̈𝐼
= 0 −

1

4

𝑊

𝑇

𝑀
𝑊

−1

𝑋
𝑊

𝑀
. (27)

Taking the inverse of the symmetric part of the cross-
gramian is too costly in a large-scale setting. But the Schur
complement can be approximated by using

𝐷 := diag (𝑊
𝑋
) ,

𝑊

−1

𝑋
≈ 𝑤

−1

𝑋
= 𝐷

−1

− 𝐷

−1

(𝑊

𝑋
− 𝐷)𝐷

−1

,

(28)

as a coarse approximation (this approximation of the inverse
is of complexity 𝑛2) to the inverse from [46]. Thus, a more
efficient cross-identifiability gramian is given by

𝑊 ̈𝐼
= −

1

4

𝑊

𝑇

𝑀
𝑤

−1

𝑋
𝑊

𝑀
. (29)

A reduced set of parameters ̃

𝜃 is again computed by
a truncated projection obtained from the singular value
decomposition of the cross-identifiability gramian:

𝑊 ̈𝐼
≈ 𝑊

𝑃

SVD
= ΠΔΛ = (

Π

1

Π

2

)(

Δ

1
0

0 Δ

2

) (Λ

1
Λ

2
) ,

󳨐⇒

̃

𝜃 = Π

𝑇

1
𝜃, Π

1

̃

𝜃 ≈ 𝜃.

(30)

After a parameter reduction,

̇

𝑥̃ (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡) , Π

1

̃

𝜃) ,

𝑦 (𝑡) = 𝑔 (𝑥 (𝑡) , 𝑢 (𝑡) , Π

1

̃

𝜃) ,

(31)

the states can be reducedwith a state reduction by direct trun-
cation, employing the usual cross-gramian𝑊

𝑋
, a byproduct

of the joint gramian 𝑊
𝐽
, which is the upper-left 𝑛 × 𝑛 block

matrix of𝑊
𝐽
:

̇

𝑥̃ (𝑡) = 𝑉

1
𝑓 (𝑈

1
𝑥 (𝑡) , 𝑢 (𝑡) , Π

1

̃

𝜃) ,

𝑦 (𝑡) = 𝑔 (𝑈

1
𝑥 (𝑡) , 𝑢 (𝑡) , Π

1

̃

𝜃) .

(32)

For this combined reduction of states and parameters
no further gramians have to be computed and no balancing
transformation is required.

6. Implementation and Numerical Results

For an efficient implementation, the structure of the gramian
computation is exploited. First, the empirical gramians allow
extensive parallelization. Each combination of direction,
transformation, and scale can be processed separately yield-
ing a sub-gramian. Second, the assembly of each sub-gramian
can be comprehensively vectorized, since it consists of vector
additions, inner products, and outer products. In the special
case of the empirical cross-gramian and, thus, the empirical
joint gramian which is an encapsulation of the empirical
cross-gramian, organizing the observability snapshots into a
third-order-tensor and exploiting generalized transpositions
result in a very efficient gramian assembly (see emgr.m). The
final resulting gramian is the normalized accumulation over
all sub-gramians. For further details about the implementa-
tion see [44].

All gramians for the numerical results are computed
by the empirical gramian framework introduced in [44].
The empirical gramian framework emgr [47] can be found
at http://gramian.de and is compatible with Octave [48]
and Matlab [49]. The source code, used for the following
experiments, is provided as supplementary material.

The error measure employed in the following experi-
ments is the relative 𝐿2-error for a vector valued time series
[50] and is defined as follows.

Definition 6. The relative 𝐿2-error for two vector valued time
series 𝑦 and 𝑦 is given by

𝜖 =

󵄩

󵄩

󵄩

󵄩

𝑦 − 𝑦

󵄩

󵄩

󵄩

󵄩2

󵄩

󵄩

󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩2

, (33)

with the 𝐿2-norm of a (discrete) time series

󵄩

󵄩

󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩2
=

√

∑

𝑡

󵄩

󵄩

󵄩

󵄩

𝑦(𝑡)

󵄩

󵄩

󵄩

󵄩

2

2
. (34)

Numerical results for three models are presented next.
First, state reduction is applied to a nonlinear benchmark
problem to validate the applicability of the empirical cross-
gramian. Then, a linear and nonlinear parametrized control
system is considered for the state, parameter, and combined
reduction.

6.1. Nonlinear Benchmark. Introduced in [51], this nonlinear
benchmark (this benchmark is also listed in the MORwiki
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[52]) has been used in [37, 40, 53] as a test problem for
the assessment of the empirical controllability gramian and
empirical observability gramian in a balanced truncation
model order reduction setting.This benchmark systemmod-
els a circuit consisting of capacitors and nonlinear resistors
(a resistor parallel-connected to a diode). Its mathematical
model is given by the following nonlinear SISO control
system:

𝑥̇ (𝑡) =

(

(

(

(

−𝑔(𝑥

1
(𝑡)) − 𝑔 (𝑥

1
(𝑡) − 𝑥

2
(𝑡))

𝑔 (𝑥

1
(𝑡) − 𝑥

2
(𝑡)) − 𝑔 (𝑥

2
(𝑡) − 𝑥

3
(𝑡))

...
𝑔 (𝑥

𝑘−1
(𝑡) − 𝑥

𝑘
(𝑡)) − 𝑔 (𝑥

𝑘
(𝑡) − 𝑥

𝑥+1
(𝑡))

...
𝑔 (𝑥

𝑁−1
(𝑡) − 𝑥

𝑁
(𝑡))

)

)

)

)

+

(

(

(

(

𝑢(𝑡)

0

...
0

...
0

)

)

)

)

,

𝑦 (𝑡) = 𝑥

1
(𝑡) ,

(35)

with the nonlinear function 𝑔 : R → R:

𝑔 (𝑥) = exp (𝑥) + 𝑥 − 1. (36)

In this setting with dim(𝑥) = 100, a zero initial state 𝑥
0
=

0 and a decaying exponential input 𝑢(𝑡) = 𝑒

−𝑡 are employed.
Figure 1 shows the relative 𝐿

2-error in the reduced order
models outputs reduced by balanced truncation of empirical
controllability and observability gramian and direct trunca-
tion of the empirical cross-gramian.

After a steep initial drop in the error, the relative output
error remains near the machine precision. Both methods,
balanced truncation and direct truncation, perform very
similarly and require less than 10% of the full order model’s
state dimension to reach the error plateau. The empirical
cross-gramian-based direct truncation exhibits a slightly
lower output error.

6.2. State Reduction. Next, a parametrized linear control
system and a parametrized nonlinear control system are
reduced in states and parameters and combined in states and
parameters. The parametrized linear control system model
[17] is given by

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝜃,

𝑦 = 𝐶𝑥,

(37)

with an additional parametrized source term 𝜃 ∈ R𝑁.
The system is ensured to be asymptotically stable; thus

Re(𝜆
1,...,𝑛

(𝐴)) < 0, which is a central requirement for
all empirical gramians to be computable. Furthermore,

10
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Figure 1: Relative 𝐿2 output error in the reduced order nonlinear
benchmark after the state reduction using balanced truncation and
direct truncation of the empirical cross-gramian.

the system is chosen to be state space symmetric: 𝐴 = 𝐴

𝑇

and 𝐶 = 𝐵

𝑇. A state space symmetric system provides
that all system gramians, the controllability gramian, the
observability gramian, and the cross-gramian are equal [54].
This allows the verification of the empirical cross-gramian.

The parametrized nonlinear control system model is
given by

𝑥̇ = 𝐴 tanh(1
4

𝑥) + 𝐵𝑢 + 𝜃,

𝑦 = 𝐶𝑥,

(38)

with a hyperbolic tangent nonlinearity using the same system
matrices {𝐴, 𝐵, 𝐶} as in (37). This model is related to the
hyperbolic network model from [55].

The linear and nonlinear model are subject to zero initial
states 𝑥

0
= 0 and impulse input 𝑢(𝑡) = 𝛿(𝑡). For the following

experiments a state space dimension 𝑛 = dim(𝑥(𝑡)) = 256;
thus 𝑝 = dim(𝜃) = 256 is assumed as well as an input and
output dimension of 𝑚 = dim(𝑢(𝑡)) = 𝑜 = dim(𝑦(𝑡)) =

16. The parameters are drawn from a uniform distribution
𝜃

𝑖
= 𝑈(0, 0.1); the system matrix 𝐴 is generated as a sparse

uniformly random matrix with ensured stability, and the
input matrix 𝐵 is a dense uniformly random matrix, yielding
the output matrix 𝐶 = 𝐵

𝑇.
The linear model in (37) and the nonlinear model in

(38) are first reduced in states using the following methods:
balanced truncation utilizing the empirical controllability
gramian and empirical observability gramian; direct trunca-
tion of the empirical cross-gramian presented in Section 3.
Furthermore, a method closely related to balanced POD [56,
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Figure 2: Relative 𝐿2 output error in the reduced order linear and nonlinear models after the state reduction using balanced POD, balanced
truncation, and direct truncation of the empirical cross-gramian.

57] is tested too. For the linear model an approximate cross-
gramian 𝑊

𝑌
is computed using the approach from [22, 58],

which obtains the cross-gramian by computing the control-
lability gramian of the system augmented with its adjoint
system (this approach is also implemented in the empirical
gramian framework as empirical linear cross gramian). For
the nonlinear model an approximate cross-gramian is com-
puted following [56] by the product𝑊

𝑌
= 𝑊

𝐶
𝑊

𝑂
. In Figure 2

the relative 𝐿2-error in the outputs 𝑦 is plotted for reduced
orders dim(𝑥) = 1, . . . , 𝑛 − 1.

The state reduced models in the linear setting, generated
by balanced POD, balanced truncation, and direct trunca-
tion, are of similar quality; yet balanced POD and direct
truncation perform slightly better than balanced truncation.
In the nonlinear setting balanced truncation outperforms
balanced POD and direct truncation for which the output
error flattens above a reduced order of about 40% of the
original model order.

The better performance of balanced truncation for the
nonlinear model is due to use of two-sided projections as
opposed to the one-sided projections used for balanced POD
and direct truncation here.

6.3. Parameter Reduction. The linear model in (37) and the
nonlinear model in (38) are reduced in parameters using
the empirical sensitivity gramian, the empirical identifiability
gramian, and empirical cross identifiability gramian from the
empirical joint gramian. Figure 3 depicts the relative 𝐿2-error
in the outputs 𝑦 for the reduced orders dim(̃𝜃) = 1, . . . , 𝑛 − 1.

For the linear and the nonlinear model, the
controllability-based sensitivity gramian performs worst
with the slowest decline in output error. The observability-
based identifiability gramian and the cross-gramian-based
cross-identifiability gramian show a sharper descent of the
output error of similar quality in the linear and nonlinear
setting, yet the observability-based parameter reduction
exhibits a steeper drop of the output error for reduced orders
up to 40% of the original parameter space.

Since the sensitivity gramian is a diagonal matrix, the
associated projections reorder the parameters and thus
exclude all effects of the truncated parameters, while the
identifiability and cross-identifiability gramian use linear
combinations of parameters to be truncated.

6.4. Combined Reduction. The linear model in (37) and the
nonlinearmodel in (38) are next reduced in states and param-
eters employing the methods presented in Section 4 and
Section 5. Controllability-based combined reduction uses the
empirical sensitivity gramian for parameter reduction and
balanced truncation for the state reduction. Observability-
based combined reduction uses the empirical identifiabil-
ity gramian for parameter reduction and also balanced
truncation for the state reduction. The cross-gramian-based
combined reduction utilizes the empirical joint gramian;
the cross-identifiability gramian is used for the parameter
reduction and the direct truncation of the cross-gramian is
used for the state reduction. In Figures 4 and 5 the relative 𝐿2-
error in the outputs 𝑦 is plotted for reduced orders dim(𝑥) =
1, . . . , 𝑛 − 1 and dim(̃𝜃) = 1, . . . , 𝑛 − 1.
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Figure 3: Relative 𝐿2 output error in the reduced order linear and nonlinear models after the parameter reduction using the sensitivity
gramian, identifiability gramian, cross-identifiability gramian.
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Figure 4: Relative 𝐿2 output error in the reduced order linear model after the combined reduction using controllability-based, observability-
based, and cross-gramian-based combined reduction.

For a better comparison, a cross-section of the surfaces
in Figures 4 and 5 along the diagonals are plotted in Figure 6
showing the reduced order model’s output error for the same
reduced order in states and parameters: dim(𝑥) = dim(̃𝜃).

For all reduced order models obtained by combined
state and parameter reduction, the parameter reduction error
dominates the output error. As for the parameter reduction,

the controllability-based combined reduction by sensitivity
gramian and balanced truncation performs worst with a slow
descent in the output error. In the linear setting the cross-
gramian-based joint gramian performs significantly better
than the combination of identifiability gramian and balanced
truncation. In the nonlinear setting the reduced ordermodels
of these methods exhibit similar behavior, which is due to
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Figure 5: Relative 𝐿

2 output error in the reduced order nonlinear model after the combined reduction using controllability-based,
observability-based, and cross-gramian-based combined reduction.

50 100 150 200 250

Controllability-based
Observability-based
Cross-gramian-based

10
0

10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

10
−7

(a)

50 100 150 200 250

Controllability-based
Observability-based
Cross-gramian-based

10
0

10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

10
−7

(b)

Figure 6: Relative 𝐿2 output error in the reduced order linear and nonlinearmodels after the combined reduction using controllability-based,
observability-based, and cross-gramian-based combined reduction for the same reduced order of states and parameters.

the higher state reduction error (Figure 2) in the cross-
gramian-based approach.

To assess the efficiency of the presented methods, the
offline times (the time required to assemble the necessary
empirical gramian matrices) are compared in Figure 7.

The state reduction of the linear model is accomplished
fastest by the balanced-POD-related method, since the com-
putational effort required for computation is equivalent to
a single empirical controllability gramian. For the nonlinear
model this advantage does not exist, since no adjoint system
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Figure 7: Offline time for the empirical gramians and the associated decompositions for the state, parameter, and combined reduction in the
linear and nonlinear setting.

for the nonlinear model is provided. Notably, the cross-
gramian, for the direct truncation, is computed slightly faster
than controllability, observability gramian, and balancing
transformation for the balanced truncation.

Among the empirical gramians for parameter reduction
the sensitivity gramian is computed fastest, yet due to the high
error this is the least applicable. Between the identifiability
and cross-identifiability gramian, which exhibit a comparable
output error, the cross-gramian-based approach is consider-
ably faster.

For the combined reduction the offline times are similar
to the offline times of the parameter reduction, with the
exception of the controllability-based combined reduction,
which now takes longer than the cross-gramian-based joint
gramian because of the additional observability gramian
required for the balanced truncation state reduction.Thus the
empirical joint gramian is the fastest of the testedmethods for
combined reduction and provides a competitive output error.

7. Conclusion

In this paper the empirical cross-gramian for MIMO systems
and the empirical joint gramian for parameter and combined
state and parameter reduction have been introduced and
benchmarked. The empirical cross-gramian allows a state
reduction of linear and nonlinear systems (for a transfer of
the symmetry classification to nonlinear systems see [10]).
The empirical joint gramian enables not only cross-gramian-
based parameter reduction but also an efficient combined
state and parameter reduction. Both, the empirical cross-
gramian and the empirical joint gramian have been shown to
be a viable alternative to balanced truncation and balancing-
based combined reduction approaches.

Further research has to be conducted on two-sided
projections and error bounds for the reduced order models
and on applying the empirical cross-gramian to nonlinear
or nonsymmetric systems. Existing extensions for nonsym-
metric systems are generalizing the symmetry constraint to
orthogonal symmetry [59] or embedding into a symmetric
system [24].

The empirical cross-gramian for MIMO systems com-
pletes the set of empirical gramians for state reduction,
while the joint gramian completes the body of parameter
identification gramians and enables combined reduction
without balancing.
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