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About
Dynamic Connectivity Models Model Order Reduction Dynamic Causal Modelling
In the neurosciences dynamic connectivity models describe the Model order reduction refers to the process of computing low- Dynamic causal modelling [2] is a framework for hypothe-
mesoscale information propagation between brain regions in dimensional surrogate models exhibiting the same dynamics as sis testing based on bayesian inference constrained by dy-
terms of associated functional measurements. A network sub- the original model. In this setting, gramian-based combined namic connectivity models, which are given by nonlinear input-
model models the average neuronal activity, which a forward parametric state-space reduction and parameter-space reduc- output systems. The network submodel's connectivity is
submodel transforms to the observable measurements. tion for nonlinear input-output systems is considered [1]. parametrized and inferred from functional measurements.
e Stimulus Experiments e Data model with Gaussian noise:
\
u(t) = y(t) A 1. Record Data Start here ya(t) = y(t;0) + ¢
e Functional neuroimaging: Correlat' e Network and Forward model:
on: x .
—EEG & MEG Causayj; (t) = fla(t),u(t),0)
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—fMRI & fNIRS v 2. Setup Model — y(t) = g(=(t), u(t),0)
State Reduction Parameter Reduction
e Large state-space, small input- and output-spaces: {— 2a Com bi ned Red uction — e High dimensional parameter-space:
N :=dim(z(t)) > 1 Combined S 1P Deduct dim(f) > 1
— — ombined State and Farameter rReduction
M = dim(u(t)) < N, Q = dim(y(¢)) < N ( ) e Truncated-projection-based model reduction:

e [runcated-projection-based model reduction:

2 (t) = Va(t) — a(t) ~ Uz, (t)

0.(t) .= A0 — 0 = 110,
e [arget reduced order model property:

y(0) — v (0r)]| <1
e Augmented System:
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e Empirical cross-identifiability Gramian [4]:

e [arget reduced order model property:
ly(0) — v, ()] < 1

e Empirical-Gramian-based model order reduction:
Qjmzl"'M(t)’ ynzl...N(t)

e Empirical cross Gramian [4]:
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e Direct Truncation:

e Non-symmetric (average) cross Gramian: TSVD
y (average) Wi =" TAA — A =117
WZ — ZMl ZQ : WX o Fig. 1: Relative Ly combined reduction Fig. 2: Relative Lo combined reduction
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Direct T i (output) error for varying reduced state and (output) error for varying reduced state and ® Reduced Order Model:
® LirecC runcation. :
parameter dimension of the fMRI & fNIRS parameter dimension of the EEG & MEG CIZT(t) — Vf(UCCf,«(t) U(t) H@r)
Wx 2P UDV -V =UT ]
X — — - dynamic causal model from [2]. dynamic causal model from [3]. yr(t) — g(Ung(t), u(t)) H@T)

e Bayesian inference: e Maximum-A-Posteriori Estimate:

P(6ly) o P(410)P(0) | < 3. Inverse Problem e (P(O]y)

e Optimization of posterior: e Model comparison based on model evidence

P(0ly) oc arg min [lya — y(0)[|7, + 510113

e 4. Evaluation S PU(0) > Ply(0:)

Summary & Conclusion What’s Next?

e Respective sources for cross-gramian-based information extraction: e Instead of specific models for each neuroimaging technique:

— State-space reduction: input-to-output coherence ® A universal connectivity model;

— Parameter-space reduction: state-to-output coherence e promising candidate: Hyperbolic Network Model [5]:
e The empirical-cross-gramian-based combined state and parameter reduction applies to any t(t) = A(f) tanh(Kx(t)) + Bu(t), y(t) = Cux(t)
model of the form: e Preliminary results show:
o(t) = fx(t), u(t),0), y(t) = g(x(t), ult),) - —Works well for EEG & MEG due to the similar nonlinearities
e For the dynamic causal models, low-dimensional spaces contain the principal information. — Has to be tuned for fMRI & fNIRS.
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The presented numerical results are part of
[1] and can be reproduced using the com-
panion code:
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