
ISSUES IN RESEARCH

SOFTWARE

ABSTRACT
Scientific software projects evolve rapidly in their initial development phase, yet at the
end of a funding period, the completion of a research project, thesis, or publication,
further engagement in the project may slow down or cease completely. To retain the
invested effort for the sciences, this software needs to be preserved or handed over to
a succeeding developer or team, such as the next generation of (PhD) students.

Comparable guides provide top-down recommendations for project leads. This paper
intends to be a bottom-up approach for sustainable hand-over processes from a
developer’s perspective. An important characteristic in this regard is the project’s size,
by which this guideline is structured. Furthermore, checklists are provided, which can
serve as a practical guide for implementing the proposed measures.

CORRESPONDING AUTHOR:
C. Himpe

Computational Methods in
Systems and Control Theory,
Max Planck Institute for
Dynamics of Complex Technical
Systems, Sandtorstr. 1, 39106
Magdeburg, Germany

himpe@mpi-magdeburg.mpg.de

KEYWORDS:
Replicability; Reproducibility;
Reusability; Best Practices;
Research Software Engineering

TO CITE THIS ARTICLE:
Fehr J, Himpe C, Rave S, Saak
J 2021 Sustainable Research
Software Hand-Over. Journal
of Open Research Software, 9:
5. DOI: https://doi.org/10.5334/
jors.307

J. FEHR

C. HIMPE

S. RAVE

J. SAAK

*Author affiliations can be found in the back matter of this article

Sustainable Research
Software Hand-Over

mailto:himpe@mpi-magdeburg.mpg.de
https://doi.org/10.5334/jors.307
https://doi.org/10.5334/jors.307
https://orcid.org/0000-0003-2850-1440
https://orcid.org/0000-0003-2194-6754
https://orcid.org/0000-0003-0439-7212
https://orcid.org/0000-0001-5567-9637

2Fehr et al. Journal of Open Research DOI: 10.5334/jors.307

1 INTRODUCTION

Research software, software artifacts as research
products, or computer-based experiments are drivers of
modern science. Yet, while computerization has massively
accelerated science, the intangible and volatile nature
of software has also inhibited scientific progress: Once-
developed-software is often not usable in subsequent
development of algorithms, for example, due to technical
incompatibilities, insufficient documentation, or plain
unavailability. Even though advances in supplying source
codes together with published results are achieved
[23], the reusability of such scientific codes remains
unsatisfactory [18], and of limited reach when tied to a
publication. So, instead of building on top of “shoulders
of giants”, the “wheel is reinvented” regularly in many
branches of sciences and not least in computational
mathematics. A frequently occurring symptom of this
deficiency is the inadequate treatment of software
developed for, or over the course of a PhD thesis, which
may be disregarded either by the original or subsequent
developing PhD candidate.

As scientists, scientific organizations, and funding
agencies are becoming more aware of these issues,
guidelines and best practices for good scientific software
conduct are in demand. Examples for such academically
driven efforts are the guides published by the alliance of
German research associations [19], the DFG (Deutsche
Forschungsgemeinschaft) “guidelines for safeguarding
good scientific practice” [7], the DLR (Deutsche Zentrum
für Luft- und Raumfahrt) guideline [26], or the software
sustainability institute guideline [17]. These guides present
top-down approaches aimed at principal investigators,
decision-makers and coordinators. Our contribution, on
the other hand, intends to be a bottom-up approach
presenting requirements and recommendations for
academic software developers, such as undergraduate
students, PhD students, postdoctoral researchers, or

research software engineers. Furthermore, instead
of focusing on the development process of scientific
software, as in [13, 14, 16, 9] and references therein,
we focus on the continuation of a project, when the
developer (or a maintainer) leaves, e.g. after completing
their PhD project.

We note that industry has already adapted robust
collaborative software development practices, see for
example [11]. Yet, given that developers of scientific codes
may have no formal training in software engineering,
and scientific software development processes can
differ, in academia only certain ideas can be transferred
to support researchers or departments.

While the issues addressed in this work apply to all
branches of science, we emphasize that mathematical
software projects hold particular responsibilities. An
example are the numerical libraries BLAS [22] and
LAPACK [1], which constitute the basis for numerical
computations in many sciences. Hence, authors of this
foundational layer in scientific software stacks need
to take into account the continued use and possibly
further development outside the field of mathematics.
Best practices for mathematical software [25, 6] and
numerical software [21, 3] are long known (yet still not
established), and properties such as reliability, robustness
or transportability [5], the numerical experiment
attributes replicability, reproducibility and reusability [9],
code as a form of scientific notation [29, 12], as well as
basic guidelines for research software [24] have been
discussed in the literature, yet, sustainable hand-over
strategies for (mathematical) research software projects
have not been documented to the best knowledge of the
authors.

The core of this work aims at the hand-over of
general scientific software projects, illustrated in
Figure 1, which is discussed in detail in the following
sections. We consider two classes of research software
projects: First, small projects, see Section 2.1, which

Figure 1 Project hand-over illustrative summary.

https://doi.org/10.5334/jors.307

3Fehr et al. Journal of Open Research DOI: 10.5334/jors.307

are implemented by a single developer, for example
over the course of a PhD program or a funding period;
Second, large projects, see Section 2.2, which have
multiple developers. Since these two project categories
serve different purposes, the proposed requirements
and recommendations differ. Minimal requirements, as
well as optional recommendations, are given for both
project categories. Finally in Section 3, a brief conclusion
is given alongside two checklists, which summarizes the
proposed measures for a practical hand-over process,
followed by a brief comment on minimal documentation
of numerical software in the Appendix.

2 PROJECT HAND-OVER

In the following, we lay out minimal and optional
measures for a sustainable project hand-over
distinguished by the size of the project. From our
experience, we recommend the distinction of software
projects into the two categories “small” and “large”. A
more fine grained categorization is surmisable too, see
e.g. [15], still, we think that two categories are sufficient
in covering the essential aspects of sustainable
software hand-over, with the rationale that more
straightforward guidelines may have a higher chance
of general acceptance compared to more complicated
rule sets.

As a general remark: When a project is handed over, a
time period from before the previous developer leaves, till
after the next developer enters the project is considered
the hand-over time, which should be allocated in a
manner to suitably prepare the hand-over, and allow
for a training phase. To this end, it can be worth the
extra cost of having the previous and next developer(s)
overlap for some time, depending on the project size and
complexity. We also note that if a project is not continued
in direct succession, it can be conserved; see for example
[27], for information on archiving.

2.1 SMALL PROJECT
We consider a small project to be code developed
and maintained by a single author, which means, for
example, a project written from scratch, or a fork of an
existing project that throughout the development is not
merged back into the parent project. This is often the
case for tools developed as part of a publication, thesis
or with a tight focus. Such projects have their developer
as the sole user, or at least a limited user base.

Following, we will lay out minimal requirements, which
ensure the project’s sustainability, as well as optional
recommendations that facilitate long-term usability,
such as, when a new student takes over, after a previous
student finishes their work, or if an abandoned project is
revived.

2.1.1 Minimal Requirements
Code availability The most important requirement for
continuation or at least conservation is the availability
of the project contents — utilized specific hardware
components may need to be kept available physically,
if no virtualization is possible — including the source
code, configuration and data files. Therefore, the project
location should be discoverable, i.e.: not solely on the
developer’s personal computer hard-drive, but rather in a
central repository of the associated institute at a known
and accessible storage location.

Code ownership If the code is available, the next
important question is: Who owns the code? Potential
owners could be the associated institute or university,
the superior or supervisor of the developer, or the original
developer themselves. Additionally, if there is third-party
funding involved, the funding entity may have regulations
about the funded project’s ownership. Besides ownership,
third-party rights need to be considered, originating from
prior developers, third-party projects, or parts thereof
included in the project. These ownership question can
be resolved by documentation of stakeholders alongside
the code and with a license statement, which can be as
easy as the project’s developer self-licensing their work
or following the respective guidelines applicable to them.
For further information on software licensing see [28].

Execution environment Given all legal prerequisites
are resolved, a minimal description of the required
runtime environment, such as operating system,
dependencies, and compiler or interpreter is needed,
together with a short description on how to compile, if
necessary, and run the project. A tested upon operating
system needs to be stated (with compute architecture
and endianess if applicable). We also recommend listing
all depending software libraries, tools or toolboxes, which
are not part of the default installation of the compatible
operating systems. Furthermore, all components of the
required software stack need to be given with a version
number. We caution that even in case of high-level cross-
platform runtime environments, certain behavior may
depend voluntarily, accidentally, or due to restrictions,
on the underlying operating system (for a minimal report,
in this case, see the Appendix). In view of increasingly
complex scientific computing software stacks (Figure 2),
providing a reproducible execution environment (see
below) is highly recommended.

Working example An essential requirement for a
small project hand-over, is sample code (In [9] such a
file is suggested to be named RUNME.), which can run
and demonstrate the core feature(s) of the project. Such
an example is essential, to test if the code is executable
and also serves as a starting point to understand the
structure of the code, since the workflow can be traced for
a known working example, e.g. by a debugging program.
Moreover, the results can be used to verify that future

4Fehr et al. Journal of Open Research DOI: 10.5334/jors.307

changes do not (unintentionally) affect computational
results. To these ends, the execution of such an example
code should sufficiently cover the complete functionality
of the software project.

Minimal documentation Typically the information
of the previous requirements is gathered in a README
file (README is a widely used file name for a plain text
file, holding a minimal documentation; see: [9]). Further
information that should be included in the README is:

•	 Is the code functioning, and if, on what hardware
(see Appendix)?

•	 Is the available project state current (latest use in a
thesis or publication)?

•	 New algorithms from which publications are
implemented by this project?

•	 Existing algorithms from which publications are
utilized by this project?

•	 What publications use this project?
•	 What are the known limitations or issues?

Referencing all associated publications helps to put
a small research software project in the appropriate
scientific context, and has also educational function for
the subsequent developer(s).

2.1.2 Optional Recommendation
Public release As the availability of the project is crucial,
for the documentation of the scientific findings, the best
measure is a public release under an, ideally, open license
on a stable service [8]. If legal or other reasons prevent
such line of action, the reasons should be stated near the
top of the aforementioned README file, so this important
information is not lost in transition.

Version control We strongly recommend to use a
version control software to track the changes during
the development of the project in a repository. Besides
documenting the history of a project, modern version
control systems allow to tag (mark) states of the
repository. This is useful for associating experiments,
for example in publications, during the development
process. Hence, all experiments can refer to a specific
revision of the source code, in order to ensure replicability
and reproducibility, in particular for future developers. At
the very least a version control repository serves as a
(very sophisticated) back up method. An introduction to
generic version control workflows can be found in [30].

Basic code cleanup Furthermore, some software
development anti-patterns [4] are more common (in
our experience) in small projects, and impede project
continuation by another than the original developer.
First, undocumented constants used in the source
code hinder the interpretation in the absence of the
original developer. Second, comments containing code,
so called dead code, introduce the uncertainty which
code has been used for what experiments, and if the
commented out code is still needed or not. Third, the
use of hard-coded file paths may prevent the project
from functioning in a different environment, such as
another developer’s computer. All these issues can, if
not fixable, be easily resolved by a few additional source
code comments.

Reproducible execution environment In addition to
the minimally required documentation, we recommend
to report if the project was tested in other compute
environments than the developer’s. To ensure long
term compatibility and conservation, it is relevant if the
project can run on a simulated computer, i.e. a virtual
machine. This allows conserving an image file, treated
as a hard drive by such a virtual machine, containing
the complete software stack (including the operating
system). Thus, the image file completely defines the
software aspect of the compute environment, and the
virtual machine software presents an abstraction from
the hardware.

As an alternative to a virtual machine image, a
step-by-step guide can be included, which explains
the preparation, i.e. correct sequence of installation of
dependencies, starting from the base installation of a
compatible operating system. Such a guide can be easily
distributed with the software, whereas, due to their

Figure 2 Software stack dependencies: “Tower of Doom”.

5Fehr et al. Journal of Open Research DOI: 10.5334/jors.307

size, virtual machine images often need to be archived
separately. Moreover, the guide can serve as a starting
point for installing the software in other execution
environments.

Integration into larger project A possible path for
small projects is the inclusion into existing larger projects,
which, for example, provide a collection of topically
related functionality, like a community library. Such a
large project mitigates some of the aforementioned
problems due to development guidelines. To be included
into the code base of such a super-project, it is essential
for the small project to be modular and compatible with
the including project’s principle design, interfaces, style
and contribution guidelines, as well as possibly build
and test systems. Furthermore, planned or unsuccessful
directions of development should be included into
the documentation to support the future (third-party)
development of the incorporated small project.

Practically, there are three paths to include a smaller
project into an overarching project: First, the continuous
development, for example, as a feature of the large
project. This approach naturally requires adherence to
project guidelines and often entails slower progress due
to this overhead. Second, after completion, requesting
inclusion of the finished “small project”; while quick
progress can be made this way during development,
integration may be hard due to independent design
and build systems. Third, a fork of the super-project

with subsequent independent development, and a final
merge, which may also require some adaptions, likely
allows efficient development without giving up the frame
of the super-project.

Alternatively, if direct integration into the large
project’s code base is impractical, preserving the small
project as a module or callable library, together with
integration of a binding interface into the large project,
can be an option. To track the large project’s dependence
on a specific version of the small project, version control
system features such as submodules or subrepositories
can be used.

2.2 LARGE PROJECT
We define a large project as a software package that
is developed by multiple authors, possibly located at
different institutions. An example setting is a project
consortium developing a joint tool driven by their
research that also should be made available, e.g. to
their peers. While the developing researchers may be a
significant subgroup of the software’s users, in this case
the community can be far larger and the users might
even be unrelated to this community.

In our experience it is advisable that large projects
have a hierarchy of contributors, see Figure 3, which
follows de-facto standards. Unprivileged users serve
as reporters, who file feature requests or bug reports
(which can jointly be called issues). Contributors that

Figure 3 Project hand-over illustrative summary for a larger project.

6Fehr et al. Journal of Open Research DOI: 10.5334/jors.307

work on closing bugs or contributing features are called
developers. They have limited, or no write access to the
main development line of the software. The maintainers
have extended permissions on the repository and
oversee the progress of the software project. They also
merge the contributions of the developers into the main
development line. While reporters and developers may
change frequently, maintainers ensure consistency
of the development, at most superseded by a rights
holding entity, depicted in Figure 3 as a roof of the
project.

In the following sections, we propose hand-over
guidelines for large projects, subdivided into bare
minimum requirements and optional, but desired,
recommendations. While for developers the guidelines
for small projects (Section 2.1) apply to their branches
(a branch is a copy of the development resources
under version control which can evolve in separate, but
is still part of the overall source code repository.), the
presentation, here, focuses on maintainers.

2.2.1 Minimal Requirements
Software license The chosen project license is important,
even crucial for publicly available projects. While for a
small project only few entities are eligible to act as the
rights holder, for large projects the situation can be, and
often is, more complex. This, in turn, leads to additional
difficulties that need further attention: Project funding
can end after a certain period, and maintainers may
change their employers or even fields of interest. Thus,
to ensure continued availability of the project, the
developers need to come to a formal agreement, i.e. a
software license, under which terms the project should
be available. For an open-source license hierarchy,
see [31].

Code ownership of contributions Compared to
small projects, the question of contributed code’s legal
ownership is more relevant for large projects. In particular,
developers need to consider that a later change of license
requires the consent of all copyright holders, which may
have long left academia. Therefore, if a license change
shall remain feasible, all code contributors could transfer
their copyright to a single entity, for example, a society
or association as copyright holder. It should also be
noted, that there are important differences in copyright
laws over the world and obtaining proper legal advice is
desirable.

Access to project resources Similarly important as
legal rights are the access permissions in the software
repository and further project resources, such as servers,
websites, domain names or mailing lists. As a minimal
requirement, there should always be at least two persons
with administrator access to all project resources. In case
of a smaller development team with only one active
maintainer, it is sufficient if these rights are held by a

second person who is associated with the project but is
not an active developer (like a research group leader).
This measure prevents a project from depending on the
health and goodwill of a single individual.

Management of development branches Modern
version control systems permit ways to continue
developing a version of the software independently
from a given state of the main development stream,
e.g., for development of new features. These are called
branches, and it is good practice to use one branch per
user, or issue. Each branch has to be documented with
respect to its purpose and status; furthermore, it should
be clear which developers are responsible for the branch.
If the withdrawal of a developer from the project leads
to an unmaintained branch, the branch should either
be merged into the main development branch, a new
developer for the branch should be found, or in case either
is not feasible, a detailed description of the open and
completed tasks should be added to the documentation
to allow continuation after a stale phase.

Stable main branch To ensure that a leaving
maintainer cannot cause an unknown or unusable state
of the project, it is essential to make sure that the main
branch of the software can be (if applicable compiled
and) executed by more than a single person (the main
developer) and runs on all targeted platforms at any time
during the development process. This also means that
the installation is flexible enough to at least specify user-
specific paths during the build process.

2.2.2 Optional Recommendation
Division of responsibilities Beyond a certain project
extent, distributing the workload among multiple
maintainers may become necessary: Scientific
software projects often comprise segregated functional
compartments, for example: reading, processing,
storing, visualizing, or forwarding data. Depending on
their complexity, all these steps may branch into a large
variety of available methods, and thus be too complex
to oversee in detail for a single maintainer. In this case
maintainers should be assigned for different parts of the
project, and their responsibilities recorded in the code
repository, e.g. [10]. Whenever a maintainer leaves,
their responsibilities need to be handed-over to another
maintainer.

Code maintainability All measures that improve the
overall quality of the code and its maintainability are also
beneficial in a hand-over process as they facilitate the
familiarization of a new developer with the project. More
importantly, after the withdrawal of a developer, old code
that has been written by this developer will be much easier
to understand if standard software development best
practices are followed. In particular, we mention usage
of continuous integration (CI). In software engineering,
continuous integration is the practice of merging all

7Fehr et al. Journal of Open Research DOI: 10.5334/jors.307

developers’ working copies into the main development
line regularly. This is often followed by a test-phase to
ensure that none of the recent changes break other
functionality (see also [2]). An optional add-on, which is
especially relevant for scientific computing software, is
the more recent technique of continuous benchmarking
that additionally tries to ensure optimal performance
of the implementation at all times. Furthermore, if
applicable, we recommend the usage of build systems
that automatically resolve dependencies, especially to
other projects, during the compilation process.

Changelog As soon as a software is developed
and used by more than one person, keeping track of
important changes in the software compared to earlier
versions becomes consequential. While the history of
version control systems allows inspecting every change
of the software, this information is usually too fine
grained for the “big picture”. Therefore, the most relevant
changes should be documented in a CHANGELOG file [20]
or the release notes. This document not only informs
users about new features, the removal of faulty code or
changes in the interfaces, but also helps developers of
other software projects relying on the function interfaces,
to keep track of changes and necessary updates to
their own projects. More importantly in the scope of a
project hand-over it is helpful for the new maintainer to
comprehend changes and note dependencies as well as
compatibilities, especially if legacy versions of a project
need to be maintained, e.g. due to hardware restrictions,
in parallel to the evolution in the main development
branch.

Code of conduct A document defining rules for the
introduction and retirement of project maintainers as well
as handling project administration questions can have an
essential role in project hand-over. In particular, when a
maintainer no longer actively works on the project but is

hesitant to step down, a code of conduct document can
prevent an entailing gridlock in the project.

Contribution policy Besides the legal status of
contributions discussed above, a contribution policy
defines the practical requirements for the contributed
code. Typical requirements regard the general workflow
of the project. For example, requirements state whether
single or multiple pull/merge requests, with what level of
documentation and tests, are expected. The code should
be mergeable with the main development branch.
Also, (passing) tests for all included features can be
expected in the project’s favored test suite. The licensing
and copyright of the contributed code as well as the
form of attribution of the contribution should be clear.
Oftentimes also restrictions on the code’s general layout
and naming schemes are prescribed, in order to improve
readability and thus accessibility of the implemented
ideas.

As discussed above, a case of project hand-over is the
inclusion of a smaller into larger project. Such a policy can
simplify this process, in particular, if these requirements
are known during the development of the small project.

3 SUSTAINABLE HAND-OVER

In this work we presented measures for the sustainable
hand-over of research software, by differentiating
between small and large software projects and proposing
minimal requirements and optional recommendation for
both categories. With this, we aim to spark a discussion
in the sciences on sustainability of research software
development and appreciate feedback. Furthermore, we
hope that this document, and especially the checklists in
Tables 1 and 2 help software sustainability (maybe even
beyond science) or at least serve as a template prototype.

SMALL SOFTWARE PROJECT HAND-OVER

▪ Minimal Requirements

▫ Code availability Where are source code, data and configuration files?

▫ Code ownership Who owns the software and who holds rights?

▫ Execution environment What hardware and software stack is required?

▫ Working example How are the features of the code producing what results?

▫ Minimal documentation What does a new developer need to know at the least?

▪ Optional Recommendations

▫ Public release Is a public open-source release possible?

▫ Version control Are revisions of the software automatically tracked? Where?

▫ Basic code cleanup Are constants, dead code and hard paths removed?

▫ Reproducible execution environment Is a (virtual) machine back up available?

▫ Integration into larger project Is inclusion into a larger project possible or planned?

Table 1 Checklist for sustainable research software hand-over of small projects.

https://doi.org/10.5334/jors.307

8Fehr et al. Journal of Open Research DOI: 10.5334/jors.307

Alternative strategies to academic development,
which can also ensure sustainable development, such
as commercialization, were not discussed, as the
requirements for small and large projects alike, first
and foremost involve legal issues. Nonetheless, also
in case of academic research software hand-overs,
it is always advisable to consult the involved entity’s
legal department(s), due to the complex situation with
copyright, licensing and ownership.

APPENDIX

Due to the background of the authors, we give some
specific documentation hints for numerical software; this
automatically includes code written in the languages
MATLAB/Octave, Python (NumPy/SciPy), R, and Julia, as
well as most research software depending on numerical
computations. The bare minimum information on the
computation environment for these non-compiled
numerical software is given by:

•	 Runtime interpreter name and version.
•	 Operating system name, version and architecture/

word-width.
•	 Processor name and exact identifier.
•	 Required amount of random access memory.
•	 BLAS library implementation name and version.
•	 LAPACK library implementation name and version.

Obviously, in other sciences additional minimal
information may be necessary. For example in lab-
sciences hardware and protocols for access to lab

equipment providing the processed data would be
essential information.

ACKNOWLEDGEMENTS

The authors would like to thank Arnim Kargl for his help in
preparing the hand-over illustrations.

FUNDING INFORMATION

Supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s
Excellence Strategy EXC2075 — 390740016, SimTech
Stuttgart, Stuttgart Center for Simulation Science.

Supported by the German Federal Ministry for Economic
Affairs and Energy, in the joint project: “MathEnergy
— Mathematical Key Technologies for Evolving Energy
Grids”, sub-project: Model Order Reduction (Grant
number: 0324019B).

Funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s
Excellence Strategy EXC 2044–390685587, Mathematics
Münster: Dynamics–Geometry–Structure.

Supported by the German Federal Ministry of
Education and Research (BMBF) under contract
05M18PMA.

COMPETING INTERESTS

The authors have no competing interests to declare.

Table 2 Checklist for sustainable research software hand-over of large projects.

LARGE SOFTWARE PROJECT HAND-OVER

▪▪ Minimal Requirements

▫ Software license Has a suitable (and compatible) software license been chosen?

▫ Code ownership of contributions Who owns which parts of the code?

▫ Access to project resources Are full permissions to all project resources granted to at least two persons?

▫ Management of development branches Are there unmaintained development branches?

▫ Stable main branch How is stability of the main branch ensured?

▪ Optional Recommendations

▫ Division of responsibilities Do all parts of the project have a responsible maintainer?

▫ Code maintainability Is continuous integration/testing/benchmarking utilized?

▫ Changelog Are the core changes of the releases tracked in a changelog or release notes?

▫ Code of conduct What are the central points of the code of conduct and why?

▫ Contribution policy How are contribution policies communicated?

9Fehr et al. Journal of Open Research DOI: 10.5334/jors.307

AUTHOR AFFILIATIONS

J. Fehr    orcid.org/0000-0003-2850-1440

Institute of Engineering and Computational Mechanics,
University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany

C. Himpe    orcid.org/0000-0003-2194-6754

Computational Methods in Systems and Control Theory, Max
Planck Institute for Dynamics of Complex Technical Systems,
Sandtorstr. 1, 39106 Magdeburg, Germany

S. Rave    orcid.org/0000-0003-0439-7212

Institute for Computational and Applied Mathematics, University
of Münster, Einsteinstrasse 62, 48149 Münster, Germany

J. Saak    orcid.org/0000-0001-5567-9637

Computational Methods in Systems and Control Theory, Max
Planck Institute for Dynamics of Complex Technical Systems,
Sandtorstr. 1, 39106 Magdeburg, Germany

REFERENCES

1.	 Anderson E, Bai Z, Bischof C, Demmel J, Dongarra

J, Du Croz J, Greenbaum A, Hammarling S,

McKenney A, Sorensen D. LAPACK Users’ Guide.

Philadelphia, PA: SIAM, third (ed); 1999. DOI: https://doi.

org/10.1137/1.9780898719604

2.	 Beck K. Test Driven Development: By Example. Boston,

MA, USA: Addison-Wesley Professional, 2003. URL: https://

dl.acm.org/doi/book/10.5555/579193.

3.	 Boisvert RF, (ed). Quality of Numerical Software.

IFIP Advances in Information and Communication

Technology. Boston, MA: Springer, 1997. DOI: https://doi.

org/10.1007/978-1-5041-2940-4

4.	 Brown WJ, Malveau RC, McCormick HW, Mowbray TJ.

AntiPatterns: Refactoring Software, Architectures, and

Projects in Crisis. Wiley, 1998. URL: http://antipatterns.com.

5.	 Cody WJ. Basic concepts for computational software. In

Messina PC, Murli A (eds.), Problems and Methodologies in

Mathematical Software Production, volume 142 of Lecture

Notes in Computer Science, pages 1–23. Berlin: Springer,

1982. DOI: https://doi.org/10.1007/3-540-11603-6_1

6.	 Crowder H, Dembo RS, Mulvey JM. On reporting

computational experiments with mathematical software.

ACM Trans. Math. Software, 1979; 5(2): 193–203. DOI:

https://doi.org/10.1145/355826.355833

7.	 Deutsche Forschungsgemeinschaft. Guidelines for

safeguarding good scientific practice; 2019. DOI: https://doi.

org/10.5281/zenodo.3923601

8.	 Di Cosmo R, Zacchiroli S. Software heritage: Why and

how to preserve software source code. In iPRES 2017: 14th

International Conference on Digital Preservation, 2017. URL:

https://ipres2017.jp/wp-content/uploads/19Roberto-Di-

Cosmo.pdf.

9.	 Fehr J, Heiland J, Himpe C, Saak J. Best practices for

replicability, reproducibility and reusability of computer-

based experiments exemplified by model reduction

software. AIMS Mathematics, 2016; 1(3): 261–281. DOI:

https://doi.org/10.3934/Math.2016.3.261

10.	 Github Inc. About code owners, 2020. URL: https://docs.

github.com/en/github/creating-cloning-and-archiving-

repositories/about-code-owners.

11.	 Henderson F. Software engineering at Google. Technical

report, Google, 2017. URL: https://arxiv.org/pdf/1702.01715.pdf.

12.	 Hinsen K. The roles of code in computational science.

Computing in Science & Engineering, 2017; 19(1): 78–82.

DOI: https://doi.org/10.1109/MCSE.2017.18

13.	 Hong NC. Minimal information for reusable scientific

software. In Proceedings of the 2nd Workshop on

Sustainable Software for Science: Practice and Experiences

(WSSSPE2.1), 2014. DOI: https://doi.org/10.6084/

m9.figshare.1112528

14.	 Hong NC. Why do we need to compare research software,

and how should we do it? In Proceedings of the 4th

Workshop on Sustainable Software for Science: Practice and

Experiences (WSSSPE4.1), volume 1686 of CEUR Workshop

Proceedings, 2016. URL: http://ceur-ws.org/Vol-1686/

WSSSPE4_paper_29.pdf.

15.	 INRIA Evaluation Committee. Criteria for software

self-assessment. https://www.inria.fr/sites/default/

files/2019-10/Criteria_software_self_assessment.pdf.

16.	 Irving D. A minimum standard for publishing

computational results in the weather and climate sciences.

Bull. Amer. Meteor. Soc., 2015; 97: 1149–1158. DOI: https://

doi.org/10.1175/BAMS-D-15-00010.1

17.	 Jackson M. Software deposit guidance (version 1.0).

Technical report, Software sustainability Institute, 2018.

see also https://softwaresaved.github.io/software-deposit-

guidance/. DOI: https://doi.org/10.5281/zenodo.1327310

18.	 Johanson A, Hasselbring W. Software engineering for

computational science: Past, present, future. Computing in

Science & Engineering, 2018; 20(2): 90–109. DOI: https://

doi.org/10.1109/MCSE.2018.021651343

19.	 Katerbow M, Feulner G. Handreichung zum Umgang

mit Forschungssoftware, 2018. Herausgegeben von

der Arbeitsgruppe Forschungssoftware im Rahmen der

Schwerpunktinitiative Digitale Information der Allianz der

deutschen Wissenschaftsorganisationen. Unter Mitarbeit von

Bornschein M, Brembs B, Erben-Russ M, Förstner K, Franke

M, Fritzsch B, Fuhrmann J, Goedicke M, Janosch S, Konrad U,

Zielke D. DOI: https://doi.org/10.5281/zenodo.1172970

20.	 Olivier Lacan. Keep a Changelog. URL: https://

keepachangelog.com.

21.	 Laub AJ. Numerical linear algebra aspects of control design

computations. IEEE Trans. Automat. Control, 1985; 30(2):

97–108. DOI: https://doi.org/10.1109/TAC.1985.1103900

22.	 Lawson C, Hanson R, Kincaid D, Krogh F. Basic linear

algebra subprograms for FORTRAN usage. ACM Trans.

Math. Software, 1979; 5: 303–323. DOI: https://doi.

org/10.1145/355841.355847

23.	 Nature Publishing Group. Code check. Nature, 2018; 555:

142. DOI: https://doi.org/10.1038/d41586-018-02741-4

24.	 Queiroz F, Silva R, Miller J, Brockhauser S, Fangohr H.

Good usability practices in scientific software development.

https://orcid.org/0000-0003-2850-1440
https://orcid.org/0000-0003-2194-6754
https://orcid.org/0000-0003-0439-7212
https://orcid.org/0000-0001-5567-9637
https://doi.org/10.1137/1.9780898719604
https://doi.org/10.1137/1.9780898719604
https://dl.acm.org/doi/book/10.5555/579193
https://dl.acm.org/doi/book/10.5555/579193
https://doi.org/10.1007/978-1-5041-2940-4
https://doi.org/10.1007/978-1-5041-2940-4
http://antipatterns.com
https://doi.org/10.1007/3-540-11603-6_1
https://doi.org/10.1145/355826.355833
https://doi. org/10.5281/zenodo.3923601
https://doi. org/10.5281/zenodo.3923601
https://ipres2017.jp/wp-content/uploads/19Roberto-Di-Cosmo.pdf
https://ipres2017.jp/wp-content/uploads/19Roberto-Di-Cosmo.pdf
https://doi.org/10.3934/Math.2016.3.261
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/about-code-owners
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/about-code-owners
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/about-code-owners
https://arxiv.org/pdf/1702.01715.pdf
https://doi.org/10.1109/MCSE.2017.18
https://doi.org/10.6084/m9.figshare.1112528
https://doi.org/10.6084/m9.figshare.1112528
http://ceur-ws.org/Vol-1686/WSSSPE4_paper_29.pdf
http://ceur-ws.org/Vol-1686/WSSSPE4_paper_29.pdf
https://www.inria.fr/sites/default/files/2019-10/Criteria_software_self_assessment.pdf
https://www.inria.fr/sites/default/files/2019-10/Criteria_software_self_assessment.pdf
https://doi.org/10.1175/BAMS-D-15-00010.1
https://doi.org/10.1175/BAMS-D-15-00010.1
https://softwaresaved.github.io/software-deposit-guidance/
https://softwaresaved.github.io/software-deposit-guidance/
https://doi.org/10.5281/zenodo.1327310
https://doi.org/10.1109/MCSE.2018.021651343
https://doi.org/10.1109/MCSE.2018.021651343
https://doi.org/10.5281/zenodo.1172970
https://keepachangelog.com
https://keepachangelog.com
https://doi.org/10.1109/TAC.1985.1103900
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/355841.355847
https://doi.org/10.1038/d41586-018-02741-4

10Fehr et al. Journal of Open Research DOI: 10.5334/jors.307

TO CITE THIS ARTICLE:
Fehr J, Himpe C, Rave S, Saak J 2021 Sustainable Research Software Hand-Over. Journal of Open Research Software, 9: 5. DOI: https://
doi.org/10.5334/jors.307

Submitted: 17 October 2019 Accepted: 30 October 2020 Published: 30 April 2021

COPYRIGHT:
© 2021 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

In Proceedings of the 5th Workshop on Sustainable Software

for Science: Practice and Experiences (WSSSPE5.1), 2017.

DOI: https://doi.org/10.6084/m9.figshare.5331814.v3

25.	 Rice J. (ed). Mathematical Software. ACM Monograph Series.

Academic Press, 1971. DOI: https://doi.org/10.1016/C2013-

0-11363-3

26.	 Schlauch T, Meinel M, Haupt C. DLR software

engineering guidelines, 2018. DOI: http://doi.org/10.5281/

zenodo.1344612

27.	 Software Heritage. How to use software heritage

for archiving and referencing your source code:

guidelines and walkthrough, 2019. URL: https://annex.

softwareheritage.org/public/guidelines/archive-research-

software.pdf.

28.	 Stodden V. Enabling reproducible research: Open

licensing for scientific innovation. International Journal

of Communications Law and Policy, pages 1–55, 2009.

URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_

id=1362040.

29.	 Timlin D, David O, Green TR, Fleisher DH, Kim S-H, Ahuja

LR. Proposed standards for peer-reviewed publication

of computer code. Agronomy Journal, 2016; 108(5):

1782–1786. DOI: https://doi.org/10.2134/agronj2015.0481

30.	 Westby EJH. Git for Teams. O’Reilly Media, 2015. URL: http://

gitforteams.com.

31.	 Wheeler DA. The free-libre/open source software (floss)

license slide, 2007. URL: https://dwheeler.com/essays/floss-

license-slide.pdf.

https://doi.org/10.5334/jors.307
https://doi.org/10.5334/jors.307
https://doi.org/10.5334/jors.307
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.5331814.v3
https://doi.org/10.1016/C2013-0-11363-3
https://doi.org/10.1016/C2013-0-11363-3
http://doi.org/10.5281/zenodo.1344612
http://doi.org/10.5281/zenodo.1344612
https://annex.softwareheritage.org/public/guidelines/archive-research-software.pdf
https://annex.softwareheritage.org/public/guidelines/archive-research-software.pdf
https://annex.softwareheritage.org/public/guidelines/archive-research-software.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1362040
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1362040
https://doi.org/10.2134/agronj2015.0481
http://gitforteams.com
http://gitforteams.com
https://dwheeler.com/essays/floss-license-slide.pdf
https://dwheeler.com/essays/floss-license-slide.pdf

