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Synopsis

Combined reduction enables the concurrent reduction of state and parameter space dimensions, which accelerates the integration. Here the reduction of state space is based upon
experimental observations which are balanced against a models output. The parameter space is reduced based on the identifiability inside the model. In a Bayesian inversion setting with
undetermined posterior parameter distributions, the estimation duration can be significantly shortened.

Balanced Truncation
Control Systems

As an underlying model to the (Bayesian) inversion,
control systems are considered:

ẋ = f (x , u, θ)

y = g(x , u, θ).

First, to introduce balanced truncation the focus is
narrowed to linear control systems:

ẋ = Ax + Bu

y = Cx .

The empirical gramians are based on the same approach,
yet allow nonlinear and thus more general control
systems.

Controllability + Observability

Controllability quantifies how well a state can be driven
by input or control. The controllability gramian WC

characterizes the controllability of a linear system and is
computed as the smallest semi-positive definite solution
of the Lyapunov equation:

AWC + WC AT = −BBT .

Observability quantifies how well a change in state is
reflected by the outputs. The observability gramian WO

characterizes the observability of a linear system and is
computed as the smallest semi-positive definite solution
of the Lyapunov equation:

AT WO + WOA = −C T C .

Balanced Truncation

The Hankel operator maps past inputs to future outputs
via the impulse response:

H(t) =

∫ 0

−∞
CeA(t−τ )Bu(τ )dτ.

The singular values of the Hankel operator σi indicate
the importance of the associated state to the system
dynamics. To determine the least controllable and least
observable states, the controllability and observability
gramians are balanced by a similarity transformation
that balances the systems components (A,B ,C ).
Truncating the balancing transformation U ,V with
VWC V T = UT WOU = σi , the reduced linear system is
given by (VAU ,VB ,CU).

Empirical Gramians
Empirical Controllability Gramian

The empirical controllability gramian ([1]) is computed
by averaging the outer product of state time-series
centered around the steady state x̄ :

WC =
1

|Qu||Ru|

|Qu|∑
h=1

|Ru|∑
i=1

m∑
j=1

1

c2
h

∫ ∞
0

Ψhij(t)dt

Ψhij(t) = (xhij(t)− x̄)(xhij(t)− x̄)∗ ∈ R
n×n.

xhij is a state time-series generated using the perturbed
input uhij(t) = chSieju(t) + ū based on the perturbation
sets:

Eu = {ei ∈ R
j ; ‖ei‖ = 1; eiej 6=i = 0; i = 1, . . . ,m}

Ru = {Si ∈ R
j×j ; S∗i Si = 1; i = 1, . . . , s}

Qu = {ci ∈ R; ci > 0; i = 1, . . . , q}.
For linear systems the empirical controllability gramian
equals the classic controllability gramian, but since being
based on snapshots extends also to nonlinear systems!

Empirical Observability Gramian

The empirical observability gramian ([1]) is computed by
averaging the inner product of output time-series
centered around the steady state output ȳ :

WO =
1

|Qx||Rx|

|Qx |∑
k=1

|Rx |∑
l=1

1

d 2
k

Tl

∫ ∞
0

Ψkl(t)dt T ∗l

Ψkl
ab = (y kla(t)− ȳ)∗(y klb(t)− ȳ) ∈ R.

y kla is an output time-series generated using the
perturbed initial state xkla

0 = dkSl fa + x̄ based on the
perturbation sets:

Ex = {fi ∈ R
n; ‖fi‖ = 1; fifj 6=i = 0; i = 1, . . . , n}

Rx = {Ti ∈ R
n×n; T ∗i Ti = 1; i = 1, . . . , t}

Qx = {di ∈ R; di > 0; i = 1, . . . , r}.
For linear systems the empirical observability gramian
equals the classic observability gramian, but since being
based on snapshots extends also to nonlinear systems!

Empirical Identifiability Gramian

A system can be augmented by a constant state for each
parameter with the parameter value as initial state:

ẋa =

(
ẋ

θ̇

)
=

(
f (x , u, θ)

0

)
xa(0) =

(
x0

θ

)
.

Then the empirical identifiability gramian ([2]) is given
as the empirical observability gramian of this augmented
system:

WO,a =

(
WO WM

W ∗
M WP

)
.

The lower right block with size according to the
parameter space dimension comprises the observability
of the parameters:

WI = WP −W ∗
MWO

−1WM ≈ WP.

Parameters can then be reduced by truncation based on
the singular values of WI .

Reduced Inversion
Prediction + Experimental Observability

Introduced by [3], the Inference for Prediction approach
extends the concept of balanced truncation of
controllability gramian and observability gramian to
balancing experimentally observed data and model
simulations. Experiment Observability WO,E is computed
as the empirical observability gramian based on the
experimentally observed output. Prediction Observability
WO,P is computed as the empirical observability gramian
based on simulations of the underlying model.

Combined Reduction

For a combined reduction of state and parameter spaces,
first, the parameter space is reduced via a projection
based on the singular values of the identifiability
gramian WI of an augmented prediction observability
gramian WO,P ,a. Then, the state space dimension is
reduced using balanced truncation. As opposed to
regular balanced truncation of controllability and
observability gramian σi =

√
λ(WC WO), here the

prediction and experiment observability gramian
ξi =

√
λ(WO,E WO,P) are balanced and truncated.

Data-Driven Reduction

Since the empirical gramians are solely based on
evaluating time-series not only synthetic simulations, but
also experimental data can be used to assemble these
gramian matrices. Usually only the systems output is
accessible to measurement, thus only the observability
gramian is employed. If the system is symmetric
controllability information can be corporated too. The
prediction observability evaluates simulations of the
model, thus also the empirical cross gramian and
empirical joint gramian, see [4], apply.

Experiments
Application

For reconstruction of connectivity between brain regions
of which the individual regions activity level is measured
using EEG the DCM-EEG model ([5]) is available:

ẍ = Âx + Aθ tanh Kθx + Bu

y = Cx .

The parametrized Hyperbolic Network Model with
parametrized system matrix is a simplified version,
chosen here as underlying model:

ẋ = Aθ tanh x + Bu

y = Cx .

Synthetic Experimental Data

For randomly generated parameters a model simulation
is generated for impulsive input to which Gaussian noise
is added to provide the experimentally observed data.
The systems dimensions are set to 4 inputs and outputs,
16 states and thus 256 parameters. The (Bayesian)
inversion is performed assuming a stable system matrix
A and flat priors. Averaged over 10 random systems, the
results are:

Offline Time Online Time Relative Error
Full Order 0s 18.7s 0.0148

Reduced Order 21.9s 4.8s 0.0146

Error in Full and Reduced Simulations

Full Order
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Reduced Order
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• Source code available at: http://j.mp/acces13 under open source license and compatible with MATLAB and OCTAVE
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