Christian Himpe (christian.himpe@uni-muenster.de)
Mario Ohlberger (mario.ohlberger@uni-muenster.de)

Abstract

In applications requiring model-constrained optimization, model reduction may be indispensable to facilitate an acceptable timescale for the solution. For models with high-dimensional state- and also high-dimensional parameter-spaces the optimization is impeded twice. First, due to the high-dimensional parameter-space many solutions for varying locations in the parameter-space are usually required, second, each of these solutions is costly due to the high-dimensional state-space. A combined state- and parameter-space reduction as proposed in [1] can adress these issues. This combined reduction relies on a greedy sampling of the parameter-space to iteratively assemble a low-dimensional parameter base and a POD-based reduction at locations of the parameter base components. Yet, the greedy algorithm still requires the sampling in the high-dimensional parameter-space. An extensions to this algorithm is proposed in [2], which uses a Monte-Carlo approach to select low-dimensional "hyper"-bases for the parameter-space over which the greedy sampling is performed. And since this combined reduction only requires solutions of the associated model, it is generally applicable also to nonlinear system, which will be demonstrated.
github.com/gramian/optmor open-source, compatible with Matlab \& Octave

$$
\theta_{l+1}=\underset{\theta \in \Theta,\|\theta\|=1}{\arg \max }\left\|y(\theta)-y\left(\Pi_{l} \Pi_{l}^{T} \theta\right)\right\|_{2}^{2},
$$

subject to:

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), u(t), \theta), \\
& y(t)=g(x(t), u(t), \theta), \\
& x(0)=x_{0}, \\
& \Pi_{/}^{T} \Pi_{I}=\mathbb{1},
\end{aligned}
$$

Model Properties

Nonlinear control system model,
assumed to be asymptotically stable,
and a nonlinear parameter mapping $\theta \mapsto[f, g]$
high-dimensional state-space $\operatorname{dim}(x(t)) \gg 1$,
high-dimensional parameter-space $\operatorname{dim}(\theta) \gg 1$,
low-dimensional input-space $\operatorname{dim}(u(t)) \ll \operatorname{dim}(x(t))$,
low-dimensional output-space $\operatorname{dim}(y(t)) \ll \operatorname{dim}(x(t))$.
$\dot{x}(t)=f(x(t), u(t), \theta)$,
$y(t)=g(x(t), u(t), \theta)$,
$x(0)=x_{0}$,
$u(t) \in L_{2}$

Parameter-Space Reduction

Iterative procedure, each iteration extends reduced basis incrementally,
based on best approximating subspace,
using (adaptive) greedy sampling strategy [3],
selecting location in the parameter-space that maximizes the error between full and reduced order model (ROM), leads to model-constrained optimization problem,
with regularization handling parameter-space constraints [4], here Tikhonov regularization;
numerical computation by negation of cost-functional resulting in a minimzation problem.

State-Space Reduction

Extract dominant mode(s) from current iterations selected parameter, using energy-based methods, either:
input-to-state mapping: proper orthogonal decomposition (POD) [5], state-to-output mapping: Hessian-based reduction [6],
input-to-output mapping: goal-oriented reduction [7],
state-space reduction depends on parameter-space basis;
for nonlinear systems POD is the most accessible method,

$$
\begin{aligned}
U_{I} & =\underset{U T}{\arg \min }\|r(U)\|_{2}^{2} \\
r & =\left\{\begin{array}{l}
x(u)-x_{r}(u ; U) \\
y\left(x_{0}\right)-y_{r}\left(x_{r, 0} ; U\right) \\
y(u)-y_{r}(u ; U)
\end{array}\right.
\end{aligned}
$$

ptimization-Based Combined Reduction

```
\(\theta_{0} \longleftarrow \bar{\theta}\)
\(\Pi_{0} \longleftarrow \theta_{0}\)
\(\bar{x}_{0} \longleftarrow \operatorname{Pod}_{1}\left(x\left(\theta_{0}\right)\right)\)
\(U_{0} \longleftarrow \bar{x}\left(\theta_{0}\right)\)
for \(I=1: R\) do
\(\theta_{l+1} \longleftarrow \arg \min -J\left(\theta ; U_{l}, \Pi_{l}\right)+\mathcal{R}_{2}\left(\theta ; \Pi_{l}\right)\)
\(\Pi_{l+1} \longleftarrow \operatorname{orth}\left(\Pi_{l}, \theta_{l}\right)\)
\(U_{I+1} \longleftarrow \operatorname{orth}\left(U_{l}, \bar{x}\left(\theta_{l}\right)\right)\)
```


Combined Reduction

Fuses greedy-algorithm-based parameter-space reduction with the POD-based state-space reduction, initialized by nominal (prior) parameter,
solves each iteration the greedy regularized optimization problem, incorporates new parameter and state base components by orthogonalization, iterates until a certain base size or error criteria is met,
assembles parameter and state Galerkin projections; algorithm based on [1].

Enhancements

Inverse problems naturally contain observed / measured data
by a data-driven regularization operator [2],
this improves ROM accuracy, but fixes ROM to data-set
Greedy sampling still requires high-dimensional optimization,
selecting a random low-dimensional random hyper-base each iteration,
leads to the Monte-Carlo base extension [2] which reduces offline times.
Both enhancements complement each other.

$$
\begin{aligned}
\mathcal{R}_{d}(\theta) & :=\left\|y_{d}-y_{r}(\theta)\right\|_{2}^{2} \\
\rightarrow \theta_{l} & =\underset{\theta \in \Theta}{\arg \max }\left\|y(\theta)-y_{r}\left(\theta_{r}\right)\right\|_{2}^{2}-\beta_{2} \mathcal{R}_{2}(\theta)-\beta_{d} \mathcal{R}_{d}(\theta) \\
\theta & \approx \tilde{\theta}:=\sum_{i \ll \operatorname{dim}(\theta)} a_{i} r_{i}, \quad r_{i} \leftarrow \mathcal{U}_{[0,1]} \\
\rightarrow \theta_{l} & =\underset{\theta \in \Theta}{\arg \max }\left\|y\left(\tilde{\theta}_{r}\right)-y_{r}\left(\tilde{\theta}_{r}\right)\right\|_{2}^{2}-\beta_{2} \mathcal{R}_{2}(\tilde{\theta})
\end{aligned}
$$

Numerical Test

SISO system,
hyperbolic network model,
random, but stable network,
state-space dimension $\operatorname{dim}(x(t))=100$,
parameter-space dimension $\operatorname{dim}(\theta)=100$ uniformly random parameters $\theta_{i} \leftarrow \mathcal{U}_{[0,1]}$, parametrization: $K_{i i}=\theta_{i}$.

Read Me

[1] C.E. Lieberman, K. Willcox, and O. Ghattas. Parameter and state model reduction for large-scale statistical inverse problems. SIAM Journal on Scientific Computing, 32(5):2523-2542, 2010 [2] C. Himpe and M. Ohlberger. Data-driven combined state and parameter reduction for inverse problems. Advanced in Computational Mathematics, (Accepted), 2015
[3] T. Bui-Thanh, K. Willcox, and O. Ghattas. Model reduction for large-scale systems with high-dimensional parametric input space. SIAM Journal on Scientific Computing, 30(6):3270-3288, 2008.
[4] L. Eldén. Algorithms for the regularization of ill-conditioned least squares problems. BIT Numerical Mathematics, 17(2):134-145, 1977.
[5] L. Sirovich. Turbulence and the dynamics of coherent structures. Quarterly of Applied Mathematics, 45(3):561-571, 1987.
[6] C. Lieberman and B. Van Bloemen Waanders. Hessian-based model reduction approach to solving large-scale source inversion problems. CSRI Summer Proceedings: pages 37-48, 2007.
[7] K. Willcox, O. Ghattas, B. Van Bloemen Waanders, and B. Bader. An optimization framework for goal-oriented, model-based reduction of large-scale systems. 44th IEEE Conference on Decision and Control: 2265-2271, 2005.

