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Abstract
To counter the volatile nature of renewable energy sources, gas networks take a vital
role. But, to ensure fulfillment of contracts under these circumstances, a vast number
of possible scenarios, incorporating uncertain supply and demand, has to be
simulated ahead of time. This many-query gas network simulation task can be
accelerated by model reduction, yet, large-scale, nonlinear, parametric, hyperbolic
partial differential(-algebraic) equation systems, modeling natural gas transport, are a
challenging application for model order reduction algorithms.
For this industrial application, we bring together the scientific computing topics of:

mathematical modeling of gas transport networks, numerical simulation of
hyperbolic partial differential equation, and parametric model reduction for nonlinear
systems. This research resulted in the morgen (Model Order Reduction for Gas and
Energy Networks) software platform, which enables modular testing of various
combinations of models, solvers, and model reduction methods. In this work we
present the theoretical background on systemic modeling and structured,
data-driven, system-theoretic model reduction for gas networks, as well as the
implementation of morgen and associated numerical experiments testing model
reduction adapted to gas network models.
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1 Introduction
Rapid transient simulations of gas flow in pipeline networks are essential for safe opera-
tions of gas networks as well as reliable delivery of denominations. Yet, in a volatile supply
and demand environment, due to increasing renewable energy sources, the time horizon
for planning dispatch and load forecasting shortens while more sources of accountable
uncertainties, such as effects of weather on energy consumption and production are in-
troduced; to a lesser degree this is a long standing challenge [6]. An example is the in-
terconnection of gas and power grids through gas-fired power plants [27, 91, 144]. Thus,
more simulations for the uncertainty quantification of dynamic gas network behavior need
to be completed in less time by the gas grid operators. However, available compute power
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is (and was [138]) never sufficient. To this end we evaluate customized model reduction
techniques for an established class of gas network models.

This work and the associated software platform are an effort to determine which model
reduction methods are suitable for enabling digital twins [58, 87, 121] of gas networks.
Depending on the mathematical model and quantities of interest, the twin may contain
redundant or superfluous information with respect to the simulations. Therefore, model
reduction compresses the twin to a matched surrogate model, which is sufficiently accu-
rate in the chosen operating region.

The swift numerical simulation of gas network twins by reduced order modeling is
highly relevant, not only due to the transition towards renewables at the time of writing,
which is underlined by the research projects MathEnergy1 (Mathematical Key Technolo-
gies for Evolving Energy Grids) [29] that the authors are part of, and TRR1542 (Mathemat-
ical Modelling, Simulation and Optimization using the Example of Gas Networks) [85],
but also because of the intriguing numerical problem of model reduction for hyperbolic,
nonlinear, coupled, parametric, multiscale partial differential-algebraic equation systems.

If relevant intraday demand changes occur, established steady / stationary / static sim-
ulations may not be sufficient anymore [42]. The basic model for the simulation of
unsteady / dynamic / transient flow processes in gas pipelines is based on the one-
dimensional (isothermal) Euler equations, originally introduced in [55], and popularized
in [104] as well as in [80, 81] around the same time. A practical extension in the context of
gas networks is the repetitive modeling approach [37], which enables a modular construc-
tion. For extensive details on gas network modeling, see the works [19, 33, 45, 94, 105, 123,
128, 131], and for a concise summary of the overall approach we recommend [7]. Further-
more, a system-theoretic approach to gas networks is discussed in [35, 54], and results on
boundary reachability (controllability) and observability for this class of models have been
derived in [8, 9].

In terms of complexity reduction for gas network models, earlier works applied tech-
niques such as combining parallel pipelines [129], singular perturbation [127] and sym-
bolic simplifications [95]. Younger works introduced projection-based model reduction
methods from fluid dynamics, proper orthogonal decomposition (POD) [50, 51, 53], and
system-theoretic methods [88] (matrix interpolation), [1, 89] (balanced truncation), or
Padé-type approximations [39, 86] (moment matching).

In this work, we conceptually combine these previous approaches, by using system-
theoretic but data-driven methods that are structure-preserving. The utilized data-driven
assembly of the system-theoretic operators, central to the employed methods, is also a
partial answer to the challenges posed in [57, Remark 5.10]; while structure preserva-
tion means in this context, retaining (particularly not mixing) the discretized physical
variables in the reduced order model. Furthermore, we note that from this work’s point
of view, [130, 144, 145] are concerned rather with (valuable) model simplifications than
model reduction.

To avoid the analytically most complex aspects of the gas network model – the nonlin-
earities – one could linearize the model around an operating point. Yet, the different non-
linearities (i.e. friction, compressibility and compressors) are unlikely to have a compati-
ble operating point for a wide range of scenarios. Furthermore, linearized and simplified

1https://mathenergy.de
2https://trr154.fau.de

https://mathenergy.de
https://trr154.fau.de
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Table 1 List of recurring symbols

p Pressure Ns Number of supply nodes
q Mass-flux N0 Number of internal nodes
p̄ Steady-state pressure Nd Number of demand nodes
q̄ Steady-state mass-flux Nc Number of compressors
sp Supply node pressure Np Dimension of pressure space
dq Demand node mass-flux Nq Dimension of mass-flux space
sq Supply node mass-flux np Dimension of reduced pressure space
dp Demand node pressure nq Dimension of reduced mass-flux space

models of gas flow have limitations with simulations of real scenarios [61], [134, Ch. 7];
hence, we use a nonlinear model. Since there is no general theory for model reduction
of nonlinear systems, and a high degree of modularity in the gas network modeling pro-
cess, model reduction algorithms have to be compared heuristically to determine their
applicability. As a result of this reasoning and a demand for gas network simulation soft-
ware tools [32, 69], a platform named morgen (model order reduction for gas and energy
networks) was designed with the goal to compare different models, solvers and reductors.
The morgen3 platform is an open-source project, and designed in a configurable, modu-
lar, and extensible manner, so that modeling, discretization or model reduction specialists
can compose and compare their methods fairly.

In summary, this work contributes a full, but also fully modular, modeling, model reduc-
tion and simulation open-source software stack for gas networks, and potentially other
energy network systems (i.e. district heating networks, water networks), which brings to-
gether research results from various disciplines.

Overall, this work is organized as follows: In Sect. 2 the gas network model, simplifica-
tions, non-pipe elements, a relation to port-Hamiltonian theory, and obtaining a steady-
state initial condition are described. Section 3 and Sect. 4 outline the general model re-
duction idea and propose five reduction method classes. The design and features of the
morgen platform are summarized in Sect. 5, followed by three sets of numerical experi-
ments in Sect. 6. We conclude by an outlook (Sect. 7) and an evaluation of our findings in
Sect. 8. A list of recurring symbols is found in Table 1.

2 The transient gas network model
The goal of this section is to describe the partial differential-algebraic equation model of a
gas network as an input-output system that maps boundary values to quantities of interest.
First, the model for a single pipeline is summarized, which is based on the isothermal Euler
equations of gas dynamics [104, 106]. Then, it is generalized to a network of pipes, and
simplified compressors are added. Additionally, a connection to energy-based modeling
is made.

Even though further non-pipe elements are common in gas networks, such as resistors,
coolers, heaters, valves and control valves [45, 96], we prioritized compressors to focus on
the model reduction aspect on a macro scale. Moreover, the practical numerical problems
of scale homogenization, spatial discretization, index reduction and steady-state approx-
imation are discussed in this section.

3“Morgen” is also the German language word for “tomorrow”.
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2.1 The gas pipeline model
The principal building blocks of gas transport networks are pipelines or ducts. Since the
length of pipes exceeds their diameter by far (L > 500d, [81]), a spatial one-dimensional
model suffices. We model gas flow in a (cylindrical) pipe of length L connecting two junc-
tions by the isothermal Euler equations:

1
γ0z0

∂tp = –
1
S
∂xq,

∂tq = –S∂xp –
(

Sg∂xh
γ0z0

p +
γ0z0λ0

2dS
|q|q

p

)
,

(1)

which determine the evolution of the coupled pressure p(x, t) and mass-flux q(x, t) vari-
ables. The physical dimension of the pipe enters as its diameter d and the derived cross-
section area S = π

4 d2, which is assumed constant, ignoring the influence of temperature
and pressure on the pipe walls. These coupled partial differential equations (PDE) can
also be characterized as a nonlinear, two-dimensional, first-order hyperbolic system of
conservation laws: the pressure p preserves continuity, while the mass-flux q conserves
momentum.

Following [64, 79, 108] and [19, Sect. 2.1], the inertia term has been neglected due to a
low Mach number m � 1, which leads to the ISO2 model in the TRR154 classification [33],
also known as friction-dominated model [24, Sect. 3.2.1]. Furthermore, we assume a tur-
bulent flow with a Reynolds number exceeding Re � 105 [40, 55], neither line breaks or
valve closings happen intraday (to preclude associated shocks [34]), and low-frequency
boundary values [10, 108], which in this work are (but generally not limited to) the sup-
ply pressure and demand mass-flux, due to frequent use in literature, and use-cases like
guaranteed demand pressures [22, 63].

In (1), the linear reaction term describes the effect of gravity (with standard gravity
g ≡ 9.80665 m

s2 ) due to the pipe height h(x), while the nonlinear reaction term models loss
of momentum due to friction at the pipe walls, specified by the (Darcy-Weisbach) fric-
tion factor λ0 := λ(d, k, Re0), given a pipe roughness k, and an estimated mean Reynolds
number Re0, see [19, Sect. 2.2].4 This friction term is principal to the accuracy of the gas
pipeline model [33, 61, 93, 107].

In this model variant, a (globally) constant mean compressibility factor z0 := z(p0, T0) ∈R

is assumed [35, 62, 106, 111], as well as a constant gas state γ0 := RST0, whereas the tem-
perature T0 and the specific gas constant RS are treated as parameters (see Sect. 2.6). To
this end, the steady-state pressure p̄ =: p0 is used to compute z0, via heuristic formulas
based on the Virial expansion [25], [19, Sect. 2.3].5

2.2 Homogenizing scales
The SI-based units for pressure and mass-flux are [Pa] and [kg/s], respectively. This intro-
duces a difference in scales of five orders of magnitude between the variables p and q, and
hence induces numerical problems. To counter this multiscale structure, we simply rescale
the pressure from [Pa] to [bar] which conveniently comprises a factor of 105. Nonetheless,

4Additionally to [19], the IGT formula [33], [96, Sect. 15.2.3] is implemented in morgen.
5Additionally to [19], the DVGW-G-2000 equation [94, Ch. 9] is implemented in morgen.
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the model still consists of two interacting physical variables, hence the model still has to
be treated as a coupled system, however, without numerical multiscale issues.

2.3 The gas network model
Given the model for a single pipe from the previous section, a (gas) network of pipes can be
encoded by a finite directed graph, which is a tuple G = (N ,E) of finite sets symbolizing
nodes N , and oriented edges E . The edges correspond to pipes, while the nodes repre-
sent the junctions connecting pipes. The connectivity of the network is the relationship
between edges and junctions, given by the incidence matrix A ∈ {–1, 0, 1}|N |×|E |, a map
from edges to nodes, such that:

Aij =

⎧⎪⎪⎨
⎪⎪⎩

–1 Ej connects from Ni,

0 Ej connects not Ni,

1 Ej connects to Ni.

Note, that the orientation of the edges is not enforcing the dynamic flow direction of the
gas, but is necessary to determine the complexity and boundary of the overall networked
model [19, 53].

We introduce the notation |A| for the component-wise absolute value of a matrix. Using
this absolute value, the following partial incidence matrices associating edges entering and
leaving nodes respectively are defined similar to a Heaviside function:

AR := 1
2
(
A + |A|), AL := 1

2
(
A – |A|).

Next, based on this connectivity, certain conservation properties are enforced to main-
tain a network balance, and thus ensure physical relevance of the gas network model.
Specifically, the Kirchhoff laws are applied to the network in vectorized (or rather
matricized) form [18, 132]:

1. The sum of in- and outflows (mass-flux) at every node (junction) is zero: This means
that no gas gets lost in transport from one pipe to the next, with the exception of
boundary nodes. Hence, a vector of flows q ∈R

|E | applied to the incidence matrix
equals the (out-)flow at the boundary (discharge) nodes dq : R →R

|ND|, which are
mapped into the network via Bd ∈ {0, 1}|N |×|ND|:

Aq(t) = Bddq(t),

with ND ⊂N denoting the subset of boundary nodes, which only connect from one
node respectively, but not to any node.

2. The sum of directed pressure drops in every fundamental loop is zero: Fortunately, an
equivalent representation [143, Ch. 7.3] can be used, which resolves implicitly. It
remains to ensure that the nodal pressures at the in-flow boundary (supply) nodes
are associated to the boundary function sp : R →R

|NS |, which are mapped to the
network via Bs ∈ {0, 1}|NS |×|E |:

AT
0p(t) + BT

s sp(t) = AT
0,Rp(t) – AT

0,Lp(t),
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with NS ⊂N denoting the subset of boundary nodes, which only connect to one
node respectively, but not from any node, and the reduced incidence matrix
A0 ∈ {–1, 0, 1}|N0|×|E |, |N0| = |N | – |NS|, with all rows associated to supply nodes
removed.

Given a connected and directed graph representing a gas network topology, with the
dynamic flow in the pipe edges modeled by the PDE (1), then yields a partial differential-
algebraic equation (PDAE) due to the above constraints.

2.4 Discretization and index reduction
Next, we delineate the discretization of the spatial differential operators and reduction
of the (P)DAE index in the networked system, yielding a system of ordinary differential
equations (ODE). Eventually, the remaining discretization of the temporal differential op-
erators is addressed.

We explicitly do not use the decoupling approaches from [12] or [11], as the former
employs linearization and hence does not fit this setting, while compared to the latter, our
equivalent analytic index reduction is more convenient here.

The partial differential(-algebraic) equation is discretized using the method of lines: First
in space, then in time, yielding a (nonlinear) dynamic system. For the spatial discretization
a first-order upwind finite difference scheme is utilized [10, 133]. We select (only) two
points for each of the k pipes with length Lk , namely the start (·R) and end point (·L):

∂xpk ≈ pR
k – pL

k
Lk

, k ∈ E ,

∂xqk ≈ qR
k – qL

k
Lk

, k ∈ E .

The matter of short, long and varying lengths Lk is addressed in Sect. 2.4.3.
For each pipe, this leads to the following equations:

1
γ0z0

∂tp∗
k = –

1
Sk

qR
k – qL

k
Lk

,

∂tq∗
k = –Sk

pR
k – pL

k
Lk

–
(

Skg(hR
k – hL

k )
γ0z0Lk

p∗
k +

γ0z0λ0,k

2dkSk

|q∗
k |q∗

k
p∗

k

)
.

Now, different choices for (·∗) are surmisable. Subsequently, two specific combinations of
p∗ and q∗ will be discussed: The midpoint discretization [18, 50, 51, 53, 145], and the left-
right discretization [48, 52, 115] resulting in (implicit) ODEs. For an error analysis of these
two discretization variants, see [128]. In the following, we describe a unified approach of
deriving these index-reducible discretizations.

For notational ease in the coming subsections, a vectorized form for the above (net-
worked) system including its constraints is given by:

d0∂tp∗ = Dp
(
qR – qL),

∂tq∗ = Dq
(
AT

0p + BT
s sp

)
–
(

DqDgd0p∗ + Df
|q∗|q∗

d0p∗

)
,

A0q∗ = Bddq,

(2)
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using, thus resolving, the constraint AT
0p +BT

s sp = pR – pL, as well as d0 := 1
γ0z0

∈R and the
diagonal matrices:

Dp,kk := –
1

SkLk
, Dq,kk := –

Sk

Lk
, Dg,kk := g

(
hR

k – hL
k
)
, Df ,kk :=

λ0,k

2dkSk
.

Note, that (d0 ·p∗) corresponds to the global average density, (S–1
k ·q∗

k) to the local flow rate,
and depending on the choices for p∗ and q∗, the model’s analytic and numerical character
will differ.

2.4.1 Midpoint discretization
In case of the midpoint discretization, we set p∗

k and q∗
k to the mean of its associated edge’s

endpoints:

p∗
k =

pR
k + pL

k
2

=: p+
k ,

q∗
k =

qR
k + qL

k
2

=: q+
k .

Furthermore, we define q– := 1
2 (qR – qL), and note, that in vectorized form,

p+ = 1
2 (|AT

0|p + |BT
s |sp).

Together with the algebraic constraints from Sect. 2.3, a DAE system in the variables p,
q+, and q– arises:

d0
1
2
(∣∣AT

0
∣∣ṗ +

∣∣BT
s
∣∣ṡp

)
= Dp2q–, (3a)

q̇+ = Dq
(
AT

0p + BT
s sp

)
–
(

DqDgd0
1
2
(∣∣AT

0
∣∣p +

∣∣BT
s
∣∣sp

)
+ Df

|q+|q+

d0
1
2 (|AT

0|p + |BT
s |sp)

)
, (3b)

0 = A0q+ + |A0|q– – Bddq. (3c)

Since we aim to obtain an ODE, we need to transform this DAE system. The complexity
of deriving this transformation is quantified by the DAE’s index. From the various DAE
index concepts, we use the tractability index τ [92], for which the midpoint discretization
guarantees τ ≤ 2 [53].

This DAE can be decoupled into an ODE by rewriting it in the variables p and q+. To
this end,

1. the pressure boundary condition implicitly resolves (2).
2. By multiplying the differential equation (3a) by (|A0|D–1

p ) from the left, the remaining
algebraic constraint (3c) is removed by replacing A0q– by (–A0q+ + Bddq) in (3a).
Since Dp is a diagonal matrix, this is also numerically feasible.



Himpe et al. Journal of Mathematics in Industry           (2021) 11:13 Page 8 of 46

We also pre-multiply (3b) with the inverse of the diagonal matrix Dq. Altogether, we ob-
tain:

|A0|
( 1

4 D–1
p d0

)∣∣AT
0
∣∣ṗ = –A0q+ + Bddq – |A0|

( 1
2 D–1

p d0
)∣∣BT

s
∣∣ṡp, (4a)

D–1
q q̇+ = AT

0p + BT
s sp –

(
Dgd0

1
2
(∣∣AT

0
∣∣p +

∣∣BT
s
∣∣sp

)
+ D–1

q Df
|q+|q+

d0
1
2 (|AT

0|p + |BT
s |sp)

)
. (4b)

This system of a pressure and mass-flux variable now consists of only differential equa-
tions. Notably, the first equation of the ODE system contains a temporal derivative of
the input function sp, which practically would need to be approximated numerically, for
example by finite differences. However, we will assume that all inputs are sums of step
functions, so that effectively ṡp ≡ 0, which is reasonable as we assume exclusively low-
frequency boundary values.

2.4.2 Endpoint discretization
For the endpoint discretization, also called left-right discretization, we set p∗

k and q∗
k to the

left and right endpoints, respectively:

p∗
k = pR

k ,

q∗
k = qL

k .

Since (BT
s + |BT

s |)sp = 0, we can write pR = AT
0,Rp. With the algebraic constraints from

Sect. 2.3, a DAE system in the variables p, qR, and qL results:

d0AT
0,Rṗ = Dp

(
qR – qL), (5a)

q̇L = Dq
(
AT

0p + BT
s ps

)
–
(

DqDgd0AT
0,Rp + Df

|qL|qL

d0AT
0,Rp

)
, (5b)

0 = A0,RqR + A0,LqL – Bddq. (5c)

As for the midpoint discretization, we want to derive a system of ODEs. For the endpoint
discretization, it is shown in [52, 115], that the tractability index is τ = 1, if all edges con-
necting supply nodes are directed from the supply, and each component of the graph is
connected to at least one supply. This implies, no two supplies are to be directly con-
nected. Similar to Sect. 2.4.1, this DAE can be decoupled into an ODE by rewriting it in
the variables p and qL. Applying equivalent steps to (5a)–(5c) as for the midpoint decou-
pling (3a)–(3c) yields:

(
A0,RD–1

p d0AT
0,R
)
ṗ = –A0qL + Bddq, (6a)

D–1
q q̇L = AT

0p + BT
s sp –

(
Dgd0AT

0,Rp + D–1
q Df

|qL|qL

d0AT
0,Rp

)
, (6b)

using A0,R + A0,L = A0 in (6a).
An advantage of this endpoint discretization, in addition to the absence of a derivative

of an input function, is the input-free friction term in (6b).
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2.4.3 Temporal discretization
After spatial discretization and index reduction of the gas network model, a system of stiff
nonlinear ODEs (in time) remains. The remaining temporal differential operator(s) are
discretized using time-stepping schemes.

Due to the hyperbolicity of the pipeline model, the temporal resolution �t used for
the discrete integration interdepends on the spatial resolution �x employed for the dis-
cretization of the spatial differential operators. Formally, this is expressed by the Courant-
Friedrichs-Levy (CFL) condition [13, 59, 140], which states that the propagation of infor-
mation cannot be faster than its conveyor:

λCFL := vmax
�t
�x

< 1,

with the (dimensionless) CFL constant λCFL, symbolizing the ratio of temporal and spatial
discretization step-width scaled by the peak gas velocity vmax. Since the flow is subsonic,
vmax could be estimated from the (linearized) characteristics [59], or via the boundary
values.6 However, we fix this maximum gas speed to vmax = 20 m

s (practically this is con-
figurable in morgen).

Due to this relation of the space and time discretization and a pre-selected application-
specific sampling frequency �t of the output trajectory (i.e., every 60 s), �x has to be
adapted accordingly. The spatial discretization by finite differences in the previous sec-
tions ignores pipeline length, as each pipe is assigned only one (finite) difference. This
means, pipes are potentially too long or too short with respect to a nominal length �x,
determined by the CFL condition �x = (1 – ε)vmax�t, (0 < ε � 1). Thus, too long pipes
are subdivided into virtual pipes of nominal length, while too short pipes, including a po-
tential remainder of too long pipes, are “rounded” to a full nominal-length pipe, yet with
a friction term scaled by the fraction of the short pipe’s length compared to the nominal
length,

D̃f ,kk =

⎧⎨
⎩

Df ,kk Lk = �x,
Lk
�x Df ,kk Lk < �x.

This approach assumes that delays due to the forced virtual length of an actually short pipe
are insignificant, hence this simple homogenization of pipe lengths may be improved by
replacing short pipes with friction-less shortcuts and a static pressure-drop, as used in the
quasi-static model [50, 64] and similar to the subsequent compressor model in Sect. 2.5.

Overall, we refine each pipe into a sequence of pipes of a selected nominal length – a
graph level refinement – which is determined using the CFL condition. We note here,
that this methodology is aimed at ensuring a certain minimum length for each pipe, as the
shortest pipe may dictate an unnecessarily finely resolved time discretization. In terms of
a pipe’s maximum length, suggestions are for example: 5 km ([50]), or 10 km ([144]).

As the model is composed of a stiff, linear (hyperbolic) and a nonlinear component,
an implicit solution of the linear part using a diagonally implicit Runge-Kutta (DIRK)
method, and an explicit solution of the nonlinear part via a strong stability preserving

6e.g. https://petrowiki.spe.org/Pipeline_design_consideration_and_standards#Gas_line_sizing

https://petrowiki.spe.org/Pipeline_design_consideration_and_standards#Gas_line_sizing
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(SSP) method, by an IMEX (IMplicit-EXplicit) solver, as proposed in [13, Sect. 3.2.2], is
targeted. The actual quadrature rules used to compute the transient solutions are detailed
in Sect. 5.3.

2.5 Simplified compressors
Beyond pipes, gas networks comprise a variety of non-pipe elements, of which the most
important are compressors. Compressors increase gas pressure to counteract cumulative
effects of retarding forces (friction, gravity, inertia etc.), and are grouped into stations with
many possible configurations. For our purposes, we just allow fixed configurations on a
macro scale [90] per scenario, which leads to a compressor being modeled as a special
kind of edge that boosts the pressure from its suction inlet to its discharge outlet.

Compressors are typically modeled “ideally”, based on their power consumption, for ex-
ample as a special node type; in-depth discussions can be found in [63, 123]. Due to this
consumption model, such ideal compressor units are useful for energy utilization opti-
mization tasks [40], yet, for a simplified transient simulation aspect already too compli-
cated. A more practical approach is taken in [91, 144, 145], where a compression ratio
αi ≥ 1 is used to scale the pressure in each node, or pipe [130], which means αi > 1 indi-
cates compression / a compressor, otherwise (αi = 1) a pipe.

Here, we utilize a likewise simple compressor model similar to [46, 139], for which we as-
sume it is propelled by an external energy source, for example, given a compressor electri-
fication, by excess renewable power [41], or that the off-take in gas is insignificant. But in-
stead of using compression ratios, a constant (or parametric) target pressure is prescribed,
modeling discharge pressure control [129].

The following affine compressor model is a variant of the compressor presented in [126]
and used in [7]. We model a simplified compressor by a level, short pipe which increases
the pressure at its outflow to a specified value p̄c (and without friction, λij ≡ 0). Given the
pipe from nodes i to j is treated as such a “compressor pipe”, with target pressure of p̄c, the
variables pij and qij are given by the differential equations:

ṗij(t) = qj – qi,

q̇ij(t) = p̄c – pi.
(7)

The target pressure p̄c could be a step function p̄c(t), and hence a control input [130],
which could be accompanied by a discharge mass-flux output.

A compressor could also be interpreted as an actual pipe with “negative friction”, and we
considered using such nonphysical pipes as compressor model, but a difficult transforma-
tion between friction and pressure increase would have to be calibrated for every model
variant (including friction factor formulas) and updated with every change in any model.

2.6 Parametrization
For the considered pipeline model (1), two scalar parameters are of practical interest: The
temperature of the gas T0 (in [K]), which is assumed to be constant throughout the net-
work, and the global specific gas constant RS (in [J/(kg K)]).

Due to mainly underground on-shore pipelines [94, Ch. 45], and coolers in compressor
stations [90], using an isothermal model is a reasonable simplification. However, temper-
ature is relevant as a global parameter, since the use of an isothermal model “freezes” the
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dynamic energy (temperature) component in the original Euler equations (in time), and
while intraday ambient temperature variation can be neglected for simulations with a 24-
hour time horizon, the temperature difference of a hot summer day and a cold winter day
should be taken into account by a parameter representing an average temperature.

The specific gas constant, on the other hand, is determined by the gas composition,
which may also vary. Again, local variations during an intraday simulation are neglected
in this work, yet the average gas mixture of natural gas with, for example, hydrogen or bio-
gas is relevant, so a parameter for the average specific gas constant is introduced. Together,
the parameter-space 
 is given by:

θ :=

(
T0

RS

)
∈ 
 ⊂ R

2,

and note that θ is used in the model (only) as d0 = 1
γ0z0

= 1
(T0RS)z0

= 1
θ0θ1z0

. Yet, lumping into
a single parameter would impede physical interpretation.

Applied to the respective components of the input-output model in Sect. 2.7, this leads
to parameter-dependent quantities, which need to be regarded accordingly by the model
reduction as discussed in Sect. 3.4.

2.7 Input-output model
After spatial discretization and index reduction, we end up with a square input-output
system, a system with the same number of inputs and outputs, consisting of an ordinary
differential equation, an output function and an initial value:

E︷ ︸︸ ︷(
Ep(θ ) 0

0 Eq

)(
ṗ
q̇

)
=

A︷ ︸︸ ︷(
0 Apq

Aqp 0

)(
p
q

)
+

B︷ ︸︸ ︷(
0 Bpd

Bqs 0

)(
sp
dq

)
+

f︷ ︸︸ ︷(
0
Fc

)
+
(

0
fq(p, q, sp, θ )

)
,

(
sq
dp

)
=
(

0 Csq
Cdp 0

)
︸ ︷︷ ︸

C

(
p
q

)
, (8)

(
p0
q0

)
=
(

p̄(s̄p, d̄q)
q̄(s̄p, d̄q)

)
,

with parameter independent linear vector field components A and B, parametric mass ma-
trix E(θ ), and nonlinear friction and gravity retarding term f (p, q, sp, θ ). The actual com-
position of the dynamical system components depends on the discretization and index re-
duction, cf. Sect. 2.4, while the linear output function C consists of Csq = –Bs and Cdp = BT

d .
The load vector Fc ∈R

Nq accumulates the respective discharge pressures p̄c, as described
in Sect. 2.5, for all compressors, and the initial state is given by a steady-state, whose com-
putation is detailed in Sect. 2.8, depending on given steady-state boundary values s̄p, d̄q.
Altogether, the gas network model is a generalized linear system (E, A, B, C), together with
a nonlinear part f .

A control system formulation of transient gas network simulation was already formu-
lated in [81], and recently in [140]. Also in [35], a so-called “systemic interpretation” is
discussed; inspired by [35, Fig. 2], we schematically illustrate (8) in Fig. 1.

The specific structure and grouping for the single pipeline model (1), the index-reduced
spatially discrete network models (4a)–(4b), (6a)–(6b), and the input-output model (8),
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Figure 1 Schematic illustration of gas network input-output model

is justified by the numerical processing: only two model components depend on the pa-
rameters, temperature T0 and specific gas constant RS , as well as on the compressibility
factor z0, namely the mass matrix Ep and the jointly treated retarding forces gravity and
friction fq. Hence, the linear part of the right-hand side vector field is non-parametric and
compressibility-agnostic.

Overall, this system maps input boundary values, in the scope of this work, pressure
at the inlets and mass-flux at the outlets, via the internal state, to output quantities of
interest, here, mass-flux at the inlets and pressure at the outlets:

(
sp

dq

)
S−→

(
sq

dp

)

↘
(

p
q

)
↗

To this type of input-output system we can now apply (data-driven) system-theoretic
model reduction methods, which preserve the input-to-output mapping S, but explicitly
not the internal state (p q)T. Lastly, we note that based on [74], we added a model fact sheet
in the Appendix.

2.8 Steady-state computation
After spatial discretization, the dynamic simulation becomes an initial value problem. Yet,
only the boundary values of the network model are known a-priori. This means the inter-
nal state at time t = 0 is unknown. We assume simulations always start at a steady-state
p̄, q̄ for which ∂tp = ∂tq = 0, given some (initial) boundary values s̄p, d̄q. The internal state
is then computable as a steady-state problem. Since the employed model is nonlinear, we
approximate the steady-state by a two-step procedure:

1a. Linear mass-flux steady-state: Apqq̄ = –Bpdd̄q.
1b. Linear pressure steady-state: Aqpp̂ = –(Bqss̄p + Fc).

2. Corrected pressure steady-state: Aqpp̄ = –(Bqss̄p + Fc + fq(p̂, q̄, s̄p, θ )).
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Step 2 can be repeated until an error threshold is met by using the previously approximated
pressure steady-state. Practically, the linear problems in Step 1 and Step 2 are solved by a
QR-based least-norm method [23]. Note, that Step 1a and Step 1b can be solved in parallel
and that the QR decomposition of Step 1b can be recycled in Step 2 because of the chosen
model structure.

While this method works well for rooted-tree pipe-networks, it is not sufficient for cyclic
networks with multiple supply nodes and non-pipe elements such as compressors. In this
case, the resulting state after a limited number of the above algorithm’s iterations is used as
an initial value for the first order IMEX integrator detailed in Sect. 5.3.3, which time-steps
until a steady-state is sufficiently approximated. This approximate steady-state, associated
to a fixed set of boundary values and parameters, is used as initial value for the simulations:

(
p0

q0

)
=

(
p̄(s̄p, d̄q)
q̄(s̄p, d̄q)

)
.

While other time steppers are applicable, too, the first order IMEX solver is related to
the initial (two-step) algebraic approximation, due to the synthesis of the linear / input /
source and nonlinear / reaction terms.

2.9 Port-Hamiltonian structure
An interesting class of models are port-Hamiltonian systems, which have already been
used for gas network modeling [39, 86]. Such port-controlled Hamiltonian models result
from a system-theoretic approach to energy-based modeling, and are square, passive, sta-
ble and feature certain symmetries, besides their physical interpretability [15, 103]. To ex-
ploit results from port-Hamiltonian theory in the context of data-driven model reduction,
we regiment the previous modeling approach into the port-Hamiltonian framework.

A linear input-state-output port-Hamiltonian model [135, Ch. 4] has the form:

Eẋ(t) =
A︷ ︸︸ ︷

(J – R)Q x(t) +
B︷ ︸︸ ︷

(G – P) u(t),

y(t) = (G + P)TQ︸ ︷︷ ︸
C

x(t),
(9)

with a symmetric positive definite mass matrix E = ET, E > 0, a skew-symmetric energy
flux J = –JT, a symmetric, positive, semi-definite energy dissipation R = RT, R ≥ 0, a sym-
metric, positive definite energy storage Q, Q > 0, resistive port matrix P and control port
matrix G.7

Here, we generalize the energy dissipation R ∈ R
N×N to a nonlinear mapping

R : RN →R
N×N , this means the linear constraints become [38]:

R = RT → 〈
R(x)x′, x′′〉 =

〈
x′, R(x)x′′〉, ∀x, x′, x′′ ∈R

N , (10)

R ≥ 0 → 〈
R(x)x′, x′〉≥ 0, ∀x, x′ ∈R

N . (11)

7Typically, the symbol B is used for this port matrix.
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With this set up, we test the two index-reduced gas network model discretizations pre-
sented in Sect. 2.4.2 and Sect. 2.4.1 for compliance with the above port-Hamiltonian prop-
erties.

Proposition 1 The endpoint discretization (6a)–(6b) is a port-Hamiltonian model.

Proof We define the port-Hamiltonian state as x := (p qL)T, which induces the remaining
components. The mass matrix

E =

[
(A0,RD–1

p d0(θ )AT
0,R) 0

0 D–1
q

]
= ET > 0

is symmetric positive definite, if its diagonal blocks are. Given that the D∗ are diagonal, and
thus symmetric, as well as positive definite, both blocks are symmetric positive definite.
The energy flux

J =

[
0 –A0

AT
0 0

]
= –JT

is skew-symmetric by definition. The energy dissipation (see fq)

R(x) :=

⎡
⎣0 0

0 (Dg diag( d0(θ )AT
0,Rp

qL ) + D–1
q Df diag( |qL|

d0(θ )AT
0,Rp

))

⎤
⎦ ,

with the diag : RN →R
N×N operator mapping a vector v to a diagonal matrix D such that

vk �→ Dkk , and element-wise (fraction) nonlinearities, results in one non-zero diagonal
block and thus fulfills (10). The condition (11) is fulfilled since in the friction term of R,
the absolute value of the mass-flux (numerator), and the nodal pressure variable (denom-
inator) are always non-negative.

Here, the energy storage represents the scale homogenization from Sect. 2.2,

Q =

[
(105 · INp ) 0

0 (10–5 · INq )

]
= QT > 0

which is a diagonal matrix of positive entries, and due to same block structure in E also
fulfills QTE = ETQ. Lastly, the port matrix configuration

P :=

[
0 0

BT
S 0

]
, G :=

[
0 BD

0 0

]
,

complies to the port-Hamiltonian form. �

Some remarks are in order on this result: From the previous proof it is also immedi-
ately clear that the midpoint discretization cannot be a port-Hamiltonian model, due to
the input dependence of the energy dissipation. Furthermore, this derivation tests if the
endpoint discretization has the mathematical port-Hamiltonian structure, but does not
verify a physical energy-based model.
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The somewhat nonphysical treatment of the gravity term as dissipating instead of stor-
ing ([38]), is done with regard to the parametrization. Including the parametric gravity
term as a retarding or damping force, and thus keeping the linear energy flux parameter-
free, enables the previous steady-state computation.

Compressors, as modeled in Sect. 2.5 can be included by an additional summand in-
side the energy dissipation component, i.e. FC

q , similar to the gravity term. This exhibits
an unphysical negative sign inside the dissipation, as a compressor introduces energy. Fur-
thermore, this compressor model requires to remove components from the Aqp block of
the system matrix (7), and thus perturbs the skew-symmetry of J .

Lastly, this notation for the dissipation can also be used for linearization, by constraining
the argument of R to the steady-state x̄,

R̃ := R(x̄) ≈ R(x).

Given the port-Hamiltonian model with a nonlinear resistive term, an (approxi-
mate) adjoint system can be derived by treating R as its image – a diagonal ma-
trix. Transposing the (primal) port-Hamiltonian system’s (9) transfer function
h(s) = (G + P)TQ(Es – (J – R)Q)–1(G – P), and exploiting the system components prop-
erties, yields the dual system:

Eẋ(t) =

AT︷ ︸︸ ︷
Q
(
–J – R

(
x(t)

))
x(t) +

CT︷ ︸︸ ︷
Q(G + P) u(t),

y(t) = (G – P)T︸ ︷︷ ︸
BT

x(t).
(12)

Hence, for the (nonlinear) endpoint discretization, its observability can be (approximately)
quantified by the dual system’s reachability, as for linear systems. Conceptually, this could
also be done with the midpoint discretization, as it supplies the same model components.
However, it has no theoretical justification, as a dual system may not be accessible for
(general) nonlinear systems.

3 Model reduction for gas networks
In this section, we summarize the principal approach behind all presented model reduc-
tion methods that are extended and tested in this work. The structure of the model laid
out in Sect. 2 is given by (8). For large (expansive) networks, the differential equations in
p and q become high dimensional, which impedes their solution [54, Sect. 7] and hence
repeated simulations of scenarios. The aim of model reduction is to reduce the dimension-
ality of the differential equations, by computing subspaces of the phase space on which the
trajectories evolve suitably similar (with regard to the quantities of interest). Furthermore,
the reduced order model shall have the same form as the original model, and since two
physical quantities are (bi-directionally) coupled in this system, the model reduction for
interconnected systems [120] approach is used, yielding reduced operators for each sub-
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system:

(
Ẽp(θ ) 0

0 Ẽq

)( ˙̃p
˙̃q

)
=
(

0 Ãpq
Ãqp 0

)(
p̄ + p̃
q̄ + q̃

)
+
(

0 B̃pd
B̃qs 0

)(
sp

dq

)
+
(

0
F̃c

)
+
(

0
f̃q(p̄ + p̃, q̄+q̃, sp, θ )

)
,

(
sq

dp

)
≈
(

s̃q

d̃p

)
=
(

0 C̃sq
C̃dp 0

)(
p̄ + p̃
q̄ + q̃

)
,

(
p̃0
q̃0

)
=
(

0
0

)
,

centered around the steady-state (p̄ q̄)T. This structure preserving model order reduction
was already used in [18, 53] in the context of model reduction for gas networks, while the
centering has been used in [7] for gas network simulation and in [65] for nonlinear model
order reduction. In the following, the general ansatz to obtain these reduced quantities
(denoted by ·̃) is summarized.

3.1 Projection-based model reduction
The reduced order model is computed by projecting the high-dimensional dynamics
evolving in the (coupled) pressure and mass-flux phase spaces (of dimension Np and Nq)
to low(er)-dimensional subspaces (of dimension np and nq), which capture the principal
components of the respective trajectories. Given suitable discrete projection mappings
from the original space to the reduced space V T∗ and mappings from the reduced space
back to the original space U∗:

Up : Rnp →R
Np , V T

p : RNp →R
np : V T

p · Up = Inp ,

Uq : Rnq →R
Nq , V T

q : RNq →R
nq : V T

q · Uq = Inq .

Thus, the reduced trajectory results from applying V∗ to the original trajectory’s steady-
state deviation, while the original trajectory is approximately recovered by applying U∗ to
the reduced trajectory:

(
p̃
q̃

)
:=

(
V T

p (p – p̄)
V T

q (q – q̄)

)
→

(
p̄ + Upp̃
q̄ + Uqq̃

)
≈
(

p
q

)
;

the initial condition is also reduced by application of V∗. Similarly, the components of
the reduced system result from applying the U∗ map to the argument of the respective
operators, and the V∗ map to the result of the operation.

For the linear operators, the matrices E∗, A∗, B∗ and C∗ and the vector Fc, this leads
conveniently to pre-computable reduced matrices and vector respectively,

Ãpq := V T
p · Apq · Uq ∈R

np×nq , Ãqp := V T
q · Aqp · Up ∈ R

nq×np ,

B̃pd := V T
p · Bpd ∈R

np×Ns , B̃qs := V T
q · Bqs ∈R

nq×Nd ,

C̃dp := Cdp · Up ∈R
Nd×np , C̃sq := Csq · Uq ∈R

Ns×nq ,

Ẽp(θ ) := V T
p · Ep(θ ) · Up ∈R

np×np , Ẽq := V T
q · Eq · Uq ∈R

nq×nq ,

F̃c := V T
q · Fc ∈R

nq ,
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yet, the nonlinear component f̃q remains a composition operation:

f̃q := V T
q · fq(p̄ + Upp̃, q̄ + Uqq̃, sp, θ ) : Rnp ×R

nq ×R
Ns ×R

2 →R
nq . (13)

3.2 Structure preserving model order reduction
In this specific context, the term structure preserving model order reduction (SPMOR)
has two meanings: first and foremost, SPMOR refers to the separate reduction of the state
components, as above in the case of gas networks, the individual reduction of the dis-
cretized pressure p and mass-flux q variables. Second, SPMOR can also refer to preserv-
ing the port-Hamiltonian form (9). For projection-based model reduction, the former is
generally ensured by separate projectors [44] (or an overall block diagonal projection).
The latter is guaranteed by using Galerkin projections, which implies stability preserva-
tion [16], given a port-Hamiltonian full order model. Both SPMOR interpretations are
jointly fulfilled if a block-diagonal (w.r.t. p and q) Galerkin projection is used.

3.3 The lifting bottleneck and hyper-reduction
The gas network models considered for reduction are nonlinear (and potentially non-
smooth), hence the reduced order nonlinear part f̃q involves lifting the reduced state up to
the original high-dimensional space, evaluating the nonlinearity and projecting the result
back down to the reduced low-dimensional space (13). As the high-dimensional space is
involved, this is typically computationally demanding and may eat up the gains from the
reduction of the linear part. To mitigate this so-called lifting bottleneck, hyper-reduction
methods can be employed, which construct low-dimensional surrogates for nonlineari-
ties.

In this work we discard (or rather defer) hyper-reduction due to the following reason-
ing: The purpose of this work is to determine which method constructs the best reduced
order models, a hyper-reduction may inhibit comparability due to, for example, a dom-
inating hyper-reduction approximation error. Second, various hyper-reduction methods
for this setting are applicable (i.e. DEIM [26], Q-DEIM [36], DMD [142] or numerical lin-
earization [98]), which may interact differently with the different model reduction meth-
ods. So as a first step, the bare model reduction methods are tested here (this means: which
method’s linear subspaces capture the nonlinear dynamics best), at a later stage the best
hyper-reduction method can then be determined. Lastly we note, the nonlinear part of
the vector field consists exclusively of element-wise operations (see Sect. 2.9), a system
with repeated scalar nonlinearities (SRSN) [28], which are less difficult to handle due to
“locality” of the nonlinearity, and hence, its vectorization.

3.4 Parametric model reduction
There are two common approaches for projection-based parametric model order reduc-
tion: averaging and accumulating [67]. For the selected data-driven methods, averaging
means that for a set of parameter samples the associated trajectories or derived quanti-
ties (such as the utilized system Gramians) are averaged, while accumulating refers to the
concatenation of trajectories or derived quantities (such as the projectors).

Generally, each of the structure-preserving model order reduction methods in Sect. 4
can be used with either, we opted to use the averaging ansatz for all of the following meth-
ods since their computation is without exception based on parametric empirical Grami-
ans [71].
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4 Model reduction methods
In this section, we briefly summarize the employed model reduction methods from a prac-
tical point of view. For theoretical details and backgrounds we refer to the relevant works,
cited in the respective subsections. Due to the non-differentiable nonlinearity (friction),
the sought projections U∗, V∗ for all tested model reduction techniques are constructed
from (transformed) time-domain trajectory data obtained from numerical simulations,
which is given by discrete-time snapshots of the internal pressure nodes X̂p and mass-flux
edges X̂q,

X̂p(t; θk) =
[
p1(t; θk) . . . pNs+Nd (t; θk)

]
,

X̂q(t; θk) =
[

q1(t; θk) . . . qNs+Nd (t; θk)
]

,

the external demand node pressure Ŷp and supply node mass-flux Ŷq,

Ŷp(t; θk) =

[(
s1

q(t; θk)
d1

p(t; θk)

)
. . .

(
sNp

q (t; θk)
dNp

p (t; θk)

)]
,

Ŷq(t; θk) =

[(
s1

q(t; θk)
d1

p(t; θk)

)
. . .

(
sNq

q (t; θk)
dNq

p (t; θk)

)]
,

as well as dual state components Ẑp and Ẑq, if available,

Ẑp(t; θk) =
[
p1(t; θk) . . . pNs+Nd (t; θk)

]
,

Ẑq(t; θk) =
[
q1(t; θk) . . . qNs+Nd (t; θk)

]
.

The state-space trajectories X̂∗(t; θk), Ẑ∗(t; θk) are obtained for perturbations of the in-
puts, pressure at the Ns supply boundary nodes and mass-flux at the Nd demand bound-
ary nodes, while the output trajectories Ŷ∗(t; θk) are computed for perturbations in the
respective N∗ steady-state components. Using the dual state trajectories is significantly
faster than output trajectories, as computing observability as dual reachability scales, as
for the primal reachability, with the number of ports, instead of scaling with the number
of internal states. The training parameters θk are sampled from a sparse grid spanning the
parameter space 
 ⊂R

2.
All methods are prefixed “Structured”, since the model structure of a pressure and mass-

flux variable is preserved in the reduced order model. Practically, this means while pres-
sure and mass-flux trajectories are computed simultaneously due to their coupling, the
individual projectors for pressure and mass-flux are constructed separately.

The subsequent methods may not have been previously introduced explicitly in struc-
tured form, yet given [1, 120, 136] introducing structured Gramians, these are trivial ex-
tensions. For ease of notation, we describe the computation of projectors {Up, Vp} and
{Uq, Vq} generically as {U∗, V∗}.

We implemented a total of thirteen model reduction method variants, which we com-
pare in this work. All tested methods are data-driven and time-domain focused, as the
dynamic gas network model (8) is nonlinear. Furthermore, all model reduction methods
construct linear subspaces and are derived from methods for linear systems, yet differ



Himpe et al. Journal of Mathematics in Industry           (2021) 11:13 Page 19 of 46

from plain linearization: instead, the implemented methods assemble linear subspaces of
the model’s phase space that, in a method specific sense, approximately enclosing the rel-
evant nonlinear system evolution. Moreover, all methods are SVD-based [4], and their
majority is originally based on (empirical) system Gramian matrices, for details see [66].

We highlight here that the time horizon for the training data is significantly shorter than
for the actual simulations the reduced order model is targeted at. Furthermore, generic
training inputs (transient boundary values), such as impulse, step or random signals, are
utilized to avoid a model reduction crime [67] (comparable to an inverse crime): Test a
reduced order model using the training parameters or inputs.

4.1 Empirical system Gramians
All model reduction methods currently included in morgen are computationally real-
ized using empirical system Gramian matrices, which are system-theoretic operators en-
coding reachability and observability. From these, information on importance of linear
combinations of states can be extracted. For linear systems, these system Gramians are
typically computed via matrix equations, for general nonlinear systems there is no fea-
sible closed form. However, the empirical system Gramians approximate the nonlinear
Gramians based on state and output trajectory data. In case of a port-Hamiltonian (non-
linear) systems, the approximate dual system (12) enables substituting expensive state by
port perturbations, and thus severely reduce computation times. Empirical Gramians are
described in-depth in [66]; following only a brief summary is given.

4.1.1 Empirical reachability Gramian matrix
Reachability quantifies how well a system can be driven by the inputs, which is encoded by
the reachability Gramian. The empirical reachability Gramian is an approximation based
on state trajectory data [84]:

ŴR,∗ :=
K∑

k=1

Ns+Nd∑
m=1

∫ ∞

0
X̂m

∗ (t; θk)X̂m
∗ (t; θk)T dt ∈R

N∗×N∗ . (14)

Given a suitable set of input perturbations, ŴR,∗ approximates the nonlinear reachability
Gramian near a steady-state [56].

4.1.2 Empirical observability Gramian matrix
Observability quantifies how well the state can be characterized from the outputs, which
is encoded by the observability Gramian. The empirical observability Gramian is an ap-
proximation based on output trajectory data [84]:

ŴO,∗ :=
K∑

k=1

∫ ∞

0
Ŷ∗(t; θk)TŶ∗(t; θk) dt ∈R

N∗×N∗ . (15)

For a suitable set of steady-state perturbations, ŴO,∗ approximates the nonlinear observ-
ability Gramian near a steady-state [56].

Given the port-Hamiltonian structure of a discretization, the empirical reachability
Gramian of the dual system (12) can be used to compute the empirical observability
Gramian [67, Sect. 2] with Ẑm∗ (t; θk) instead of X̂m∗ (t; θk).
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4.1.3 Empirical cross Gramian matrix
The empirical cross Gramian concurrently encodes reachability and observability, which
in conjunction quantifies redundancy also known as minimality; however, the (empirical)
cross Gramian is only applicable for square systems, systems with the same number of
inputs and outputs (which the gas network model (8) fortunately is), and an approximation
is based on simulated state and output trajectory data [70]:

ŴX,∗ :=
K∑

k=1

Ns+Nd∑
m=1

∫ ∞

0
X̂m

∗ (t; θk)Ŷ∗(t; θk) dt ∈R
N∗×N∗ . (16)

For a suitable set of input and steady-state perturbations, ŴX,∗ approximates the nonlinear
cross Gramian near a steady-state [70].

Given the port-Hamiltonian structure of a discretization, the linear empirical cross
Gramian exploiting the dual system (12) can be used to compute the empirical cross
Gramian [14] with Ẑm∗ (t; θk)T instead of Ŷ∗(t; θk).

4.1.4 Empirical non-symmetric cross Gramian matrix
A generalization of the empirical cross Gramian for non-square systems is the empirical
non-symmetric cross Gramian, which is an approximation based on simulated state and
(averaged) output trajectory data [72]:

ŴZ,∗ :=
K∑

k=1

Ns+Nd∑
m=1

Ns+Nd∑
q=1

∫ ∞

0
X̂m

∗ (t; θk)Ŷ q
∗ (t; θk) dt ∈R

N∗×N∗ . (17)

For a suitable set of input and steady-state perturbations, ŴZ,∗ approximates the nonlin-
ear cross Gramian near a steady-state. Even though the gas network model (8) is square,
the empirical non-symmetric cross Gramian is included here, since, heuristically, it could
provide better results than the regular cross Gramian [72]. Furthermore, an empirical non-
symmetric linear cross Gramian is computable by similarly averaging over the dual states
and replacing Ŷ q

∗ (t; θk) by Ẑq
∗(t; θk)T.

4.2 Structured proper orthogonal decomposition
Proper orthogonal decomposition (POD) is a basic data-driven method for model reduc-
tion: given a matrix of state snapshots over time, the dominant left singular vectors are
computed as a basis via a singular value decomposition (SVD) [97]. The basis vectors are
assigned their principality with respect to the conveyed energy by the associated (relative)
singular value magnitude.

In the context of this work, the POD is constructed from a system-theoretic point of
view, that connects to the system property of reachability. Due to the overall structured
approach to model reduction, a structured POD refers in this context to the separate PODs
for pressure and mass-flux variables p and q as in [18, 51, 53].

4.2.1 Reachability-Gramian-based
The singular vectors to the principal singular values of the empirical reachability
Gramian (14) correspond to the POD modes. To obtain a reduced order model, first, a
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truncated SVD (tSVD) of the empirical reachability Gramian,

WR,∗
tSVD= UR,∗DR,∗UT

R,∗,

reveals the principal subspace of the respective trajectories X̂m∗ (t), whereas the importance
of each basis vector (column) in UR,∗ is determined by (the square-root of ) the associated
singular value σi := D1/2

R,∗ii:

U∗ := UR,∗.

The matrix of basis vectors (POD modes) constitutes a Galerkin projection V∗ := U∗. No-
tably, (structured) POD only considers the input-to-state mapping, not the state-to-output
mapping, and hence approximates the state variables, p and q, not the output quantities
of interest sq and dp.

The POD could also be computed directly from an SVD of the trajectory data, yet the
computational overhead of using the empirical reachability Gramian is small compared
to the trajectory simulation runtimes, and the systematic perturbations of the empirical
Gramian approach [66] are exploited.

4.3 Structured empirical dominant subspaces
The previous (structured) POD method considers only the reachability information, hence
the data only reflects the input-to-state mappings, and thus the POD derived ROMs (Re-
duced Order Model) approximate the state variables p and q. To approximate the outputs
sq and dp, the state-to-output mappings, encoding observability information, need to be
considered, too.

The (empirical) dominant subspaces method initially developed in [110], and originally
named DSPMR (Dominant Subspace Projection Model Reduction), conjoins and com-
presses the dominant reachability and observability subspaces of an input-output system,
such as the gas network model (8), obtained from (empirical) system Gramians. Heuristi-
cally, this method seems to be useful for hyperbolic input-output systems [49]. Here, we
consider three variants: first, based on the empirical reachability and observability Grami-
ans, second, based on the empirical cross Gramian and third, based on the empirical non-
symmetric cross Gramian.

4.3.1 Reachability- and observability-Gramian-based
The singular vectors associated to the principal singular values of the empirical reachabil-
ity and observability Gramians span these dominant subspaces, which are first extracted
by tSVDs, and then, after concatenation, compressed by orthogonalization via another
tSVD:

ŴR,∗
tSVD= UR,∗DR,∗V T

R,∗,

ŴO,∗
tSVD= UO,∗DO,∗V T

O,∗,[
(ωRUR,∗DR,∗) (ωOUO,∗DO,∗)

]
tSVD= URO,∗DRO,∗VRO,∗,
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from which the singular vectors V∗ = U∗ := URO,∗ make up a Galerkin projection. The
weights ωR := ‖ŴR,∗‖–1

F , and ωO := ‖ŴO,∗‖–1
F equilibrate the potentially mismatched scales

of the respective Gramians, akin to the refined DSPMR method from [110].

4.3.2 Cross-Gramian-based
A truncated SVD of the cross Gramian also engenders the sought dominant sub-
spaces [20]: The (empirical) cross Gramian’s left and right singular vectors (approximately)
span the reachability and observability subspaces, respectively, and their orthogonalized
concatenation, via a truncated SVD,

ŴX,∗
tSVD= UX,∗DX,∗V T

X,∗,[
(UX,∗DX,∗) (VX,∗DX,∗)

]
tSVD= URO,∗DRO,∗VRO,∗,

yields a Galerkin projection V∗ = U∗ := URO,∗. The cross-Gramian-based variant does not
need to additionally weight the reachability subspace UX,∗ and observability subspace VX,∗,
as they are both extracted from the same matrix.

This cross-Gramian-based empirical dominant subspaces method seamlessly extends
to the empirical non-symmetric cross Gramian ŴZ,∗.

4.4 Structured empirical balanced truncation
The dominant subspaces method combines separately quantified input-to-state and state-
to-output energies, but not the actual input-to-output energy. Such can be accomplished
by balanced truncation and based on the Hankel operator, which maps past inputs to fu-
ture outputs. This operator’s singular values measure the sought input-to-output energy,
and the singular vectors constitute a basis. To obtain the Hankel operator’s truncated SVD,
first, the underlying system needs to be balanced, and then singular vectors associated to
small magnitude Hankel singular values are truncated.

Balanced truncation is the reference model reduction method for linear input-output
systems, due to stability preservation in the ROMs and a computable error bound. For
(control-affine) nonlinear input-output systems, such as the gas network model (8), bal-
anced truncation can be generalized to empirical balanced truncation [84], while a struc-
tured variant is introduced as interconnected system balanced truncation [136], which we
combine.

Again, we consider three variants: First, based on the empirical reachability and observ-
ability Gramian, second, based on the empirical cross Gramian and third, on the empirical
non-symmetric cross Gramian; additionally, the reachability and observability-based bal-
anced POD variant is included.

4.4.1 Reachability- and observability-Gramian-based
The original balanced truncation method is based on the reachability and observability
Gramians [99]. A transformation into a balanced coordinate system in which both system
Gramians are diagonal and equal is obtained via simultaneous diagonalization. Various
balancing algorithms are available for this task [137], in this setting we selected the general
balancing algorithm [118, 119], which utilizes the magnitude-based truncated eigenvalue-
decomposition (tEVD) of the Gramians: The matrices U∗, V∗ constitute a Petrov-Galerkin
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projection, whereas the importance of each column is determined by the approximate
Hankel singular values, the (diagonal) elements of DB,∗:

ŴR,∗ŴO,∗TR,∗
tEVD= �R,∗TR,∗,

(ŴR,∗ŴO,∗)TTO,∗
tEVD= �O,∗TO,∗,

T T
O,∗TR,∗

tSVD= UB,∗DB,∗VB,∗,

U∗ := TR,∗VB,∗D– 1
2

B,∗ ,

V∗ := TO,∗UB,∗D– 1
2

B,∗ .

(18)

4.4.2 Cross-Gramian-based
For linear, symmetric systems, alternatively a balanced and truncated reduced order model
can be computed via the cross Gramian. Yet, the gas network model (8) is neither linear nor
symmetric, not even in a nonlinear sense of symmetric systems, i.e. gradient systems [75],
but the considered input-output system is square. Hence, an empirical cross-Gramian-
based reduced model is computable, but it will differ from the reduced model obtained by
reachability- and observability-Gramian-based balanced truncation.

Given a cross Gramian with full rank, an (approximate) balancing projection is com-
putable in a similar manner as for the (empirical) balanced truncation (18), but based on
the left and right eigen spaces of the cross Gramian [77]:

ŴX,∗TR,∗
tEVD= �∗TR,∗

Ŵ T
X,∗TO,∗

tEVD= �∗TO,∗

T T
O,∗TR,∗

tSVD= UX,∗DX,∗VX,∗,

U∗ := TR,∗VX,∗D– 1
2

X,∗,

V∗ := TO,∗UX,∗D– 1
2

X,∗.

(19)

The matrices U∗, V∗ again constitute a Petrov-Galerkin projection, and the importance of
each column is determined by the absolute value of the (diagonal) elements of DX,∗, which
are only equal to the Hankel singular values for linear and symmetric systems.

As for the empirical dominant subspaces method, the cross-Gramian-based empirical
balanced truncation variant directly extends to the non-symmetric cross Gramian ŴZ,∗.

One could assume that if only one system Gramian has to be computed, instead of two
for dominant subspaces or balanced truncation, that the cross-Gramian-based computa-
tion is significantly faster, but the overall number of simulated trajectories is the same for
both methods, which causes the dominant fraction of computational cost. Thus, the em-
pirical cross Gramian computation is merely somewhat quicker than the computation of
both empirical reachability and observability Gramians.

4.4.3 Structured balanced POD
Instead of balancing the system using the product of the (empirical) reachability and ob-
servability Gramians, the dominant subspaces of the respective Gramians can be used
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to approximately balance the system. This variant of reachability- and observability-
Gramian-based balanced truncation is called balanced POD [141], and the approximate
balancing algorithm reads:

ŴR,∗TR,∗
tEVD= �R,∗TR,∗,

ŴO,∗TO,∗
tEVD= �O,∗TO,∗,

T T
O,∗TR,∗

tSVD= UB,∗DB,∗VB,∗,

U∗ := TR,∗VB,∗D– 1
2

B,∗ ,

V∗ := TO,∗UB,∗D– 1
2

B,∗ ,

(20)

with the matrices U∗, V∗ inducing a Petrov-Galerkin projection.
Here, we categorized balanced POD as a variant of balanced truncation, due the algo-

rithmic similarity to the balancing algorithm (18). Alternatively, we could have classified
balanced POD as a variant of POD, since it can be described as POD with the observability
Gramian defining the POD’s inner product [116].

We leave it to the reader to test other balancing algorithms, e.g. [17, 137], while we
excluded the modified POD [67, 102], as it is not a Petrov-Galerkin method.

4.5 Structured empirical balanced gains
The empirical balanced gains method is a variant of the empirical balanced truncation
method [30, 67]: While balanced truncation selects principality of subspaces based on the
Hankel singular value magnitude, balanced gains [30] sorts the balanced basis vectors by
the impulse response norm:

‖sq‖2
2 ≈ tr

(
CsqŴR,qCT

sq
)≈ tr

(
BT

qsŴO,qBqs
)≈ ∣∣tr(CsqŴX,qBqs)

∣∣,
‖dp‖2

2 ≈ tr
(
CdpŴR,pCT

dp
)≈ tr

(
BT

pdŴO,pBpd
)≈ ∣∣tr(CdpŴX,pBpd)

∣∣,
for a system in balanced form. Hence, either method, balanced truncation and balanced
gains compute the same balancing transformation, via (18) or (19), but the sequence of
basis vectors differs due to the variant measures.

We note, that due to the linear input and output operators, the balanced gains method
can be directly applied for the nonlinear gas network models (8).

4.5.1 Structured goal-oriented proper orthogonal decomposition
Similar to the balanced gains method, (structured) POD basis vectors can also be sorted,
instead of by their singular value magnitude σk , in terms of their impulse response, akin
to the simplified balanced gains in [30], by the index dk

dk := c̃k c̃T
kσk ,

for rows c̃k of the POD-transformed output matrix C̃. Given the reachability-based POD,
this variant is related to the concept of output-reachability and H2-norm model reduc-
tion [112].
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4.6 Structured dynamic mode decomposition - Galerkin
In addition to the four energy-based method classes (Sects. 4.2, 4.3, 4.4, 4.5), also an alter-
native method from [2], based on system identification, is investigated. Yet, it is adapted
as a structured projection-based model reduction method. After summarizing the parent
system identification method, the derived model reduction technique is presented.

4.6.1 Dynamic mode decomposition
Dynamic mode decomposition (DMD) identifies a discrete-time operator from (discrete)
trajectory time-series data, preserving certain modal behavior [117]. This system identi-
fication method is based on the Koopman operator, which is an infinite dimensional, but
linear operator, mapping (a transformation, or observable of the) state xk at discrete-time
step k to (k + 1). DMD yields a (linear) finite-dimensional approximation of the Koopman
operator preserving its dominant eigenmodes. Here, using the identity observable and
given time series data X = [x0 . . . xK ], DMD identifies an operator Â, via least-squares:

xk+1 ≈ Âxk , (21a)

Â :=
[

x1 . . . xK
][

x0 . . . xK–1
]+

. (21b)

Since the underlying model is a control system, DMD with control (DMDc) [113] (and
known input operator B), i.e. using Xc := [x0 – Bu0 . . . xK – BuK ] instead of X for DMD,
is applicable, yet, due to the perturbed steady-state training of ROMs (see Sect. 6.1) not
beneficial.

4.6.2 Reachability-Gramian-based DMD-Galerkin
DMD is rather a system identification than a model reduction method. To fit into the
projection setting, we utilize the DMD-Galerkin method [2], which forms a Galerkin pro-
jection U from the orthogonalized dominant eigenvectors (based on the associated eigen-
value magnitudes),

ÂT EVD= T�,

T�
SVD= UDV T.

Since only state-space trajectories are utilized, as for the POD, the DMD-Galerkin method
approximates the state, not the output. Curiously, we note, that this method uses discrete-
time information to assemble projections for continuous-time systems.

Practically, U∗ are computed as a subset of singular vectors for the largest magnitude
singular values, instead of orthogonalized eigenvectors. In the structured setting at hand
X̂∗ = [x0∗ . . . xK∗ ], with X∗ representing the pressure and mass-flux states Xp, Xq, the respec-
tive Galerkin projection U∗ = V∗ is given by:

[
x1∗ . . . xK∗

][
x0∗ . . . xK–1∗

]+ tSVD= U∗D∗Ṽ T
∗ .

Effectively, the approximate Koopman operator Â is computed via an empirical reacha-
bility Gramian, yet instead of the standard inner product, the DMD-“kernel” (21b) is used.
Additionally, and in line with the original empirical Gramians [84], the utilized trajectories
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are centered, following [73]. This means theoretically, DMD-Galerkin is POD with a spe-
cific kernel, and practically, that by computation via an empirical Gramian the systematic
perturbation properties can also be exploited for DMD-Galerkin.

5 morgen

The morgen (Model Order Reduction for Gas and Energy Networks) platform (ver-
sion 1.0) implements the mathematical methods presented above, in MATLAB (≥ 2020b)
and compatible to Octave (≥ 6.1). Compared to, for example [62], morgen does not fea-
ture a graphical user interface or Simulink integration, since it is designed for batch testing
and multi-query use on (headless) workstations.

The source code is organized into five main components:
networks (holds network and scenario data-sets)

models (discretizes networks and assembles input-output systems)
solvers (computes solution time series for discrete models and scenarios)

reductors (reduces state variables of discrete models)
tests (defines experiments for data-model-solver-reductor combinations).

These components are briefly described in the following. For an illustration of the internal
structure of morgen, see Fig. 2. Further code that is used by the main function or mul-
tiple components is contained in an utils folder, and the stand-alone network format
converters8 are stored in a tools folder.

5.1 Networks
The networks directory stores the network .net files, and a folder for each network
with the same name as the associated network file’s base name, which hold the scenario
definition files. The .net file, in comma-separated value (CSV) format, defines the net-
work topology and gas network components through an edge list. Each row encodes one
edge through the information: edge type (pipe, shortcut, compressor, valve), “from”-node,
“to”-node, length, diameter, incline, roughness; the latter three are only relevant for pipe
edges.

Note that boundary nodes have to be leaf nodes of the network graph in order to be
identified by morgen as such. Furthermore, if a boundary node shall act as supply and

Figure 2 Internal data flow and process of morgen

8Converters for GasLib XML, SciGRID_gas CSV, and MathEnergy JSON are available.
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demand, it needs to be artificially split into two leaf nodes, as the edge connecting a supply
node has to be directed from the leaf, while the edge connecting a demand node has to be
directed towards the leaf (Sect. 2.3).

5.1.1 Scenario
A scenario is defined via a set of key-value pairs in an .ini file, whereas the sequence of
pairs does not matter. Each network has at least a generic training.ini scenario. The
following keys are mandatory for a scenario definition:
T0 Mean temperature
RS Mean specific gas constant
tH Time horizon
ut List of time instances
up List of supply node pressures at time instances ut
uq List of demand node mass-fluxes at time instances ut.

Depending on the network composition, the following keys may need to be provided:
cp List of compressor discharge pressures
vs List of valve settings.

Note that amongst other configurations, the parameter ranges of temperature and specific
gas constant for the parametric model reduction are set in the global morgen.ini file.

5.2 Models
A model encodes a spatial discretization of the simplified Euler equations (8) on a gas
network topology in a structure with the members: A, B, C, E, F , f and the Jacobian J
([3, 128]), together with the system dimensions in terms of number of pressure-at-nodes
and mass-flux-on-edges states, and total number of boundary / port nodes. It is ensured
during the assembly of the model that the sparsity of the model components is preserved.

The model interface is given by the following signature:
discrete = model(network,config);

While the linear components A, B, C, and F are provided as sparse matrices, the
parameter-dependent linear component E is a closure9 returning a sparse matrix, and the
nonlinear component f and the (nonlinear) Jacobian J are closures returning the applica-
tion of a state (as well as steady-state, input, parameters, compressibility).

Two spatial discretizations are currently provided in morgen:
ode_mid Midpoint ODE discretization (Sect. 2.4.1)
ode_end Endpoint ODE discretization (Sect. 2.4.2).
Even though both provided models are ODEs, DAE models can also be implemented

and tested, given a solver (and reductor) is available.

5.3 Solvers
The morgen platform provides four solvers: An adaptive step-size method, a fixed step-
size explicit method and two fixed step-size implicit-explicit methods.

While explicit solvers only require vector field evaluations at the cost of smaller time
steps, implicit solvers have to solve a root-finding problem in each time step for a nonlinear
model. An IMEX with singly DIRK (SDIRK) solver turns out to be the most efficient for

9A closure is a pair of a function together with its scoped environment.



Himpe et al. Journal of Mathematics in Industry           (2021) 11:13 Page 28 of 46

this class of models, simplifying the nonlinear problem to a linear problem solvable by a
single matrix decomposition per trajectory. Due to the non-diagonal mass matrix, even in
the case of a sufficiently stable and accurate explicit method, at least one linear problem
per trajectory would have to be solved.

The solver interface is given by the following signature:
solution = solver(discrete,scenario,config);

with the return value solution, being a structure, and the arguments discrete

(model), scenario, and config(uration).
All provided fixed step-size solvers cache matrix decompositions. The initial steady-

state is also cached, as is the QR decomposition used to compute it.
Even though the overall model (8) has a two dimensional structure and the reductors

exploit this structure, the simulations itself can be performed on a lumped model (we
omit parametrization here for ease of notation):

Eẋ(t) = Ax(t) + Bu(t) + f
(
x(t), u(t)

)
,

y(t) = Cx(t).
(22)

5.3.1 Second-order adaptive implicit solver: generic
For validation purposes, the adaptive step-size solver for stiff systems ode23s10 included
in MATLAB (and Octave) [125, Sect. 2.3], based on a modified second order Rosenbrock
formula is used and encapsulated as a generic solver. Due to preferential performance
demonstrated in [51], ode23s is preferred over alternatives such as ode15s (or ode45).

5.3.2 Fourth-order “classic” Runge-Kutta solver: rk4
Since in [104, 105], the fourth-order explicit Runge-Kutta (RK) method [83] is employed,
morgen provides it, too. This method is strong stability preserving [47], however it is not
SSP-optimal and it works only for small time-steps.

5.3.3 First-order implicit-explicit solver: imex1
The lumped gas network model (22) can be split into a linear and a nonlinear part, of
which the linear part is numerically stiff and hence should be solved with an implicit solver,
while an explicit solver is preferred for the nonlinear part as to avoid solving a root-finding
(optimization) problem in each time step.

An IMEX method allows this separate treatment of operators and is thus suitable for
this hyperbolic and nonlinear system. Combining the first-order explicit Euler’s method
with the first order implicit Euler’s method yields the first order IMEX method:

Eh–1(xk+1 – xk) = (1 – γ )Axk + γ Axk+1 + Buk + f (xk , uk)

⇒ Exk+1 – γ hAxk+1 = Exk + (1 – γ )hAxk + hBuk + hf (xk , uk)

⇒ xk+1 = xk + (E – γ hA)–1h
(
Axk + Buk + f (xk , uk)

)
,

with the associated Butcher tableaus Table 2. Even though this IMEX method is not a
Runge-Kutta method [5], it was successfully applied to gas network models in [52] with a
relaxation parameter set to γ = 1.

10https://mathworks.com/help/matlab/ref/ode23s.html (accessed: 2020-11-18)

https://mathworks.com/help/matlab/ref/ode23s.html
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Table 2 Butcher tableaus for the 1st-order IMEX method (Sect. 5.3.3)

Explicit:

0 0
1

Implicit:

1 1
1

Table 3 Parameter choices for the implicit 2nd-order IMEX-RK component

Parameter Property Source

λ = 0.24 “Efficient” [82]
λ ≥ 1

4 A-stable [76]

λ = 2–
√
2

2 = 1 – 1√
2

L-Stable [109]

λ = 1
2 Stiffly accurate morgen, cf. [76, Sect. 5.1]

λ = 3+
√
3

6 = 1
2 +

1√
12

Passive [101], cf. [13, Sect. 3.2.2]

Table 4 Butcher tableaus for the 2nd-order IMEX-RK method (Sect. 5.3.4)

Explicit:

0 0 0
1 1 0

1
2

1
2

Implicit:

λ λ 0
1 – λ 1 – 2λ λ

1
2

1
2

5.3.4 Second-order implicit-explicit Runge-Kutta solver: imex2
A second-order (two-stage) IMEX Runge-Kutta solver is provided, based on the combina-
tion of a second-order explicit SSP Runge-Kutta method [47], and a second-order DIRK
method. Following [109], such an IMEX-SSP2(2,2,2) method with relaxation γ is given by:

z1 = (E – hγ λA)–1Exk ,

z2 = (E – hγ λA)–1(Exk + hBuk + hf (xk , uk) + hγ (1 – 2λ)Az1
)
,

xk+1 = xk + E–1 h
2
(
Buk + f (xk , uk) + γ Az1 + Buk+1 + f (z1, uk+1) + γ Az2

)
.

The explicit component of this IMEX method is SSP-optimal [47], while depending on
the choice for the free parameter λ, different properties of the implicit component can be
achieved (see Table 3). Practically, we found λ = 1

2 , making the implicit part SDIRK and
stiffly accurate, to work best. Additionally, we would like to highlight passive Runge-Kutta
methods [101], specifically PDIRK (passive DIRK), as implicit IMEX component, which
have various desirable stability and conservation properties [43].

The associated Butcher tableaus are given in Table 4.
In our experiments, the first-order IMEX method Sect. 5.3.3 allowed larger time-steps

and exhibited less numerical oscillations or artifacts compared to the second-order IMEX-
RK methods. The generic (adaptive) method Sect. 5.3.1 also solves sufficiently accurate,
but takes longer to compute. Thus, by default, we recommend the first-order IMEX inte-
grator for gas network simulations.

5.4 Reductors
The reductor module provides methods that compute structured11 (struct.) projectors
for a given discretization. These projectors can be stored on disk for reuse. Currently, the
reductors, described in Sect. 4 are included:

11Originally, all methods were also tested in an unstructured variant, but showed insufficient accuracy.
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pod Struct. proper orthogonal decomposition
eds Struct. empirical dominant subspaces

bpod Struct. balanced proper orthogonal decomposition
ebt Struct. empirical balanced truncation

gopod Struct. goal-oriented proper orthogonal decomposition
ebg Struct. empirical balanced gains
dmd Struct. dynamic mode decomposition Galerkin.

Each reductor variant has a suffix characterizing the employed empirical Gramians: _r
for only reachability, _ro for reachability and observability, _wx for cross, and _wz for
non-symmetric cross Gramian. For each reductor utilizing observability information (this
includes the cross Gramians), a linear variant using the dual system is available, and sig-
nified with the additional suffix _l.

The reductors have the interface:
[proj,name] = reductor(solver,discrete,scenario,config);

returning a (cell) array of projectors with maximum configured column rank, as well as
the reductor’s full name. These projectors specific to model and solver defining a ROM
are then stored in a .rom file.

5.4.1 Empirical Gramian framework
The compute back-end for the model reduction methods is emgr – empirical Gramian
framework [66]; currently in version 5.9 [68]. This (open-source) Octave and MATLAB
toolbox computes the empirical Gramians, which are essential to construct the reduced
order models via the Gramian-based model reduction methods from Sect. 4, including
the structured DMD-Galerkin method.

5.5 Tests
A test is a script defining an experiment by specifying network, scenario, model, solver and
reductors. The tests component is a collection of test scripts probing primarily model
reduction for various networks. A typical test contains two calls to the main morgen

function. The first call computes the reduced order model (offline phase):
morgen(network,training_scenario,model,solver,reductors);

which computes a ROM from a short, generic, steady-state training_scenario. The
projectors defining the reduced order models are then stored in rom_files. The second
call tests the reduced order model(s) on a longer test_scenario (online phase):

morgen(network,test_scenario,model,solver,rom_files);

Generally, a model reduction method can also be tested in a single call, disregarding that
scenario’s boundary value time series, yet for productive use, a reduced order model is
constructed once (first call), and then employed for many different scenarios (second call).

Included in morgen are two types of tests: First, tests prefixed with “sim_” only sim-
ulate the test scenarios, second, tests prefixed with “mor_” compute the reduced order
models using training scenarios, and benchmark these ROMs on the test scenarios.

6 Numerical experiments
In the following, we present three sets of numerical experiments, with the purpose of
demonstrating the reducibility of gas network models via the data-driven, parametric,
system-theoretic model order reduction algorithms from Sect. 4, and illustrating the ca-
pabilities of the morgen framework summarized in Sect. 5. The first set uses a pipeline
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“network”, which is interesting in the context of model reduction, while the second set
tests an academic toy network as a sanity check and a simple functionality test. Lastly, a
realistic gas network topology is evaluated.

We note that various further networks are included for testing in morgen; among oth-
ers: the Canvey-Leeds network [55, 79], the Belgium transport network [31, 95] and a
part of the Fermaca network [114]. A synthetic pipeline model and associated simula-
tion results were provided by the PSI Software AG for validation of morgen against
the commercial PSIganesi12 solver.

6.1 Workflow
For each of the numerical tests, the same workflow is employed, which is composed of a
training phase (offline phase), in that the ROMs are computed, using a generic test sce-
nario, with a (virtual) time horizon of 1 h, and boundary value input functions typical for
system identification, i.e. Dirac impulse, step signal, random-binary signal or Gaussian
noise [100, Ch. 16]. In the test phase (online phase), the ROMs are tested on scenarios
with a (virtual) time horizon of 24 h [27, 90], (starting at 6 am [40]). In addition to shorter
offline phases, this difference in training and test time horizons emphasizes generality of
the ROMs.

To verify models and solvers [107] this offline/online procedure is performed for all
combinations of:

Models: ode_mid, ode_end;
Solvers: imex1, imex2;

Reductors: pod_r, eds_ro, eds_wx, eds_wz,
bpod_ro, ebt_ro, ebt_wx, ebt_wz,
gopod_r, ebg_ro, ebg_wx, ebg_wz,
dmd_r;

whereas the port-Hamiltonian ode_end model is tested with the nonlinear as well as the
linear reductor variant (_l suffix) if available, while the ode_mid model is only tested
with the nonlinear reductor variant.

The models are specialized by the Schifrinson friction, and the AGA88 compressibility
factor formula. We excluded the generic and rk4 solvers in this comparison as they
are too slow or too fragile, respectively. Yet, the test scenario visualizations in Fig. 4(a) and
Fig. 6(a) are computed by the generic solver.

For the parametric model reduction, the temperature range for training and testing is
set to [0◦, 15◦]C, while the specific gas constant range is chosen as [500, 600] J

kg K . During
training, samples from the parameter space are drawn from a sparse grid, whereas for
the tests, parameters are drawn from a uniform random distribution. For either test and
training, five parameters are sampled. The input perturbations for the steady-state training
scenario are selected to be a step function, which heuristically works well for hyperbolic
systems [49].

12https://www.psigasandpipelines.com

https://www.psigasandpipelines.com
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The reduced order models are compared via the approximate, discrete, parametric,
(L2 ⊗ L2)-norm of the output error [67]:

‖y – ỹ‖L2⊗L2 ≈
√ ∑

θh∈
h

�t
∥∥vec

(
yh(θh) – ỹh(θh)

)∥∥2
2,

for a finite sample 
h of the parameter space 
 and discrete output samples yh(θh), ỹh(θh).
This energy norm is chosen, since all methods are at least related to an energy-based
method. However, morgen can also provide the errors in the approximate parametric
(Lk ⊗ L�) parameter-space-state-space norms for k ∈ {1, 2,∞}, � ∈ {0, 1, 2,∞}, cf. [50].
Note, that due to nonlinearity of the considered models, and the averaging nature of the
norm, a monotonic error decay cannot be expected. To enhance comparability of the re-
sults, also the reducibility measure MORscore [67] for each experiment is computed. The
MORscore for a certain method and model is essentially the area above the method’s er-
ror graph in the relative error plot such as Fig. 4(c).

Lastly, we note that the following numerical experiments are conducted using a com-
puter with an AMD Ryzen 4500U @ 2.3Ghz hexa-core processor and 16 GiB memory
running MATLAB 2021a on Ubuntu 20.04 Linux.

6.2 Yamal-Europe pipeline
First, a pipeline is tested, which is an interesting test case, since the trivial topology (Fig. 3)
comprises little redundancy, hence pipelines are a useful benchmark for model reduction
methods.

The Yamal-Europe pipeline connects gas fields in Russia with western Europe.13 A sec-
tion of this pipeline was also benchmarked in [19, 24, 25, 107], from which the technical
properties and test scenario are taken. The considered pipeline section is 363 km long,
has a diameter of 1.422 m, no (reported) inclination, and a pipe roughness of 0.01 mm.
A steady-state, used as initial state, is set by a supply pressure of 84 bar and demand mass-
flux of 46.3 kg

s .
The semi-discrete nonlinear state-space system has two inputs and outputs as well as

908 states; and a time step width of 20 s is used. The employed test scenario is taken
from [25], compressed to 24 h, and shown in Fig. 4(a), the associated model reduction
errors are given in Fig. 4(c), Fig. 4(d), Fig. 4(e), and Fig. 4(f ), for up to reduced order 150,
while the resulting MORscores are listed in Table 5.

Generally, the choice of solver is more relevant than the choice of model: while the
MORscores for different models but same solver are similar, for the same model but dif-
ferent solver, they are significantly dissimilar. Also, the tested balancing (Petrov-Galerkin)
methods perform worse than the Galerkin methods.

Figure 3 Pipeline topology

13See also https://en.wikipedia.org/wiki/Yamal-Europe_pipeline.

https://en.wikipedia.org/wiki/Yamal-Europe_pipeline


Himpe et al. Journal of Mathematics in Industry           (2021) 11:13 Page 33 of 46

Figure 4 Visualization of the test scenario, and model reduction errors of the tested ROMs for the
Yamal-Europe pipeline from Sect. 6.2

For both models, and the first-order IMEX solver, the structured empirical dominant
subspaces methods perform best, followed (closely) by the DMD-Galerkin and (goal-
oriented) POD method; then, among the balancing methods, the balanced POD and cross-
Gramian-based variants. The most overall accurate method is the cross-Gramian-based
dominant subspaces method.

For both models, in combination with the second-order IMEX-RK solver, the structured
POD and goal-oriented methods lead, followed by the DMD-Galerkin reductor. For both
solvers, the endpoint model performs better than the midpoint model. In case of the port-
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Table 5 MORSCOREs μ(150,εmach(16)) in the L2 ⊗ L2 error norm for the “Yamal-Europe” pipeline
network from Sect. 6.2; * notes linear reductors

ode_mid
imex_1

ode_end
imex_1

ode_end
imex_1*

ode_mid
imex_2

ode_end
imex_2

ode_end
imex_2*

pod_r 0.40 0.40 0.19 0.22
eds_ro 0.52 0.54 0.51 0.07 0.09 0.04
eds_wx 0.51 0.55 0.57 0.06 0.13 0.20
eds_wz 0.55 0.58 0.56 0.07 0.14 0.20

bpod_ro 0.19 0.28 0.14 0.03 0.08 0.11
ebt_ro 0.05 0.06 0.03 0.07 0.12 0.17
ebt_wx 0.17 0.11 0.10 0.00 0.00 0.04
ebt_wz 0.24 0.30 0.15 0.00 0.00 0.04

gopod_r 0.40 0.41 0.08 0.19
ebg_ro 0.05 0.11 0.02 0.05 0.11 0.15
ebg_wx 0.08 0.23 0.14 0.00 0.00 0.00
ebg_wz 0.17 0.29 0.11 0.00 0.00 0.00

dmd_r 0.50 0.53 0.08 0.15

Figure 5 MORGEN network topology

Hamiltonian endpoint model, the linear Galerkin reductors are about as accurate as the
nonlinear Galerkin reductors.

We note that the cross-Gramian-based dominant subspaces methods produce the low-
est errors, and since for the linear reductors used in combination with the endpoint model,
the dominant subspaces methods are as efficient as the purely reachability-based DMD-
Galerkin, and (goal-oriented) POD methods.

Interestingly, while the second-order IMEX-RK solver is better suited for simulations
of the full order model, in terms of data-driven model reduction and/or reduced order
model simulation it is significantly worse than the first-order IMEX solver. This is also
demonstrated in the subsequent experiments.

6.3 MORGEN network
The second set of tests encompasses a synthetic network for testingmorgen’s capabilities.
This “MORGEN” network, with topology as in Fig. 5, tests the interaction of simplified
compressors from Sect. 2.5 for various network features, such as cycles, multiple supply
and demand nodes, and is in the spirit of a test network from [39].

Specifically, six sub-networks (in the shape of letters) are connected, the second and
third sub-network contain a cycle, a compressor connects the third and fourth sub-
network, and the fourth and fifth sub-network contain additional supply and demand
nodes. The edges vary in length between 20 km and 60 km, while the diameter and rough-
ness are consistently 1 m and 0.01 mm, respectively. A steady-state, used as initial state, is
set by supply (and discharge) pressures of 50 bar at both supply nodes and the compressor,
and demand mass-fluxes of 30 kg

s at all demand nodes.
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Figure 6 Visualization of the test scenario, and model reduction errors of the tested ROMs for the MORGEN
network from Sect. 6.3

In semi-discrete form, the nonlinear state-space system features six inputs and outputs
as well as 901 states; and a time discretization with 60 s time steps. The employed 24 h
test scenario is made from hourly standard load profiles [60] and shown in Fig. 6(a), the
associated model reduction errors are given in Fig. 6(c), Fig. 6(d), Fig. 6(e), and Fig. 6(f ),
for up to reduced order 200, while the resulting MORscores are listed in Table 6.



Himpe et al. Journal of Mathematics in Industry           (2021) 11:13 Page 36 of 46

Table 6 MORSCOREs μ(200,εmach(16)) in the L2 ⊗ L2 error norm for the “MORGEN” test network from
Sect. 6.3; * notes linear reductors

ode_mid
imex_1

ode_end
imex_1

ode_end
imex_1*

ode_mid
imex_2

ode_end
imex_2

ode_end
imex_2*

pod_r 0.16 0.16 0.02 0.04
eds_ro 0.20 0.20 0.32 0.04 0.04 0.08
eds_wx 0.09 0.10 0.15 0.01 0.03 0.06
eds_wz 0.04 0.09 0.13 0.02 0.04 0.06

bpod_ro 0.13 0.13 0.03 0.00 0.02 0.00
ebt_ro 0.00 0.00 0.00 0.01 0.02 0.00
ebt_wx 0.00 0.00 0.00 0.00 0.00 0.00
ebt_wz 0.00 0.00 0.00 0.00 0.00 0.00

gopod_r 0.14 0.14 0.01 0.01
ebg_ro 0.00 0.00 0.00 0.00 0.01 0.00
ebg_wx 0.00 0.00 0.00 0.00 0.00 0.00
ebg_wz 0.00 0.00 0.01 0.00 0.00 0.00

dmd_r 0.16 0.21 0.06 0.05

Again for this comparison, the choice of solver is more relevant than the choice of model,
yet the MORscores are much lower, due to the complexities (cycles, compressor, multiple
demands) of the network.

Both models in conjunction with the first-order IMEX solver only produce workable
results with Galerkin methods. The endpoint ROMs are again more accurate than the
midpoint ROMs. Notably, the linear reachability-and-observability dominant subspaces
method for the endpoint model, is leading the MORscores.

The ROMs for both models with the second-order IMEX-RK solver perform worse, with
the exception of the balanced truncation ebt_ro and balanced gains ebg_ro variants.
However, the second-order IMEX-RK solver related ROMs are of no practical use due to
the high(er) error.

Overall, the (linear) eds_ro dominant subspaces reductor produces the lowest error,
followed by the DMD-Galerkin, (goal-oriented) POD, and cross-Gramian-based domi-
nant subspaces methods. As for the pipeline, the endpoint model is better suited for model
reduction, while the first-order IMEX solver results in significantly more accurate ROMs
than the second-order IMEX-RK solver.

6.4 GasLib network
Lastly, a network topology derived from real-life is tested. The GasLib-134v2 net-
work [122], modeling a part of the Greek natural gas transport system, is overlayed on
a map of Greece in Fig. 7. The network has a total length of 1412 km and features a com-
pressor. A steady-state, used as initial state, is set by supply (and discharge) pressures of
80 bar at supply nodes and the compressor, and demand mass-fluxes up to 16 kg

s at all
demand nodes.

In semi-discrete form, the nonlinear state-space system has 48 inputs and outputs as
well as 2682 states; and 30 s time steps are employed. For testing, a random (24 h) load
profile is generated, by adding samples from a scaled uniform random distribution to
the steady-state,14 shown in Fig. 8(a), the associated model reduction errors are given in

14morgen can generate such profiles for all included networks.
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Figure 7 GasLib134v2 network topology modeling a part of
the Greek gas network (taken from https://gaslib.zib.de,
licensed under CC-BY)

Fig. 8(c), Fig. 8(d), Fig. 8(e), and Fig. 8(f ), for up to reduced order 250, while the resulting
MORscores are listed in Table 7.

As before, the choice of solver is more relevant than the choice of model. Challenges in
this network, beyond the compressor, are the high number of boundary nodes, which are
predominantly demand nodes (Nd = 45).

First, we note that only Galerkin methods produce consistently stable ROMs. Further-
more, in comparison with the previous experiments, the dominant subspace methods per-
form worse, and all variants based on reachability and observability Gramians perform
relatively better. The endpoint model seems to be better suited for the tested model re-
duction methods than the midpoint model. And as for the other experiments, the first
order IMEX solver outmatches the second order IMEX-RK solver.

Considering all experiments, the DMD-Galerkin method performs best in terms of
MORscore, accuracy and efficiency, followed by the dominant subspaces methods. We
also note that the purely reachability-based as well as the linear reductors exploiting the
port-Hamiltonian structure are the most efficient. Surprisingly, Galerkin methods per-
form better than the tested Petrov-Galerkin methods in terms of accuracy and stability,
while in an unstructured, non-parametric, linearized setting all tested Petrov-Galerkin
methods would be stability preserving. Yet, structured balancing methods are explicitly
not guaranteed to be stability-preserving [120, 136].

With regard to the computational complexity of the offline and online phase, we reiter-
ate, that due to the absence of hyper-reduction, the online runtimes are not competitive
(see Sect. 3.3), thus, we focus on the offline phase. Yet, due to the practical reducibility of
the state-space dimension by more than one order of magnitude in the numerical experi-
ments using the first order IMEX solver, a considerable speed-up is to be expected.

For the tested data-driven (time-domain) model reduction methods, the number of
vector-field evaluations, or relatedly, the number of simulated trajectories measures
the complexity, as these constitute their principal fraction. The empirical reachability
Gramian requires Ns + Nd (number of ports) trajectories. The empirical observability
Gramian requires Np + Nq (number of states) trajectories. The empirical cross Gramian
requires Ns + Nd + Np + Nq trajectories, and the linear empirical cross Gramian requires
2(Ns +Nd) trajectories. For the tested reductors this amounts to Ns +Nd trajectories for the
POD, goal-oriented POD, and DMD-Galerkin method, while the port-Hamiltonian vari-
ants of the dominant subspaces, balanced POD, balanced truncation and balanced gains

https://gaslib.zib.de
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Figure 8 Visualization of the test scenario, and model reduction errors of the tested ROMs for the
GasLib-134v2 network from Sect. 6.4

methods need 2(Ns + Nd) trajectories, and their non-port-Hamiltonian variants require
Ns + Nd + Np + Nq trajectories.

These predicted complexities are reflected in the offline runtimes, when computed se-
quentially. As the computation of trajectories is embarrassingly parallel, all trajectories are
however computable simultaneously. Nonetheless, the complexities of the reachability-
Gramian-only and port-Hamiltonian reductors are independent from the discretization,
and thus most relevant for large-scale gas networks.
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Table 7 MORSCOREs μ(250,εmach(16)) in the L2 ⊗ L2 error norm for the “GasLib-134v2” benchmark
network from Sect. 6.4; * notes linear reductors

ode_mid
imex_1

ode_end
imex_1

ode_end
imex_1*

ode_mid
imex_2

ode_end
imex_2

ode_end
imex_2*

pod_r 0.14 0.14 0.02 0.11
eds_ro 0.04 0.07 0.16 0.13 0.12 0.11
eds_wx 0.07 0.07 0.12 0.08 0.12 0.11
eds_wz 0.09 0.08 0.12 0.11 0.12 0.11

bpod_ro 0.06 0.06 0.00 0.04 0.05 0.01
ebt_ro 0.05 0.05 0.00 0.05 0.07 0.02
ebt_wx 0.00 0.00 0.00 0.00 0.00 0.00
ebt_wz 0.00 0.00 0.00 0.00 0.00 0.00

gopod_r 0.09 0.10 0.01 0.07
ebg_ro 0.02 0.03 0.00 0.00 0.02 0.01
ebg_wx 0.00 0.00 0.00 0.00 0.00 0.00
ebg_wz 0.00 0.00 0.00 0.00 0.00 0.00

dmd_r 0.20 0.19 0.12 0.13

7 Outlook
The next stage in the development of morgen involves testing larger real-life networks,
such as the deliverable of the SciGRID_gas15 (Open Source Model of the European Gas
Network) project. Yet, various further venues of linked modeling and model reduction
questions are still not covered by morgen.

In terms of model reduction, an interesting issue are intraday switchable valves, which
change the topology of the gas network graph and likely require to extend the utilized
model reduction methods towards these switched systems.

Another interesting question in need of further investigation is the minimal time hori-
zon of the training phase. A lower bound is the time step times the longest path from a
supply to a demand node, but this is likely not sufficient.

Besides an additional hyper-reduction module (Sect. 3.3) post-processing the reduced
order models, a decoupler module pre-processing (DAE) models as described in [11, 12]
is projected.

Also as detailed in Sect. 3.4, the pipe roughness is a relevant parameter for (transient)
simulations [130], yet the entailing high-dimensional parameter space, due to the locally
differing roughness and attrition rates, would have to be treated, too. This in turn would
raise the question for combined state and parameter reduction [65], and is postponed to
future investigations.

Finally, using a tunable efficiency factor [105, 107, 111] that scales the model’s friction
term, can be used to tune the models to match real data.

8 Conclusions
In more than half a century of computational transient gas network simulation research
and industrial use, morgen seems to be the first open-source platform covering model-
ing, simulation, and model order reduction of gas (and energy) networks. The target ap-
plications for morgen are finding the best model reduction method or best reduced order
model for a network by heuristic comparison, as well as comparing model-solver-reductor
simulation ensembles.

15https://www.gas.scigrid.de

https://www.gas.scigrid.de
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From a mathematical point of view, a next generation gas network simulation stack
should consist of a (endpoint) port-Hamiltonian model, a (first-order) IMEX solver, and a
block-diagonal Galerkin projection reductor, which is confirmed by the numerical results.

This results in the following heuristically determined but theoretically explainable rec-
ommended combination: The endpoint model together with the first-order IMEX solver,
and a Galerkin reductor, specifically a structured dominant subspaces or structured DMD-
Galerkin, exhibiting the highest MORscores in the numerical experiments. The perfor-
mance of structured balanced truncation and the related structured balanced gains may
be improved in terms of stability(-preservation) either by a variant of the technique [88], a
stabilizing inner product [124], an (energy-)stable inner product [78], or an optimization-
based post-processing as in [21].

Lastly, we invite researchers, engineers and users to provide their reductors, solvers,
networks and scenarios for expansion and testing with morgen for a broader view of this
comparison.

Appendix: model fact sheet

Basis: Euler equations for cylindrical pipes

Assumptions
Long pipes: One spatial dimension
Kinetic term: Removed due to slow subsonic velocities

Boundary values: Low-frequency (sum of ) step functions

Simplifications
Temperature: Isothermal (temperature is parameter)

Gas composition: Constant global (specific gas constant is parameter)
Compressibility: Constant global (derived from steady-state)
Compressors: Affine / Additive

Modularization
Friction: Hofer | Nikuradse | Altshul | Schifrinson | PMT1025 | IGT

Compressibility: Ideal | DVGW-G-2000 | AGA88 | Papay

Discretization
Spatial: 1st order upwind finite differences

Temporal: RK-4 | IMEX-1 | IMEX-RK-2 | Rosenbrock-2
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36. Drmač Z, Gugercin S. A new selection operator for the discrete empirical interpolation method—improved a priori
error bound and extensions. SIAM J Sci Comput. 2016;38(2):A631–48. https://doi.org/10.1137/15M1019271.

37. Dymkou S, Leugering G, Jank G. Repetitive processes modelling of gas transport networks. In: 2007 international
workshop on multidimensional (nD) systems. 2007. https://doi.org/10.1109/NDS.2007.4509556.

38. Egger H, Giesselmann J. Stability and asymptotic analysis for instationary gas transport via relative energy estimates.
e-print 2012.14135, arXiv, 2020. math.AP. URL: https://arxiv.org/abs/2012.14135.

39. Egger H, Kugler T, Liljegren-Sailer B, Marheineke M, Mehrmann V. On structure-preserving model reduction for
damped wave propagation in transport networks. SIAM J Sci Comput. 2018;40(1):A331–65.
https://doi.org/10.1137/17M1125303.

40. Ehrhardt K, Steinbach MC. Nonlinear optimization in gas networks. In: Modeling, simulation and optimization of
complex processes. Berlin: Springer; 2005. p. 139–48. https://doi.org/10.1007/3-540-27170-8_11.

41. Ericson SJ, Engel-Cox J, Arent DJ. Approaches for integrating renewable energy technologies in oil and gas
operations. Technical Report 1491378. U.S. Department of Energy Office of Scientific and Technical Information;
2019. https://doi.org/10.2172/1491378.

42. Farzaneh-Gord M, Rahbari HR. Unsteady natural gas flow within pipeline network, an analytical approach. J Nat Gas
Sci Eng. 2016;28:379–409. https://doi.org/10.1016/j.jngse.2015.12.017.

https://doi.org/10.1137/1.9781611974829.ch9
https://doi.org/10.1007/s00498-018-0223-3
https://doi.org/10.1109/CDC.2011.6161504
https://doi.org/10.11128/arep.35
https://doi.org/10.1007/978-3-319-75319-5_5
https://doi.org/10.1007/11221_2018_5
https://doi.org/10.1007/s10444-019-09724-7
https://doi.org/10.1007/s10444-018-9592-x
https://doi.org/10.1016/j.jcp.2019.06.063
http://ee263.stanford.edu/archive/ls_ln_matlab.pdf
https://doi.org/10.1137/100813580
https://doi.org/10.1016/j.cherd.2009.06.008
https://doi.org/10.1137/090766498
https://doi.org/10.1109/HICSS.2015.330
https://doi.org/10.1109/9.751342
https://doi.org/10.1007/978-3-030-62732-4_11
https://doi.org/10.1049/el:19860362
http://www.jstor.org/stable/2661661
https://www.vulkan-shop.de/mathematische-modellierung-simulation-und-optimierung-von-gastransportnetzwerken-2015-11-01
https://www.vulkan-shop.de/mathematische-modellierung-simulation-und-optimierung-von-gastransportnetzwerken-2015-11-01
https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/docId/191
https://doi.org/10.1016/j.jngse.2011.01.004
http://www.ceai.srait.ro/index.php?journal=ceai&page=article&op=view&path%5B%5D=252&path%5B%5D=187
https://doi.org/10.1137/15M1019271
https://doi.org/10.1109/NDS.2007.4509556
https://arxiv.org/abs/2012.14135
https://doi.org/10.1137/17M1125303
https://doi.org/10.1007/3-540-27170-8_11
https://doi.org/10.2172/1491378
https://doi.org/10.1016/j.jngse.2015.12.017


Himpe et al. Journal of Mathematics in Industry           (2021) 11:13 Page 43 of 46

43. Fränken D, Ochs K. Numerical stability properties of passive Runge-Kutta methods. In: Proc. IEEE int. symp. Circuits
syst. vol. 3. 2001. p. 473–6. https://doi.org/10.1109/ISCAS.2001.921350.

44. Freund RW. SPRIM: structure-preserving reduced-order interconnect macromodeling. In: Proc. Int. conf. on
computer aided design (ICCAD). Los Alamitos: IEEE Computer Society Press; 2004. p. 80–7.
https://doi.org/10.1109/ICCAD.2004.1382547.

45. Fügenschuh A, Geißler B, Gollmer R, Morsi A, Pfetsch ME, Rövekamp J, Schmidt M, Spreckelsen K, Steinbach MC.
Physical and technical fundamentals of gas networks. In: Koch T, Hiller B, Pfetsch ME, Schewe L, editors. Evaluating
gas network capacitites. MOS-SIAM series on optimization. Philadelphia: SIAM; 2015. p. 17–43.
https://doi.org/10.1137/1.9781611973693.ch2.

46. Goldwater MH, Rogers K, Turnbull DK. The PAN network analaysis program – its development and use. Institution of
Gas Engineers Communications. 1976;1009:1–24.

47. Gottlieb S, Shu C-W, Tadmor E. Strong stability-preserving high-order time discretization methods. SIAM Rev.
2001;43(1):89–112. https://doi.org/10.1137/S003614450036757X.

48. Grundel S, Herty M. Hyperbolic discretization via Riemann invariants. e-prints 2005.12158, arXiv, 2020. math.NA. URL:
https://arxiv.org/abs/2005.12158.

49. Grundel S, Himpe C, Saak J. On empirical system Gramians. Proc Appl Math Mech. 2019;19(1):e201900006.
https://doi.org/10.1002/PAMM.201900006.

50. Grundel S, Hornung N, Klaassen B, Benner P, Clees T. Computing surrogates for gas network simulation using model
order reduction. In: Koziel S, Leifsson L, editors. Surrogate-based modeling and optimization. New York: Springer;
2013. p. 189–212. https://doi.org/10.1007/978-1-4614-7551-4_9.

51. Grundel S, Hornung N, Roggendorf S. Numerical aspects of model order reduction for gas transportation networks.
In: Koziel S, Leifsson L, Yang X-S, editors. Simulation-driven modeling and optimization. Berlin: Springer; 2016. p.
1–28. https://doi.org/10.1007/978-3-319-27517-8_1.

52. Grundel S, Jansen L. Efficient simulation of transient gas networks using IMEX integration schemes and MOR
methods. In: 54th IEEE conference on decision and control (CDC). 2015. p. 4579–84.
https://doi.org/10.1109/CDC.2015.7402934.

53. Grundel S, Jansen L, Hornung N, Clees T, Tischendorf C, Benner P. Model order reduction of differential algebraic
equations arising from the simulation of gas transport networks. In: Progress in differential-algebraic equations,
differential-algebraic equations forum. Berlin: Springer; 2014. p. 183–205.
https://doi.org/10.1007/978-3-662-44926-4_9.

54. Gugat M, Herty M. Modeling, control and numerics of gas networks. Technical Report 2010.02743, arXiv, 2020.
math.AP. URL: https://arxiv.org/abs/2010.02743.

55. Guy JJ. Computation of unsteady gas flow in a pipe networks. In: I. chem. e. symposium series. vol. 23. 1967. p.
139–45.

56. Hahn J, Edgar TF. Balancing approach to minimal realization and model reduction of stable nonlinear systems. Ind
Eng Chem Res. 2002;41(9):2204–12. https://doi.org/10.1021/ie0106175.

57. Hante FM, Leugering G, Martin A, Schewe L, Schmidt M. Challenges in optimal control problems for gas and fluid
flow in networks of pipes and canals: from modeling to industrial applications. In: Manchanda P, Lozi R, Siddiqi A,
editors. Industrial mathematics and complex systems, industrial and applied mathematics. Singapore: Springer;
2017. p. 77–122. https://doi.org/10.1007/978-981-10-3758-0_5.

58. Hartmann D, Herz M, Wever U. Model order reduction a key technology for digital twins. In: Keiper W, Milde A,
Volkwein S, editors. Reduced-order modeling (ROM) for simulation and optimization. Cham: Springer; 2018. p.
167–79. https://doi.org/10.1007/978-3-319-75319-5_8.

59. Helgaker JF, Müller B, Ytrehus T. Transient flow in natural gas pipelines using implicit finite difference schemes. J
Offshore Mech Arct Eng. 2014;136(3):031701. https://doi.org/10.1115/1.4026848.

60. Hellwig M. Entwicklung und Anwendung parametrisierter Standard-Lastprofile. PhD thesis. TU München; 2003.
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss2003100715846.

61. Hennings F. Benefits and limitations of simplified transient gas flow formulations. In: Operations research
proceedings 2017. 2018. p. 231–7. https://doi.org/10.1007/978-3-319-89920-6_32.

62. Herrán-González A, De La Cruz JM, De Andrés-Toro B, Risco-Martín JL. Modeling and simulation of a gas distribution
pipeline network. Appl Math Model. 2009;33(3):1584–600. https://doi.org/10.1016/j.apm.2008.02.012.

63. Herty M. Modeling, simulation and optimization of gas networks with compressors. Netw Heterog Media.
2007;2(1):81–97. https://doi.org/10.3934/nhm.2007.2.81.

64. Herty M, Mohring J, Sachers V. A new model for gas flow in pipe networks. Math Methods Appl Sci. 2010;33:845–55.
https://doi.org/10.1002/mma.1197.

65. Himpe C. Combined state and parameter reduction for nonlinear systems with an application in neuroscience.
Göttingen: Sierke Verlag; 2017. https://doi.org/10.14626/9783868448818. ISBN 9783868448818. PhD thesis,
Westfälische Wilhelms-Universität Münster.

66. Himpe C. emgr – the empirical Gramian framework. Algorithms. 2018;11(7):91. https://doi.org/10.3390/a11070091.
67. Himpe C. Comparing (empirical-Gramian-based) model order reduction algorithms. In: Benner P, Breiten T,

Faßbender H, Hinze M, Stykel T, Zimmermann R, editors. Model reduction of complex dynamical systems. Cham:
Springer; 2021. https://doi.org/10.1007/978-3-030-72983-7_7. Accepted.

68. Himpe C. emgr – EMpirical GRamian framework (version 5.9). https://gramian.de. 2021.
https://doi.org/10.5281/zenodo.4454679.

69. Himpe C, Grundel S, Benner P. Efficient gas network simulations. In: Maaß P, Küfer K-H, Schulz V, editors. German
success stories in industrial mathematics. Mathematics in industry. Cham: Springer; 2021.
https://doi.org/10.1007/978-3-030-81455-7. Accepted.

70. Himpe C, Ohlberger M. Cross-Gramian based combined state and parameter reduction for large-scale control
systems. Math Probl Eng. 2014;2014:843869. https://doi.org/10.1155/2014/843869.

71. Himpe C, Ohlberger M. The empirical cross Gramian for parametrized nonlinear systems. In: IFAC-PapersOnLine
(proceedings of the 8th Vienna international conference on mathematical modelling). vol. 48. 2015. p. 727–8.
https://doi.org/10.1016/j.ifacol.2015.05.163.

https://doi.org/10.1109/ISCAS.2001.921350
https://doi.org/10.1109/ICCAD.2004.1382547
https://doi.org/10.1137/1.9781611973693.ch2
https://doi.org/10.1137/S003614450036757X
https://arxiv.org/abs/2005.12158
https://doi.org/10.1002/PAMM.201900006
https://doi.org/10.1007/978-1-4614-7551-4_9
https://doi.org/10.1007/978-3-319-27517-8_1
https://doi.org/10.1109/CDC.2015.7402934
https://doi.org/10.1007/978-3-662-44926-4_9
https://arxiv.org/abs/2010.02743
https://doi.org/10.1021/ie0106175
https://doi.org/10.1007/978-981-10-3758-0_5
https://doi.org/10.1007/978-3-319-75319-5_8
https://doi.org/10.1115/1.4026848
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss2003100715846
https://doi.org/10.1007/978-3-319-89920-6_32
https://doi.org/10.1016/j.apm.2008.02.012
https://doi.org/10.3934/nhm.2007.2.81
https://doi.org/10.1002/mma.1197
https://doi.org/10.14626/9783868448818
https://doi.org/10.3390/a11070091
https://doi.org/10.1007/978-3-030-72983-7_7
https://gramian.de
https://doi.org/10.5281/zenodo.4454679
https://doi.org/10.1007/978-3-030-81455-7
https://doi.org/10.1155/2014/843869
https://doi.org/10.1016/j.ifacol.2015.05.163


Himpe et al. Journal of Mathematics in Industry           (2021) 11:13 Page 44 of 46

72. Himpe C, Ohlberger M. A note on the cross Gramian for non-symmetric systems. Syst Sci Control Eng.
2016;4(1):199–208. https://doi.org/10.1080/21642583.2016.1215273.

73. Hirsch SM, Harris KD, Kutz JN, Brunton BW. Centering data improves the dynamic mode decomposition. SIAM J Appl
Dyn Syst. 2020;19(3):1920–55. https://doi.org/10.1137/19M1289881.

74. Hülk L, Müller B, Glauer M, Förster E, Schachler B. Transparency, reproducibility, and quality of energy system analyses
– a process to improve scientific work. Energy Strategy Rev. 2018;22:264–9. https://doi.org/10.1016/j.esr.2018.08.014.

75. Ionescu TC, Fujimoto K, Scherpen JMA. Singular value analysis of nonlinear symmetric systems. IEEE Trans Autom
Control. 2011;56(9):2073–86. https://doi.org/10.1109/TAC.2011.2126630.

76. Izzo G, Jackiewicz Z. Highly stable implicit-explicit Runge-Kutta methods. Appl Numer Math. 2017;113:71–92.
https://doi.org/10.1016/j.apnum.2016.10.018.

77. Jiang Y-L, Qi Z-Z, Yang P. Model order reduction of linear systems via the cross Gramian and SVD. IEEE Trans Circuits
Syst II, Express Briefs. 2019;66(3):422–6. https://doi.org/10.1109/TCSII.2018.2864115.

78. Kalashnikova I, Barone MF, Arunajatesan S, van Bloemen Waanders BG. Construction of energy-stable
projection-based reduced order models. Appl Math Comput. 2014;249:569–96.
https://doi.org/10.1016/j.amc.2014.10.073.

79. Kiuchi T. An implicit method for transient gas flows in pipe networks. Int J Heat Fluid Flow. 1994;15(5):378–93.
https://doi.org/10.1016/0142-727X(94)90051-5.

80. Kralik J, Stiegler P, Vostrý Z, Závorka J. Modeling the dynamic of flow in gas pipelines. IEEE Trans Syst Man Cybern.
1984;SMC-14(4):586–96. https://doi.org/10.1109/TSMC.1984.6313330.

81. Kralik J, Stiegler P, Vostrý Z, Závorka J. A universal dynamic simulation model of gas pipeline networks. IEEE Trans
Syst Man Cybern. 1984;SMC-14(4):597–606. https://doi.org/10.1109/TSMC.1984.6313331.

82. Kupka F, Happenhofer N, Higueras I, Koch O. Total-variation-diminishing implicit-explicit Runge-Kutta methods for
the simulation of double-diffusive convection in astrophysics. J Comput Phys. 2012;231(9):3561–86.
https://doi.org/10.1016/j.jcp.2011.12.031.

83. Kutta W. Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Z Angew Math Phys.
1901;46(6):435–53. https://archive.org/stream/zeitschriftfrma12runggoog#page/n449/mode/2up.

84. Lall S, Marsden JE, Glavaški S. Empirical model reduction of controlled nonlinear systems. In: IFAC proceedings
volumes (14th IFAC world congress). vol. 32. 1999. p. 2598–603. https://doi.org/10.1016/S1474-6670(17)56442-3.

85. Lang J, Leugering G, Martin M, Gasnetzwerke CT. Mathematische Modellierung, Simulation und Optimierung. Mitt
Dtsch Math-Ver. 2015;23(1):30–5. https://doi.org/10.1515/dmvm-2015-0013.

86. Liljegren-Sailer B, Marheineke M. A structure-preserving model order reduction approach for space-discrete gas
networks with active elements. In: Quintela P, Barral P, Gómez D, Pena FJ, Rodríguez J, Salgado P, Vázquez-Méndez
ME, editors. Progress in industrial mathematics at ECMI 2016. Mathematics in industry. vol. 26. Berlin: Springer; 2017.
p. 439–46. https://doi.org/10.1007/978-3-319-63082-3_69.

87. Lu H, Guo L, Azimi M, Huang K. Oil and gas 4.0 era: a systematic review and outlook. Comput Ind. 2019;111:68–90.
https://doi.org/10.1016/j.compind.2019.06.007.

88. Lu Y, Marheineke M, Mohring J. Stability-preserving interpolation strategy for parametric MOR of gas
pipeline-networks. In: Quintela P, Barral P, Gómez D, Pena FJ, Rodríguez J, Salgado P, Vázquez-Méndez ME, editors.
Progress in industrial mathematics at ECMI 2016. Mathematics in industry. vol. 26. Berlin: Springer; 2016. p. 431–7.
https://doi.org/10.1007/978-3-319-63082-3_68.

89. Lu Y, Marheineke M, Mohring J. Interpolation strategy for BT-based parametric MOR of gas pipeline-networks. In:
Benner P, Ohlberger M, Patera A, Rozza G, Urban K, editors. Model reduction of parametrized systems. MS & A.
vol. 17. Berlin: Springer; 2017. p. 387–401. https://doi.org/10.1007/978-3-319-58786-8_24.

90. Mak TWK, Van Hentenryck P, Zlotnik A, Bent R. Dynamic compressor optimization in natural gas pipeline systems.
INFORMS J Comput. 2019;31(1):1–26. https://doi.org/10.1287/ijoc.2018.0821.

91. Mak TWK, Van Hentenryck P, Zlotnik A, Hijazi H, Bent R. Efficient dynamic compressor optimization in natural gas
transmission systems. In: Proceedings of the American control conference. 2016. p. 7484–91.
https://doi.org/10.1109/ACC.2016.7526855.

92. März R. The index of linear differential algebraic equations with properly stated leading terms. Results Math.
2002;42:308–38. https://doi.org/10.1007/BF03322858.

93. Mischner J. Notizen zur hydraulischen Berechnung von Gasleitungen. GWF, Gas - Erdgas. 2012;153(4):258–73.
https://www.vulkan-shop.de/notizen-zur-hydraulischen-berechnung-von-gasleitungen-2591.

94. Mischner J, Fasold HG, Heymer J, editors. gas2energy.net. Edition gas for energy. DIV, 2016. URL:
https://www.vulkan-shop.de/gas2energy-net-1198.

95. Mohring J, Hoffmann J, Halfmann T, Zemitis A, Basso G, Lagoni P. Automated model reduction of complex gas
pipeline networks. In: PSIG annual meeting. 2004. p. PSIG-04B3.
https://www.onepetro.org/conference-paper/PSIG-04B3.

96. Mokhatab S, Poe WA, Mak JY. Sales gas transmission. In: Handbook of natural gas transmission and processing:
principles and practices. Gulf Professional Publishing. 2019. p. 463–88.
https://doi.org/10.1016/B978-0-12-815817-3.00015-0.

97. Moore BC. Singular value analysis of linear systems. In: 1978 IEEE conference on decision and control including the
17th symposium on adaptive processes. 1978. p. 66–73. https://doi.org/10.1109/CDC.1978.267894.

98. Moore BC. Principal component analysis in nonlinear systems: preliminary results. In: 18th IEEE conference on
decision and control including the symposium on adaptive processes. vol. 2. 1979. p. 1057–60.
https://doi.org/10.1109/CDC.1979.270114.

99. Moore BC. Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE
Trans Autom Control. 1981;AC-26(1):17–32. https://doi.org/10.1109/TAC.1981.1102568.

100. Nelles O. Nonlinear system identification. Berlin: Springer; 2001. https://doi.org/10.1007/978-3-662-04323-3.
101. Ochs K. Passive integration methods: fundamental theory. AEÜ, Int J Electron Commun. 2001;55(3):153–63.

https://doi.org/10.1078/1434-8411-00024.
102. Or AC, Speyer JL, Kim J. Reduced balancing transformations for large nonnormal state-space systems. J Guid Control

Dyn. 2012;35(1):129–37. https://doi.org/10.2514/1.53777.

https://doi.org/10.1080/21642583.2016.1215273
https://doi.org/10.1137/19M1289881
https://doi.org/10.1016/j.esr.2018.08.014
https://doi.org/10.1109/TAC.2011.2126630
https://doi.org/10.1016/j.apnum.2016.10.018
https://doi.org/10.1109/TCSII.2018.2864115
https://doi.org/10.1016/j.amc.2014.10.073
https://doi.org/10.1016/0142-727X(94)90051-5
https://doi.org/10.1109/TSMC.1984.6313330
https://doi.org/10.1109/TSMC.1984.6313331
https://doi.org/10.1016/j.jcp.2011.12.031
https://archive.org/stream/zeitschriftfrma12runggoog#page/n449/mode/2up
https://doi.org/10.1016/S1474-6670(17)56442-3
https://doi.org/10.1515/dmvm-2015-0013
https://doi.org/10.1007/978-3-319-63082-3_69
https://doi.org/10.1016/j.compind.2019.06.007
https://doi.org/10.1007/978-3-319-63082-3_68
https://doi.org/10.1007/978-3-319-58786-8_24
https://doi.org/10.1287/ijoc.2018.0821
https://doi.org/10.1109/ACC.2016.7526855
https://doi.org/10.1007/BF03322858
https://www.vulkan-shop.de/notizen-zur-hydraulischen-berechnung-von-gasleitungen-2591
https://www.vulkan-shop.de/gas2energy-net-1198
https://www.onepetro.org/conference-paper/PSIG-04B3
https://doi.org/10.1016/B978-0-12-815817-3.00015-0
https://doi.org/10.1109/CDC.1978.267894
https://doi.org/10.1109/CDC.1979.270114
https://doi.org/10.1109/TAC.1981.1102568
https://doi.org/10.1007/978-3-662-04323-3
https://doi.org/10.1078/1434-8411-00024
https://doi.org/10.2514/1.53777


Himpe et al. Journal of Mathematics in Industry           (2021) 11:13 Page 45 of 46

103. Ortega R, Van Der Schaft AJ, Mareels I, Masckhke B. Putting energy back in control. IEEE Control Syst Mag.
2001;21(2):18–33. https://doi.org/10.1109/37.915398.

104. Osiadacz A. Simulation of transient gas flows in networks. Int J Numer Methods Fluids. 1984;4:13–24.
https://doi.org/10.1002/fld.1650040103.

105. Osiadacz AJ. Simulation and analysis of gas networks. E. & F. N. Spon; 1987.
106. Osiadacz AJ. Different transient flow models - limitations, advantages, and disadvantages. In: PSIG annual meeting.

1996. p. PSIG-9606. https://www.onepetro.org/conference-paper/PSIG-9606.
107. Osiadacz AJ, Chaczykowski M. Verification of transient gas flow simulation model. In: PSIG annual meeting. 2010. p.

PSIG-1010. https://www.onepetro.org/conference-paper/PSIG-1010.
108. Pambour KA, Bolado-Lavin R, Dijkema GPJ. An integrated transient model for simulating the operation of natural gas

transport systems. J Nat Gas Sci Eng. 2016;28:672–90. https://doi.org/10.1016/j.jngse.2015.11.036.
109. Pareschi L, Russo G. Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J

Sci Comput. 2005;25(1):129–55. https://doi.org/10.1007/s10915-004-4636-4.
110. Penzl T. Algorithms for model reduction of large dynamical systems. Linear Algebra Appl. 2006;415(2–3):322–43.

https://doi.org/10.1016/j.laa.2006.01.007. Reprint of Technical Report SFB393/99-40, TU Chemnitz, 1999.
111. Pfetsch ME, Fügenschuh A, Geißler B, Geißler N, Gollmer R, Hiller B, Humpola J, Koch T, Lehmann T, Martin A, Morsi A,

Rövekamp J, Schewe L, Schmidt M, Schultz R, Schwarz R, Schweiger J, Stangl C, Steinbach MC, Vigerske S, Willert BM.
Validation of nominations in gas network optimization: models, methods, and solutions. Optim Methods Softw.
2015;30(1):15–53. https://doi.org/10.1080/10556788.2014.888426.

112. Polyuga RV, van der Schaft A. Model reduction of port-Hamiltonian systems as structured systems. In: Proceedings
of the 19th international symposium on mathematical theory of networks and systems. 2010. p. 1509–13.
https://www.conferences.hu/mtns2010/proceedings/Papers/264_246.pdf.

113. Proctor JL, Brunton SL, Kutz JN. Dynamic mode decomposition with control. SIAM J Appl Dyn Syst.
2016;15(1):142–61. https://doi.org/10.1137/15M1013857.

114. Rodriguez-Blanco T, Sarabia D, de Prada C. Modelling, simulation and parameter estimation for gas networks. In:
ARGESIM report (9th Vienna conference on mathematical modelling). vol. 55. 2018. p. 1–2.
https://doi.org/10.11128/arep.55.a55010.

115. Roggendorf S. Model order reduction for linearized systems arising from the simulation of gas transportation
networks. Master’s thesis. Universität Bonn; 2015.
https://bonnus.ulb.uni-bonn.de/SummonRecord/FETCH-bonn_catalog_41770072/Description#tabnav.

116. Rowley CW. Model reduction for fluids, using balanced proper orthogonal decomposition. Int J Bifurc Chaos.
2005;15(3):997–1013. https://doi.org/10.1142/S0218127405012429.

117. Rowley CW, Mezic I, Bagheri S, Schlatter P, Henningson DS. Spectral analysis of nonlinear flows. J Fluid Mech.
2009;641:115–1127. https://doi.org/10.1017/S0022112009992059.

118. Safonov MG, Chiang RY. A Schur method for balanced model reduction. In: Proceedings of the American control
conference. 1988. p. 1036–40. https://doi.org/10.23919/ACC.1988.4789873.

119. Safonov MG, Chiang RY. A Schur method for balanced-truncation model reduction. IEEE Trans Autom Control.
1989;34(7):729–33. https://doi.org/10.1109/9.29399.

120. Sandberg H, Murray RM. Model reduction of interconnected linear systems. Optim Control Appl Methods.
2009;30(3):225–45. https://doi.org/10.1002/oca.854.

121. Saracco R. Digital twins: bridging physical space and cyberspace. Computer. 2019;52(12):58–64.
https://doi.org/10.1109/MC.2019.2942803.

122. Schmidt M, Aßmann D, Burlacu R, Humpola J, Joormann I, Kanelakis N, Koch T, Oucherif D, Pfetsch ME, Schewe L,
Schwarz R, Sirvent M. GasLib–a library of gas network instances. Data. 2017;2(4):40.
https://doi.org/10.3390/data2040040.

123. Schmidt M, Steinbach MC, Willer BM. High detail stationary optimization models for gas networks. Optim Eng.
2015;16:131–64. https://doi.org/10.1007/s11081-014-9246-x.

124. Serre G, Lafon P, Gloerfelt X, Bailly C. Reliable reduced-order models for time-dependent linearized Euler equations. J
Comput Phys. 2012;231(15):5176–94. https://doi.org/10.1016/j.jcp.2012.04.019.

125. Shampine LF. The MATLAB ODE suite. SIAM J Sci Comput. 1997;18(1):1–22.
https://doi.org/10.1137/S1064827594276424.

126. Steinbach MC. On PDE solution in transient optimization of gas networks. J Comput Appl Math. 2007;203(2):345–61.
https://doi.org/10.1016/j.cam.2006.04.018.

127. Stelter R. Two stage singular perturbation model reduction for gas transmission networks. In: IFAC proceedings
volumes (10th triennial IFAC congress on automatic control). vol. 20. 1987. p. 157–62.
https://doi.org/10.1016/S1474-6670(17)55079-X.

128. Stolwijk JJ, Mehrmann V. Error analysis and model adaptivity for flows in gas networks. An Ştiinţ Univ ‘Ovidius’
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