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No matter if natural gas, biogas or hydrogen, gas transport needs to be simulated ahead of dispatch to account for volatilities
in demand and supply, so denominations are delivered reliably. The emancipation from producing countries alongside the
renewable energy transition increases the number of scenarios to be simulated manifold, which in turn requires the acceleration
of computational models to ensure completion of computer simulations before deadlines.

Gas is transported through a network of pipelines which can be mathematically modeled as large-scale nonlinear port-
Hamiltonian input-output systems. To reduce computational complexity we propose unsupervised learning via synthetic data
of the model’s system-theoretic properties which then enables data-driven control or model reduction.

We summarize the aspects of nonlinear model reduction techniques adapted to gas pipeline networks and orchestrated
to reduce the order of this challenging class of systems originating from hyperbolic systems of partial differential-algebraic
equations, and demonstrate the applicability of our approach numerically.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Model Order Reduction for Gas and Energy Networks

The current challenges in gas transport, such as the green energy transition, sudden gas shortages, and hydrogen admixture,
can only be overcome by elaborate gas network simulations. For short-term day-ahead planning, all simulations have to be
completed before dispatch to ensure delivery of denominations. Hence, the faster simulations can be performed, the more
scenarios can be tested before the daily dispatch deadline. To accelerate simulation of gas transport in pipeline networks for
this many-query setting, we propose model reduction. Due to the manifold mathematical and numerical challenges of mod-
eling and simulating gas networks, such as dimensionality, nonlinearity, parametricity, and hyperbolicity, we developed and
documented a software platform named morgen – Model Order Reduction for Gas and Energy Networks, to compare and
test models, solvers, and model reduction ensembles heuristically [5], of which we describe and compare new features and
extensions as the main contribution of this work. While the (about 30) testable projection-based model reduction algorithms
vary in their practical computation, their commonly underlying system-theoretic operators are obtained in a data-driven man-
ner, via synthetic-data unsupervised-learning. Since, this approach is not narrowed to the applicability of a single model order
reduction algorithm for a class of models, but rather tuned towards ensembles of models, solvers and reductors, we use the
term system order reduction here.

2 From PDAE Model to Input-Output System

Starting from the one-dimensional, isothermal Euler equations for a pipeline, and applying Kirchhoff laws for networks, results
in a two dimensional system of partial differential-algebraic equations (PDAE). With boundary values constituting the controls
and quantities of interest, employing analytic index reduction as well as spatial discretization and refinement [5, Sec. 2], yields
an ordinary differential equation (ODE) input-output system:
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Here, the state consists of pressure and mass-flux x(t) =
(
p(t) q(t)

)⊺
, the input represents the pressure at inflow and mass-

flux at outflow nodes u(t) =
(
sp(t) dq(t)

)⊺
, while the output is given by the mass-flux at inflows and pressure at demands

y(t) =
(
sq(t) dp(t)

)⊺
. Furthermore, the parametric mass matrix is positive definite E(θ) > 0, the system matrix is skew-

symmetric A = −A⊺ (ignoring compressors), the output matrix relates to the input matrix by C = B⊺Q (for a diagonal
matrix Q > 0), while compressors are specified by FC and the retarding gravity and friction forces are jointly given by fq.
Depending on the modeling of f (and ignoring compressors), this system is of port-Hamiltonian structure [5, Sec. 2.9].
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Model Class Port-Hamiltonian? Reference
Midpoint Discretization ODE No [5, Sec. 2.4.1]
Endpoint Discretization ODE Yes [5, Sec. 2.4.2]

Solver Type Order Properties Reference
IMEX1 Implicit-Explicit 1 Minimum Numerical Complexity [5, Sec. 5.3.3]
IMEX2 Implicit-Explicit 2 - [5, Sec. 5.3.4]
CNAB2 Implicit-Explicit 2 - [1, Sec. 3.2]
RK2hyp Explicit 2 Maximum Hyperbolic Stability [11] & Sec. 4.1
RK4hyp Explicit 4 Low Dispersion, Low Dissipation [6, Sec. 2.2]
RK4 Explicit 4 - [5, Sec. 5.3.2]
Rosenbrock Implicit 2 Time Adaptive [5, Sec. 5.3.1]

Reductor Variants Projection Reference
Structured Proper Orthogonal Decomposition (POD) • reachability Orthogonal [5, Sec. 4.2]
Structured Goal-Oriented POD • reachability Orthogonal [5, Sec. 4.5.1]

Structured Empirical Dominant Subspaces (DSPMR)
• reachability & observability
• minimality
• average minimality Orthogonal [5, Sec. 4.3]

Structured Modified POD
• reachability & observability
• minimality
• average minimality Oblique [13, Sec. III.D] & Sec. 4.2

Structured Balanced POD • reachability & observability Bi-Orthogonal [5, Sec. 4.4.3]

Structured Empirical Balanced Truncation
• reachability & observability
• minimality
• average minimality Bi-Orthogonal [5, Sec. 4.4]

Structured Empirical Balanced Gains
• reachability & observability
• minimality
• average minimality Bi-Orthogonal [5, Sec 4.5]

Structured Dynamic Mode Decomposition Galerkin • reachability Orthogonal [5, Sec. 4.6]

Table 1: Summary of available model, solver, and reductor implementations in morgen 1.2.

3 The morgen Platform

The morgen platform is an open-source software package, compatible with MATLAB and Octave, for testing, comparing and
benchmarking gas network simulation stacks, particularly semi-discrete models, time stepping solvers, and model reductors,
as well as ensembles of such models, solvers, and reductors.
morgen is modular, extensible, and configurable; this means the source code is organized into the modules: models,

solvers, reductors (and a data module: networks), with each of these modules consisting of collections of independent imple-
mentations fulfilling a common interface. These interfaces allow users to extend the modules with new implementations (or
data-sets), simply by adding their source or data files. Therein, not only the base functionality, but also the (user) modules can
be configured externally. The currently included module contents are listed in Table 1.
morgen is designed for projection-based model reduction methods, hence a reductor consumes the model’s spatial and

temporal discretizations as well as a generic training scenario to compute a set of projection matrices. These projections are
applied to the model components, once, before a simulation of a reduced order model (ROM), to the linear components E, A,
B, C, and via composition to the nonlinear component f . For details on model reduction and in particular projection-based
methods for gas network models, we refer to [5, Sec. 4].

To illustrate the extensibility via modules, we briefly lay out in the following how a new reductor can be added. A reductor
is capsuled in a MATLAB function file (.m), where the main function has the signature:

function [proj,name] = my_reductor(solver,discrete,scenario,config)

It receives four arguments: the solver function (handle), and the structures discrete, scenario, config, while
it returns a cell-array proj of projections, and a string name identifying the reductor. The solver function allows to
compute output trajectories, given the three structure arguments discrete, scenario, and config, where the latter is
supposed to be the sub-structure config.solver passed to reductor. The discrete structure, holding system dimensions
and system components, can be manipulated, for example by changing the output function to an identity function to obtain
state, instead of output trajectories from the solver, and the scenario structure, holding input functions, parameters and
constants, can be manipulated to create perturbations to the loaded scenario. For details on these structures or components,
see the documentation or included reductors.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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A reductor returns structured projectors in a cell-array. For an orthogonal projection, this cell-array has two rows and
one column, for an oblique or bi-orthogonal projection, this cell-array has two rows and two columns. The first row holds
dim(p(t))×n matrices, and the second row holds dim(q(t))×n-matrices, with n being the maximum reduced order, and the
first column holding left-side projectors, while the second column holding right-side projectors, if different.

A boilerplate reductor is included under reductors/template_reductor.m, based on which, a custom reductor
can then be implemented in the body of this function, that computes projection matrices from the discrete model and
scenario data. Every function m-file in the reductors folder is assumed to be a valid reductor, further function files
required by a reductor can be placed in sub-folder private.

4 New Features of morgen 1.2

In the recent version 1.2 of morgen two major features were added: A purely explicit solver with a similar space-time
discretization as the implicit-explicit solver(s), and an oblique model reduction method. Furthermore, the model reduction
back-end emgr – Empirical Gramian framework [3], computing the empirical system Gramians (via unsupervised learning
from a machine learning point of view) used by all reductors, has been updated to the most recent version 5.99 [4].

4.1 Hyperbolic Runge-Kutta Methods

Following morgen 1.1 and [6], the solver library has been extended with explicit Runge-Kutta solvers, with the aim to
find an efficient solver for model variants with more severe nonlinearities, for which the currently preferred implicit-explicit
solver loses its advantages. Based on [11], explicit Runge-Kutta methods with maximum hyperbolic stability limit (hyperbolic
stability radius) of number of stages minus one, for a given number of intermediate stages were added. These methods are
of first order for an even number of stages, of second order for an odd number of stages, and are a generalization of the
5-stage method tested in [6] up to twelve stages. The following algorithm implements this family of methods for an ODE
ẋ(t) = f(t, x), and xk = x(tk), tk = k∆t:

x̂0 := xk,

x̂i := xk + ai∆tf(tk + ai∆t, x̂i−1), i = 1 . . . S,

xk+1 := x̂S ,

and requires only two registers (vectors), one for xk and one for x̂i, that may be overwritten in each iteration of i. This makes
it a memory efficient low-storage method [9], of in fact minimum storage. The coefficients ai are given in Table 2.

Stages Order Limit a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
5 2 4 1/4 1/6 3/8 1/2 1
6 1 5 1/5 4/35 7/25 4/13 13/25 1
7 2 6 1/6 1/12 2/9 4/19 19/54 1/2 1
8 1 7 1/7 4/63 9/49 2/13 13/49 8/25 25/49 1
9 2 8 1/8 1/20 5/32 2/17 17/80 5/22 11/32 1/2 1

10 1 9 1/9 4/99 11/81 4/43 43/243 6/35 7/25 40/123 41/81 1
11 2 10 1/10 1/30 3/25 4/53 53/350 7/52 26/152 4/17 17/50 1/2 1
12 1 11 1/11 4/143 13/121 1/16 16/121 16/147 21/121 28/155 31/121 20/61 61/121 1

Table 2: Order, imaginary stability limit, and coefficients for the hyperbolic Runge-Kutta methods with five to twelve stages.

To test the capabilities of this solver, we repeat the experiment from [5, Sec. 6.2] (Yamal-Europe pipeline), yet only
for the port-Hamiltonian endpoint discretization [5, Sec. 2.4.2], in combination with the 11-stage hyperbolic Runge-Kutta
method, and the Galerkin reductors, see Fig. 1. The eleven-stage variant is the only tested explicit time stepping integrator
producing workable simulations and reduced order models, with similar space-time discretization as the implicit-explicit
methods. However, compared to the first-order implicit-explicit method, the model reduction errors are much higher, and
the associated MORscores µ ∈ [0, 1] (see legend), a benchmark score, which assigns a higher score to faster decay of, and
lower overall model reduction errors [5, Sec. 6.1], are much lower. Practically, even this “best” explicit Runge-Kutta method
is no match for the implicit-explicit method, not only in terms of model reduction error, but particularly in computational
complexity. Nonetheless, the 11-stage hyperbolic Runge-Kutta method allows explicit integration of gas network models.

We note that Runge-Kutta solvers of this structure are limited to second order accuracy for nonlinear systems. Hence, the
family of methods from [10] with third/fourth order methods for linear systems, would still be of second order for gas networks,
while featuring a lower hyperbolic stability limit. These methods were also tested, but performed worse than the first/second
order methods from [11]. Lastly, an alternative second-order implicit-explicit method, the Crank-Nicolson-Adams-Bashforth
(CNAB) [1] solver, was tested, which even to a lesser degree did not reach the accuracy of the first order implicit-explicit
solver.

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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Fig. 1: Relative L2 ⊗L2 model reduction output error of the Yamal-Europe pipeline model/scenario for increasing reduced order using the
explicit, 11-stage, hyperbolic Runge-Kutta solver. MORscores 0 ≤ µ < 1 (higher is better) are given in the legend.

4.2 Structured Modified POD

In terms of reductors, variants of the Modified Proper Orthogonal Decomposition (Modified POD) were newly included.
This model reduction algorithm from [13] was designed for non-normal systems, such as gas network models, which are
derived from a hyperbolic partial differential equation and hence feature a non-normal system matrix (A). Furthermore, in [2],
this method was also tested on a parabolic system. However, there is no error bound available, and particularly no stability
guarantee, due to the oblique projection. Here a structured variant is employed, which means the pressure and mass-flux
components are projected separately. Notationwise, we follow [5], where ∗ means “for either”: pressure p and mass-flux q .

In the following three variants of modified POD are summarized.

4.2.1 Reachability- and observability-Gramian-based

The first modified POD variant is based on the empirical reachability and observability Gramians ŴR and ŴO. Given the
empirical pressure and mass-flux reachability and observability Gramians [5, Sec. 4.1.1, 4.1.2], their dominant subspaces (of
same dimension) directly make up the reducing and reconstructing projections V∗ and U∗:

ŴR,∗
tSV D
= U∗D∗U

⊺
∗ ,

ŴO,∗
tSV D
= V ⊺

∗ D∗V∗.

4.2.2 Cross-Gramian-Based

The second modified POD variant is based on the empirical cross Gramians ŴX and thus minimality. For the empirical
pressure and mass-flux cross Gramians [5, Sec. 4.1.3], the respective orthogonalized right and left dominant singular spaces
are the reducing and reconstructing projections:

ŴX,∗
tSV D
= U∗D∗V∗,

which directly extends to the empirical non-symmetric cross Gramians ŴZ,∗ [5, Sec. 4.1.4] (average minimality), the third
modified POD variant. This method is also closely related to empirical approximate balancing [2, Sec. 3.2].

To evaluate the performance of this reductor in relation to others, we again repeat the pipeline experiment from [5, Sec. 6.2],
but only compare the new (oblique) structured modified POD variants with the (Galerkin) structured empirical dominant sub-
spaces [5, Sec. 4.3] and the (Petrov-Galerkin) structured empirical balanced truncation [5, Sec. 4.4] variants. We also limit
this comparison to the port-Hamiltonian endpoint discretization [5, Sec. 2.4.2], and first order implicit-explicit solver [5,
Sec. 5.3.3], as this model-solver combo seems to be theoretically and heuristically the best reducible. Practically, this experi-
ment simulates a pipeline flow and thus allows an initial assessment of applicability.

In Fig. 2, the reduced-order-vs-error graph is plotted and the MORscores µ are listed inside the legend for this experiment.
The MORscores show that the modified POD variants perform better than the balanced truncation variants. Also, modified
POD reduced order models (ROMs) are more often stable compared to the balanced truncation ROMs. But still, the dominant
subspaces variants achieve about twice the MORscore, while not producing any unstable ROM.

Thus, in line with [13], the modified POD (and thus approximate balancing) seems more suitable than balanced truncation
for this non-normal system, yet it still does not outperform the dominant subspace method.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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Fig. 2: Relative L2 ⊗ L2 model reduction output error of the Yamal-Europe pipeline model/scenario for variants of dominant subspaces,
balanced truncation, and modified POD. MORscores 0 ≤ µ < 1 (higher is better) are given in the legend.

5 Chinese Gas Transport Network

Besides additions and improvements to the solver and reductor modules, a larger realistic network has been added, too, namely
a part of the Chinese transport network for natural gas. This network’s topology, pipeline specifications, and compressors
locations were taken from [7, 8], and resulted in a data-set, included in morgen, comprising a network with a total length of
about 8600km, 38 compressor stations, and five inflow as well as three outflow nodes. The network’s expanse together with
the number compressors constitute the complexities of this dataset.

The ensembles tested in the following consist of the port-Hamiltonian end-point discretization model, the first-order
implicit-explicit solver, and each of the six Galerkin reductors: Proper orthogonal decomposition (POD) [5, Sec. 4.2], empiri-
cal dominant subspace projection model reduction (DSPMR) in three variants [5, Sec. 4.3], goal-oriented POD (GOPOD) [5,
Sec. 4.5.1], and dynamic mode decomposition (DMD) Galerkin [5, Sec. 4.6]. As noted before, the newly added explicit hyper-
bolic Runge-Kutta solver is a potential alternative to the first-order implicit-explicit (IMEX) solver, but still not on par, hence
the IMEX method is employed; also the non-Galerkin modified POD reductor outperforms the Petrov-Galerkin reductors, but
not the Galerkin reductors, hence only the latter are compared.

In semi-discrete form, the network’s associated input-output system has 11219 states and 8 boundary ports, while a time-
step width of 40s is used. For the training, generic per port step perturbations over a time interval of 12h are used. Here, a
longer training phase than in [5, Sec. 6.1] has to be prescribed, due to expanse of network, so input perturbations can arrive
at the outputs. For testing, a randomly generated 24h scenario is generated and employed. The model reduction methods are
compared via the MORscore, measuring performance in model reduction experiments based upon the area above the error
graphs [2]. Practically, the numerical experiments were performed in MATLAB 2022a on an AMD Ryzen 5 4500U with
16GiB RAM.

The results plotted in Fig. 3 show the L2 ⊗ L2 output model reduction error, as well as the associated MORscores µ in
the legend. This experiment underscores previous results, where the empirical dominant subspaces method (reachability &
observability variant) leads in reduction performance. The second best method, POD, achieves a similar MORscore, yet also
produces some unstable reduced order models (ROMs), while the empirical dominant subspaces method only provides stable
ROMs. The GOPOD reductor achieves a comparable model reduction error for the largest reduced order models, yet the error
decays only from a certain reduced order. The minimality-, and average-minimality-based dominant subspaces methods, and
the DMD Galerkin reductors achieve basically no reduction up to the maximum order ROM.

6 Summary and Outlook

This work documents the recent advancements of the morgen platform, and tests its capabilities on a large-scale network. The
numerical results confirm previous findings for a heuristically best reductor: the structured, reachability-observability-based
empirical dominant subspaces method, here with a realistic gas network topology.

Furthermore, this software platform can also extend to power networks. Given modeling from [12], two component power
network models are available, which, when included into morgen together with a suitable solver, can use the simulation and
model reduction machinery of the morgen platform.

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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Fig. 3: Relative L2⊗L2 model reduction output error of the Chinese transport network using the Galerkin reductors. MORscores 0 ≤ µ < 1
(higher is better) are given in the legend.

Lastly, download and documentation of morgen can be found at:

https://git.io/morgen

Code Availability

The source code of the numerical experiments is licensed under BSD-2-CLAUSE LICENSE, can be obtained from:

doi:10.5281/zenodo.7157808

and is authored by: C. HIMPE and S. GRUNDEL.
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