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Abstract: Over the recent years the importance of numerical experiments has gradually been more
recognized. Nonetheless, sufficient documentation of how computational results have been obtained
is often not available. Especially in the scientific computing and applied mathematics domain this
is crucial, since numerical experiments are often employed to verify the proposed hypothesis in a
publication. This work aims to propose standards and best practices for the setup and publication of
numerical experiments. Naturally, this amounts to a guideline for development, maintenance, and pub-
lication of numerical research software. Such a primer will enable the replicability and reproducibility
of computer-based experiments or published results and also promote the reusability of the associated
software.
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1. Introduction

Through the years, the value and the extent of Computer-Based Experiments (CBEx) in publi-
cations in the fields of applied mathematics, numerical analysis, and scientific computing has risen
significantly. For an illustration of this general observation, one may compare the following three sci-
entific articles from 1971, 1986, and 2010, which introduced nowadays commonly applied numerical
methods. In Nitsche’s 1971 paper [46] on a new variational approach to elliptic PDEs with non-
homogeneous Dirichlet conditions, there is no numerical experiment reported. Then, in the important
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work [53] by Saad and Schultz on the GMRES algorithm from 1986, two out of 14 pages are devoted
to numerical experiments. Finally, the paper [10] on DEIM by Chataranbutat and Sorensen in 2010,
consists of more than 30% of numerical examples or reasoning based on numerical experiments.

However, the high standards on analytical findings, namely the requirement of a concise, compre-
hensible and traceable derivation and documentation, seems not equally adapted to numerical exper-
iments and results in the scientific literature, cf. LeVeque’s article on Top Ten Reasons to Not Share
Your Code (and why you should anyway) [38].

In the same time, the nature of CBEx has changed from a rather deterministic mathematical exercise
on a computer towards a scientific experiment [54] with inevitable uncertainties. Thus, a CBEx should
be seen in analogy with experiments from natural sciences with the numerical result corresponding to
the observations and the hard- and software corresponding to the methods that were used to obtain the
observations. And, like experiments in natural sciences, a CBEx should be designed such that it is
robust against uncertainties, i.e., such that it can be replicated to give the same results.

Once a replicable experiment has been established, the question of reproducibility arises. This
principle seems broadly accepted since long, and it has found its formulation in Popper’s words: “I
refuse to accept the view that there are statements in science which we have, resignedly, to accept as
true merely because it does not seem possible, for logical reasons, to test them.”, cf. [50, Ch. 1.8]. Note
that the demand of testability of the hypothesis does not include a truth value as it is implicated by the
reproducibility of an experiment. Nevertheless, as Popper states, an unreproducible singular discovery
would not be published by a researcher.

Reproducibility is commonly accepted as a necessary condition for good scientific practice, and it’s
absence in some prominent works but also in a statistically significant number of journal publications
that has been detected in recent years in, e.g., medicine [15], psychology [31], and computer science
[11] has shaped the term of the reproducibility crisis that has been broadly covered in scientific, public,
and social media [39,7].

Finally, software can be duplicated and dissected so that, besides the results, also parts of the meth-
ods can serve as the base of new experiments, which is meant by reusability.

In this work, we adapt notions related to replicability, reproducibility and reusability (RRR) as
they are relevant for CBEx from first principles. We describe conditions for their implementation in
research and publications that are general enough to meet particular needs of projects as well as habits
of the researchers. To find the balance between a reliable framework and openness towards common
practices, we add sections with concrete suggestions – a best practice guide. We will refrain from
addressing details on code and data layout or licensing and associated copyright issues; work on these
topics can be found for example in [59] and [60] respectively. Also, our work is about how CBEx
are conducted and documented which can be seen independent from approaches that try to validate
numerical results like the notion of Verification and Validation [4].

Overall, this work aims to: Make CBEx replicable in its basic definition and use the potential of
software to enable easy reproducibility and even reusability.

1.1. Prior Work and State of the Discourse

The discrepancy between the potential of CBEx to be easily made RRR and the widespread lack
of RRR in CBEx in the scientific literature has stimulated various initiatives and theoretical work on
the implementation of RRR principles in scientific computing. We list but a few of the most recent
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publications:
The discussion on opening scientific source codes has been more noticeable in the recent years. For

example in Nature, arguments against open source are refuted [5], more accurate results are predicted
[42], partial opened codes are discussed [25], and a code availability section is suggested [44,45]. In
Science not only the opening and review of research codes is discussed [33,56,32] but it is required
by the editorial policies [55] that: “All computer codes involved in the creation or analysis of data
must also be available to any reader of Science”. Mathematical organizations are also discussing open
scientific codes; examples are: AMS on the maintainability and necessity of open code accompanying
publications [34], ACM on advantages and disadvantages of releasing scientific codes [41], and SIAM
on a publication of codes by default and attributable credit [3]. Furthermore, dedicated workshops
were held, such as the ICERM workshop [1,61,62] or reproducibility@XSEDE [30].

The general concept of reproducibility has been taken up in computer-based research in the 1990s
[9]. The related notion reproducible research [17] refers to computational environments that allowed
for simply transferring to and rerunning the experiments on different computers; see [40] for an exam-
ple from the field of archeology.

Several publications describe abstract software engineering and collaborative development tech-
niques. In [36] basic practices for scientific software development are distilled, while in [22] software
management principles are explained. A set of rules, devised in [51], is concerned with the code de-
velopment but also the user-developer interaction. And the best practices in [65,66] summarize code
development fundamentals. General recommendations for reproducibility for CBEx are also given in
[2]. Furthermore, the practical reproduction of research results themselves is discussed in [43].

Lastly, we note that various initiatives have been started to promote certain standards in CBEx.
Foremost, the Science Code Manifesto1 states five principles (Code, Copyright, Citation, Credit, Cu-
ration) for the handling of research software to improve its use in science. Also, the Recomputation
Manifesto2 [19] formulates rules to facilitate the repeatable realization of CBEx.

1.2. Outline

This introductory discussion is followed by a more refined analysis of replicability, reproducibility
and reusability in Section 2. In Section 3 a technique to document code availability is described.
Section 4 summarizes high-level considerations to facilitate RRR, while a minimal documentation for
scientific codes and research software is proposed in Section 5. Finally, a sample software project is
presented to illustrate the practical implementation of the herein suggested best practices.

2. The Three “R”s of Open Science

In this section, taking up the ideas of [64,8], we give a definition of the frequently used terms Repli-
cability, Reproducibility, and Reusability and discuss how these basic scientific principles apply for
assessing scientific software.

The distinct notions of replicability and reproducibility are used to qualify research in all fields of
science in which experiments play a role, cf., e.g. [63] with a background in biology, [47] from psy-
chology, or [13,17] focusing on scientific computing. In short, replicability refers to a repetition of

1sciencecodemanifesto.org
2recomputation.org

AIMS Mathematics Volume 1, Issue 3, 261-281

sc:rrr
sc:cas
sc:cog
sc:definfo
http://sciencecodemanifesto.org
http://recomputation.org


264

the experiment with the same results by the same observers in the same environment; reproducibility
refers to an independent repetition of the experiment and its outcomes in different circumstances. Re-
producibility points to a certain reliability of both, the findings of the experiment and the procedure
that was used to obtain the results [37]. Once reliability of a method is established, one can address
reusability as the property that enables the use of the method for different setups and purposes. Note
that these characteristics should be considered nested, which means reproducibility implies replicabil-
ity and reusability requires reproducibility.

In what follows, we extend, specify, and adapt these general notions to the case of scientific software
and numerical simulations.

2.1. Replicability

The attribute replicability describes the ability to repeat a CBEx and to come to the same (in a
numerical or statistical sense) results. Sometimes the equivalent term repeatability is used for this
experimental property. Replicability requires some basic documentation on how to run the software
(described in Section 4.5) to obtain replicable results.

Replicability, in turn, is a basic requirement of reliable software as well as of its result as it shows
a certain robustness of the procedure against statistical influences and bias of the observer. Also, a
replication can serve as a benchmark to which new methods can be compared as pointed out in [64].

2.2. Reproducibility

In its simple definition, reproducibility of a CBEx means that it can be repeated by a different re-
searcher in a different computational environment. This can be assured, first, through a documentation
that provides enough mathematical and technical detail to set up the CBEx that will provide compa-
rable results, including the software implementation of algorithms; second, through the distribution
of a software capable of producing the results on a large variety of machines, or third, any combina-
tion of these two extrema – sufficient documentation and available software. If the CBEx depends on
hardware, e.g., if runtime is measured, then for reproducibility the hardware needs to be available or
sufficiently well documented.

2.3. Reusability

In the sphere of CBEx, reusability refers to the possibility to reuse the software or parts thereof
for different purposes, in different environments, and by researchers other than the original authors.
In particular, reusability enables the utilization of the test setup or parts of it for other experiments or
related applications. Although theoretically, any bit of a software can be reused for different purposes,
here, reusability applies only for reproducible parts, since a building block of a CBEx that does not
define reproducible or even replicable outcomes cannot be reused for a replicable or reproducible
CBEx.

3. Code Availability Section

Even though availability of the source code associated to a CBEx is not a requirement for replica-
bility and reproducibility (see Section 4), it is essential to open the CBEx to peer scrutiny and highly
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recommended by the authors. The availability of the source code itself is necessary for reusability
and unconditionally desirable for reproducibility. This section makes the case for a Code Availabil-
ity Section as introduced by Nature [12,44,45]. Such a section should by default be included in any
publication presenting numerical results like a “Materials and Methods” section in other sciences, and
should state if the utilized code is available and if not for what reason, i.e. third-party licenses, non-
disclosure agreements, trade secrets, or the thought of keeping competitive advantages.

Different code availability models exist, which will be listed and briefly commented on in the fol-
lowing.

Open source code, published under a public license This procedure is probably preferred by most
scientists and for some people the only way to do proper science, compare, e.g., [25]. Referees and
interested readers can check if the code fulfills the necessary requirements for reproducibility and
they can modify and use the code for their own purpose. There are multiple possibilities to gain
access to the code. Nowadays, a common and widely used procedure is the provisioning of source
code via a publicly readable revision control repository located on a private server e.g. in a GitLab3

instance or a third-party service provider, such as GitHub4, or Bitbucket5. Alternatively, a download
from a collection such as Netlib6 can be provided. A shining example for best practice in the field
of open source code in combination with reproducible experiments is the Image Processing On Line
(IPol) Journal [26]. In this journal each article is supplemented with its source code, with an online
demonstration facility and an archive of experiments. Furthermore, the text, as well as the source code,
are peer-reviewed.

Closed source, software available under a non-public license This less desirable option gives
readers and reviewers the opportunity to check, if the proposed numerical procedure or experiment
work with their own data, given a license is available. Often, the source code is encoded or obfuscated
to protect intellectual properties, which then allows a replication but not a comprehension of results.
Matlab code, as an example of an interpreted language, can be encoded via the pcode command or
compiled into a binary format. However, as stated in the documentation of MATLAB Version 2014b
[24] “The pcode function obfuscates the code but does not encrypt it. While the content in a .p
file is difficult to understand, it should not be considered secure.” For programs written in a compiled
language, such as C++, only executables or runtime libraries are provided. Hence, for trust reasons it is
important, that the software has a-priori passed through a strictly documented verification & validation
procedure. By providing and hosting the sources via a version control repository (see Section 4.6) it
is possible to provide certain people, i.e. the reviewers, with access to the source code upon request.
Alternatively, the source code may be provided directly to an eligible user via physical data volumes,
or direct file transfers.

Software as a Service (SaaS) The availability of web access to computer programs or computer re-
sources is an emerging strategy. This approach can also be used to enable interested users or reviewers

3about.gitlab.com
4github.com
5bitbucket.org
6netlib.org
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to use the developed software as a service, e.g. to test if the program runs with their own, respec-
tively modified input data. Therefore, SaaS offers many advantages such as a read-without-copying
restriction for the source code, time-limited access for users, third-party software dependencies can be
resolved, new licensing schemes and so on. It should be noted that, while SaaS enables the use of a
CBEx, it does not allow a dissection at a source code level.

Non-available code The last and the most undesirable option is the non-availability option: Source
code, computer program or required third party software is not available or purchasable to the interested
reader. A review is hardly possible and the proposed numerical scheme or ideas need to be described
in great detail, to enable reproducibility of the work.

A sample Code Availability Section is enclosed in Figure 1. The linked source code archive should
ideally be uniquely identified by a Digital Object Identifier7 (DOI) which can be obtained for software
releases for example from Zenodo8 for scientific codes. Alternatively, the source code can be enclosed
in the supplemental materials or deposited at some stable location.

Code Availability / Licensing Option
The source code of the implementations used to compute the presented results can be obtained
from:

doi:???????/???????? and is authored by: X Y, A B

Please contact X Y for licensing information

Figure 1. Sample Code Availability Section.

Even though a simple statement on the (non-)availability of the source code does neither improve the
review process nor the reproducibility (in the sense of Section 2.2), it can at least facilitate replicability
through its assurance by the authors. Furthermore, it could be noted if the referees had access to the
implementation during the peer review process.

Moreover, due to the important role of computational results, not only in numerical analysis but
also in many other sciences, this measure contributes to the basic idea of verifiability in science. If
the source code is made available, as a part of the publication, on the one hand, effort invested into
an openly available software implementation is made visible and, on the other hand, compels authors
to comment on means of the experimental setup. Lastly, a mandatory code availability section raises
awareness for RRR.

4. Code Guidelines

In this section, based on the previous definitions of replicability, reproducibility, and reusability as
well as prior work in other fields such as [27], guidelines for the design, documentation, or publication
of CBEx and research software are summarized. The foundation for these guidelines is the interrelation

7www.doi.org
8zenodo.org
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of RRR: reusability implies reproducibility which implies replicability; and mandatory requirements
and optional recommendations are given. Requirements are limited to the minimal extent necessary
while recommendations enable a practical and comfortable realization of the replication, reproduc-
tion, or reuse. The interdependence of the requirements and recommendations is to be understood as
follows: A requirement for replicability is also a requirement for reproducibility and similarly, a re-
quirement for reproducibility is also a requirement for reusability. Recommendations are optional but
strongly encouraged, yet have no dependence on previous recommendations.

We will use the term “source code archive” to refer to the set of source code, build instructions
(such as a makefile), configuration files and input data9. For a summary of the following guidelines
see Figure 2.

4.1. Replicability Requirement: Basic Documentation

A fundamental requirement for replicability is a basic documentation, which encompasses in-
structions on how to generate an executable binary program in case of a compiled language, and a
description on how to run the program to obtain the results to be replicated (see also Section 5). This
documentation is crucial to an experiment’s replication as it defines the technical implementation and
ensures the practical repetition of the experiment.

Often, the numerically computed results are further processed to facilitate interpretation, for ex-
ample by a visualization. A documentation of the evaluation of these results, descriptively or algo-
rithmically, is needed to allow for replication, not only of the computational results, but also of their
evaluation.

4.2. Replicability Recommendation: Automation and Testing

The automation of the experiment enables an easy and reliable check for replicability of a CBEx.
This typically means that a single or multiple scripts automatically prepare and run the experiment as
well as the post-processing of the results.

Replicability requires replicable behavior of all building blocks of the experiment, for which the
setup of particular tests is recommended. Commonly, three categories of tests are considered: Unit
tests, exam small sections of the source code; integration tests, check major components of the source
code; and system tests, assess the whole project [6, Ch. 3]. Tests usually involve a comparison of the
computed with analytical results, statistically significant sampling or the conformance to an accepted
benchmark problem.

4.3. Reproducibility Requirement: Extensive Documentation

To enable the reproducibility of a CBEx, a sufficiently detailed description of the algorithms, im-
plementation, test setup, and parameters needs to be provided. Here, sufficiency is achieved if the
documentation contains all information needed to setup and to run the experiment by a different re-
searcher in a comparable environment. However, to reproduce a CBEx in a different environment,
a documentation of the utilized hardware and software is also needed. An essential part of this en-
vironment documentation is the listing of other software packages required to perform the CBEx.
Documenting these dependencies includes all software, which is not available in a commonly assumed

9The source code archive may also include resulting data sets from the authors experiments.
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environment including employed variant and version and allows to set up the same or at least a similar
software stack.

Depending on the programming language in which the considered CBEx is encoded, different types
of dependencies arise. A compiled language requires a compiler and linked libraries to generate an
executable file embodying the program computing the results. The variant of the compiler and its
version as well as the variants of (statically and dynamically linked) libraries with their versions make
up the associated dependencies. Furthermore, a build system, which organizes the compilation and
linking may be used and constitutes a dependency. An interpreted language requires an interpreter,
which parses and executes the source during runtime. In this case, typical dependencies are the variant
of the interpreter in a specific version as well as depending toolboxes or modules with versions.

4.4. Reproducibility Recommendation: Availability

The availability of the source code archive is highly recommended for reproducibility because of
two main reasons. First, the code itself may serve as documentation of the experiment and is a scientific
contribution in itself. Second, the code may be used to accomplish the actual reproduction.

Therefore, the availability of the source code archive from a stable location is vitally important.
A location can be considered stable if its main purpose is storing data. This does not imply lasting
availability, hence a second backup location is commendable.

The classic method of providing source code access is the bundling with the publication by includ-
ing the source code archive as supplemental material. This affiliates the code with the publication and
is conveniently obtainable together with the publication itself. Yet, a supplemental material section
may not be available or only accept certain file types (with a maximum file size).

Recently, depots for scientific source code have been established. For example, RunMyCode10 or
Research Compendia11 are services for storing source code archives and linking these to publications.

Alternatively, the source code archive can be published separately through platforms such as Zen-
odo8 or Figshare12. An advantage of this method is the assignment of a digital object identifier (DOI)
for such a software publications, which can then be stated in the Code Availability Section of the
associated publication.

As for the dependencies, reproducibility is not inhibited by closed-source software. However, a
statement on the applicability of an open-source variant, if available, of those dependencies is sug-
gested. In any case, those components of the experiments that are not part of the source code, need to
be documented as described in Section 4.3.

4.5. Reusability Requirement: Accessibility

A CBEx is reusable if it is accessible in a related or even different context. Accessibility encom-
passes all means to (partially) apply the functionality of the original to another CBEx. The availability
of source code fulfills the accessibility for reusability, but also access to a compiled executable and
library or a remote service is sufficient to comply.

10www.runmycode.org
11researchcompendia.org
12figshare.com

AIMS Mathematics Volume 1, Issue 3, 261-281

sec:reprod-req
http://www.runmycode.org
http://researchcompendia.org
http://figshare.com


269

4.6. Reusability Recommendation: Modularity, Software Management & Licensing

To be able to adapt a CBEx to differing environments and settings, the CBEx itself has to allow
some parametrization to enable a certain configurability. Furthermore, modularity, the separation of
experiment and method, enables the utilization of the method in other experiments or conducting the
experiment with alternative methods. A more fine-grained modularization can allow, in addition, the
exchange of components from the method or experiment such as numerical solvers or service libraries.
Modularity necessitates a definition of interfaces which determine the communication between the
interchangeable components. The documentation of such an interface is essential for it to fulfill its
purpose and involves e.g. a description of protocols, variables, types and function signatures with their
arguments and return values.

Source code usually undergoes some evolution over time during which errors are fixed, and new
features are introduced. Hence, software management methods, such as version control, are recom-
mended for the organization of this development process. A reusable software project is recommended
to obey some versioning procedure. A version scheme allows a unique identification of different
chronological stages of the project. Usually, such a version consists of at least two numbers delim-
ited by a dot, describing the major and minor iteration of changes. More fine-grained versioning can
be applied with further numbers. A release of a new version can be fixed by assigning a DOI. To record
the evolution of the source code a version control system, such as git, mercurial or bazaar, is an im-
portant tool. A version control system tracks changes for each controlled file and allows a well-defined
collaborative work on the (plain text) source files. The set of all files under version control makes a
repository, a set of changes to a single or multiple files constitute a revision of the repository, and a set
of revisions defines a new version. A history of the revisions can also augment the documentation of
the CBEx if the changes are recorded with comprehensive descriptions.

A license assigned to the source code archive, which governs the rights and duties associated with
its use and reuse as well as indicating copyrights, is practically necessary for reusability. If an open-
source license is selected, certain characteristics should be considered: The license should be approved
by the Open-Source-Initiative13 and the Free-Software-Foundation14 as well as being compatible with
the GNU-General-Public-License15. Generally, a central requirement for scientific software should be
an attribution clause requiring the future inclusion of the copyright information, which usually notes
authors and contributors. Note, that a non-permissive license may inhibit the reusability of the software
in non-open projects, cf. [58]. To select a license, the service Choose-A-License16 can be of help, and
for an explanation of the selected license, a service like tl;dr Legal17 provides short summaries of the
license’s legal implications.

5. Basic Documentation

In terms of research software, it is important that the accompanying documentation enables usage
and reproducibility of results. To this end, certain information on the tested hardware and software
should be documented. Following, a basic form of documentation is proposed, which includes the

13opensource.org
14fsf.org
15opensource.org/licenses/gpl-license
16choosealicense.com
17tldrlegal.com
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• Replicability
Required: Basic Documentation

Recommended: Automation & Testing

• Reproducibility
Required: Extensive Documentation

Recommended: Availability

• Reusability
Required: Accessibility

Recommended: Modularity, Software Management & Licensing

Figure 2. Coding guidelines overview.

essential information to facilitate RRR.
A simple form of documentation is providing basic information in plain text files. These should be

sequential files containing only printable ASCII characters [28] and consequently using a US-ASCII
file encoding. If it is necessary to also use non-ASCII characters, a modern encoding with good
cross-platform support, like UTF-8, should be used. Recently, these text files have been decorated
with commonmark18 mark-down code19, which rather improves readability then inhibiting it and are
considered an unofficial standard due to the widespread use for example by GitHub4. Since typically
scientific publications are composed in the English language, so should be these text file.

Certain default filenames are established to indicate the file’s contents, such as README, LICENSE,
AUTHORS and CHANGELOG. Additionally, further files of relevance to the academic environment have
been suggested such as CITATION and CODE. This work proposes two more files, namely RUNME and
DEPENDENCIES to facilitate replicability.

5.1. README

The bare minimum of any code package, source code repository or source code archive should be
a README file. To uniquely identify this text file it should state the name of the associated software
project along with its version and the release date. Normally, also a brief description of the code
functionality and its contents are expected.

Often, the README file also includes a manual for the compilation or installation of the project. In
the case that these procedures are more elaborate, a separate INSTALL file can be used and referenced
inside the README. The same holds for the authors and contributors to the project, which can be listed
in the README or in an additional AUTHORS file. Relevant information for the README includes
a project website, a (stable) download location, contact information and sample usage (for example
referencing the RUNME file) of the associated software. Furthermore, the license and the LICENSE

18commonmark.org
19Usually indicated by the file extension .md.
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file20, a record of the history of changes in the CHANGELOG file, a set of frequently asked questions in
a FAQ file and a documentation can be referenced.

In case the replicability of an experiment is targeted, the specific software stack and hardware en-
vironment should be documented, as well as all configurations, parameters and arguments defining the
CBEx. For reproducibility, related publications should be cited, and for reusability, links to technical
documentation, e.g. interfaces, or a version control repository could be listed. Generally, a README
file can also act as a table of contents to the remaining files associated with the source code archive.

Preferably, the README presents the necessary information to start using the software in a quick
and comprehensive way. Therefore, the general recommendation is to make it as detailed as necessary
while at the same time keeping it as brief as possible. For in-depth discussions of the further details, a
reference to the actual software documentation should be preferred.

5.2. RUNME

To facilitate replicability, an additional file called RUNME is proposed in this work, that lists the steps
required to replicate results. This can be an executable script file, which upon execution automatically
performs all steps necessary to replicate the results of an associated publication. In case, multiple
environments are supported, the respective environment can be highlighted by a file extension, for
example RUNME.linux or RUNME.win. Alternatively, the RUNME file can describe these stages in
pseudo-code or, in general, not machine readable language.

5.3. CITATION

The concept of a CITATION file has first been used by the R-Project [52] and has also been adapted
by GNU Octave [14]. This file contains information on how to cite the associated software project in
other works. Besides a sample citation, a suggested BibTeX code is often provided in this file.

5.4. DEPENDENCIES

Modern software stacks encompass multiple layers of intermediary software on which a project may
depend upon. To be able to build and use a provided source code package such dependencies must be
locally available. For projects with few dependencies, it is sufficient to list those in the README
file, yet for projects with many dependencies it is suggested to include a DEPENDENCIES file that
lists these necessary (third-party) software components including the required versions. Dependencies
encompass, but are not limited to: runtime environments, libraries, toolboxes, modules, source code
archives or executable files.

5.5. CODE

The purpose of the CODE file is the listing of key meta-data on the associated software project.
Initially, the idea of bundling code meta-data21 was proposed in [57] and formalized in [35]. The main
intended purpose of this proposal was the assignment of transitive credit in software stacks utilized
for scientific work. In publications, about a software project this meta-data also helps as a unique

20The LICENSE file holds the full license text the copyright holders and the release year
21See also: [18] and schema.org/SoftwareApplication.
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identification, as for example in the SoftwareX journal22. Another important reason for code meta-
data is the classification and organization of scientific software, which facilitates reproducibility and
reusability. This information could and should also be enclosed in the README file, yet the focused
CODE file is machine-readable and allows automatically generated directories.

Various file formats to encode this meta-data are surmisable. Among others there are: ini (Initial-
ization File), xml (Extensible Markup Language), yaml (YAML Ain’t Markup Language) and json
(Javascript Object Notation), of which the latter is suggested in [57,35]. Basic requirements for such a
file are a plain text encoding and a human readable formatting. Additionally, a simple syntax23 as well
as the availability of parsing facilities should be considered. Due to its renownedness and easy read-
ability for human and machine, the authors suggest to use the ini file format, as the more elaborate
grammars of xml, yaml and json require sophisticated parsers.

There is no standard defining the ini format, yet its widespread use establishes a quasi-standard:
Each line in an ini file holds a single key-value pair, which is delimited by a colon. The other formats
also provide hierarchies for its components, which allow nesting of fields, for example grouping an
author’s properties under a common author key, but these hierarchies introduce an impediment for the
automatic parsing of contents. To resolve the former example of multiple authors, in the case of the
ini file, a comma separated list can be used as the value.

Due to the wide range of possible meta-data across the sciences utilizing software, no one-size-fits-
all list of keywords is given, but a list of suggestions which applies to most research software projects.

• name The primary identifier of the software project.
• shortname An alias or the name of the main executable.
• version A unique state of the project, usually symbolized by numbers separated by decimal points

indicating the major and minor revisions.
• release-date The date this version has been released in the ISO-8601 format: YYYY-MM-DD [29].
• id An identifier fixing a software release at a stable location.
• id-type The type of identifier used, e.g.: DOI.
• authors The list of authors.
• orcids The list of ORCID24 identifiers corresponding to the list of authors.
• associated An identifier of an associated document, like a publications (DOI), book (ISBN) or

documentation (URL).
• topic A basic categorization25 of the project.
• type The type of software, for example a program, library, toolbox or module.
• license The license under which the software is released.
• license-type A distinction between open and propriety licenses.
• repository The link to the project’s source code repository.
• repository-type The type of version control software of this repository.
• languages This field is supposed to contain a comma separated list of utilized programming lan-

guages in the software project. For larger projects, listing the major used languages will be suffi-
cient. Since programming languages evolve over time, the versions or standards of the employed

22www.journals.elsevier.com/softwarex
23This is understood as a small set of rules.
24orcid.org
25e.g. MSC (msc2010.org), ACM (www.acm.org/about/class) or PACS (www.aip.org/publishing/pacs).
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languages or dialects should also be provided.
• dependencies A list of software required to use the project, such as runtimes, libraries, toolboxes

or modules.
• systems A list of compatible26 operating systems or computational environments.
• website If the CBEx is part of an enclosing research software project and has a website, the URL

(Uniform Resource Locator) can be provided in this field to guide users to the available resources.
• keywords A list of descriptive terms.

An example of such a code meta data ini-file, from emgr - empirical gramian framework [23], is
shown in Figure 3.

name: Empirical Gramian Framework
shortname: emgr
version: 3.9
release-date: 2016-02-25
id: 10.5281/zenodo.46523
id-type: doi
authors: Christian Himpe
orcids: 0000-0003-2194-6754
topic: Model Reduction
type: Toolbox
license: 2-Clause BSD
license-type: Open
repository: github.com/gramian/emgr
repository-type: git
languages: Matlab
dependencies: GNU Octave >= 3.8, MATLAB >= 2011b
systems: Linux, Windows
website: gramian.de
keywords: empirical gramians, cross gramian, combined reduction

Figure 3. Sample CODE ini-file for version 3.9 of the empirical gramian framework.

5.6. Source Code File Headers

Apart from the text files enclosed with the project, every source code file should state in its first
lines, the so-called header:

1. the associated project,
2. the authors and contributors,
3. and the purpose of the file.
26It should be noted, that compatibility does not guarantee reproducible results; see for example [20].
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This establishes the affiliation of this source file to the project. The header can optionally also include
license and version information. Additionally, this file header can hold citations to works used to
compose the following source code or keywords categorizing the contents.

6. A Practical Example

In this section, we discuss a very rudimentary and simple implementation of the iteratively corrected
rational Krylov algorithm for H2 model reduction proposed by Gugercin, Antoulas and Beattie [21].
The implementation of the algorithm was made as an exercise in a lecture about model reduction. The
common denominator of the authors is the fact that their research is within the area of model order
reduction, but, their backgrounds, scientific computing, mathematics, control or engineering, is differ-
ent. Nevertheless, in our opinion, the sharing of code, good documentation, and modular programs
which can be reused is essential for the further success of model order reduction. The intention of this
best practice example is to show exemplarily the files and rules for good CBEx’s and provide a tem-
plate for other research. During implementation, we particularly paid attention to follow the guidelines
given in this work. In a first step, the IRKA algorithm [21] is chosen because the algorithm is widely
used, heavily cited algorithm, but also has a well-documented examples section where the numerical
experiments used to verify the behavior of the algorithm are described including the model. Also, the
outcome of the algorithm is for many examples deterministic. Therefore, replicability of the results
of [21] is achieved. The minimum requirement for replicability is the basic documentation, which
documents the RUNME.m file and every single function. Two example files are given. In the first
example, RUNME.m, the IRKA algorithm automatically produces the plots shown in Figure 4. The
second example file, EXAMPLES.m, can be used to test the algorithm with different examples and on
various system architectures with different programs and different program versions. Documentation
in the header, which architectures and programs work with the algorithm and the test examples, is as
recommended. Furthermore, standardized benchmarks from the Oberwolfach Benchmark Collection27

are used to allow reproducibility of the results for other users.
Finally, demonstrating the advantages of the reusable part of the implementation is based on the

work of Panzer [48]. Since the source code of Panzer [48] is published under an open-source license,
a reuse of his work is possible. We can modify and use the code for our own purpose. Consequently,
for a further reuse of the source code, this implementation is also published under a public license. The
code is released through a GitLab archive28 and uniquely identified and archived via a Zenodo8 entry
with a DOI [16], the availability of the source code is depicted in our Code Availability Section below.
Nevertheless to show the possibility to combine open source code with closed source code the function
calculateFrequencyResponse.p is given in the obfuscated p-code version.

The results shown in Figure 4 use Penzl’s “FOM” benchmark example (see [49, Sec. C.3.1]) and
apply our implementation of the method from [21]. In the reported test the initial shift parameters
and the reduced order have been chosen such that the progress of the IRKA iteration becomes visible.
Larger reduced orders would allow for smaller error norms, while more clever choices of the initial
shift could lead to less overall iterations. Both are however beyond the scope of this presentation.

27portal.uni-freiburg.de/imteksimulation/downloads/benchmark
28gitlab.mpi-magdeburg.mpg.de/saak/best_practice_IRKA.git
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Figure 4. Example IRKA results for the “FOM” model by Penzl and reduced order 10.
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7. Closing Remarks

In this contribution the notions of replicability, reproducibility and reusability are discussed and
classified by requirements and recommendations. The issue of code availability and the implied re-
flection on the artifacts of associated CBEx is exemplified, and simple formats of documentation and
meta-data provisioning are described.

This set of best practices is meant as a practical guideline for scientists to establish or enhance
RRR for their CBEx, whereas in e.g. [61] many high-level recommendations, like a cultural change of
researcher, funding agencies, publishers, and educators, are given. Therefore, this work can be seen
as an evolution of the work of Stodden et al. [61] applied to a specific domain. Specifically, this work
supports the theses of [61] (and also others e.g.: [5,38,3]), and several recommendations overlap, for
instance, the advice on providing details on computational work [61, Sec. 2, Appendix D] conforms
to the results from Section 5, yet in the work at hand the respective guidelines are particularized and
exemplified. Furthermore, novel advice of RUNME and DEPENDENCIES files, proposed in Section 5,
is highlighted here, too. Other important issues [61, Appendix B] relating to hardware and software,
such as rounding, parallelization, and distributed computing, are not investigated here.

The proposed best practices in this work improve scientific validity of CBEx, but also aim to spark
a discussion on RRR in this context. By no means are the suggested techniques to be understood as a
strict rulebook with everlasting validity. The authors emphasize that the proposed practices, which are
based on practical experience and standards as well as on general considerations of abstract concepts,
are subject to change over time. Nonetheless, the herein demonstrated strategies do enhance replicabil-
ity, reproducibility & reusability and thus, also in the absence of other general solutions or approaches,
merit their consideration for scientific CBEx in general and numerical CBEx in particular.

Code Availability

The source code of the implementations used to compute the presented results can be obtained
from:

doi:10.5281/zenodo.55297 and is authored by: Jörg Fehr and Jens Saak

Please contact Jörg Fehr and Jens Saak for licensing information
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