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About

Dynamic Connectivity Models

In the neurosciences dynamic connectivity models describe the
mesoscale information propagation between brain regions in
terms of associated functional measurements. A network sub-
model models the average neuronal activity, which a forward
submodel transforms to the observable measurements.

Model Order Reduction

Model order reduction refers to the process of computing low-
dimensional surrogate models exhibiting the same dynamics as
the original model. In this setting, gramian-based combined
parametric state-space reduction and parameter-space reduc-
tion for nonlinear input-output systems is considered [1].

Dynamic Causal Modelling

Dynamic causal modelling [2] is a framework for hypothe-
sis testing based on bayesian inference constrained by dy-
namic connectivity models, which are given by nonlinear input-
output systems. The network submodel’s connectivity is
parametrized and inferred from functional measurements.

• Stimulus Experiments

u(t)
?
→ y(t)

• Functional neuroimaging:

–EEG & MEG

– fMRI & fNIRS

← 1. Record Data

2. Setup Model →

•Data model with Gaussian noise:

yd(t) = y(t; θ) + ε

•Network and Forward model:

ẋ(t) = f (x(t), u(t), θ)

y(t) = g(x(t), u(t), θ)

State Reduction

• Large state-space, small input- and output-spaces:

N := dim(x(t))≫ 1

M := dim(u(t))≪ N,Q := dim(y(t))≪ N

•Truncated-projection-based model reduction:

xr(t) = V x(t)→ x(t) ≈ Uxr(t)

•Target reduced order model property:

‖y(θ)− yr(θ)‖ ≪ 1

•Empirical-Gramian-based model order reduction:

xm=1...M(t), yn=1...N(t)

•Empirical cross Gramian [4]:

WX=

M
∑

m=1

∫

Ψm(t)dt ∈ R
N×N ,Ψm

ij = 〈x
m
i (t), y

j
m(t)〉

•Non-symmetric (average) cross Gramian:

WZ =
∑M

i=1

∑Q
j=1WX,ij

•Direct Truncation:

WX
TSVD
= UDV → V := U⊺

←2a. Combined Reduction→
(Combined State and Parameter Reduction)
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Fig. 1: Relative L2 combined reduction

(output) error for varying reduced state and

parameter dimension of the fMRI & fNIRS

dynamic causal model from [2].
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Fig. 2: Relative L2 combined reduction

(output) error for varying reduced state and

parameter dimension of the EEG & MEG

dynamic causal model from [3].

Parameter Reduction

•High dimensional parameter-space:

dim(θ)≫ 1

•Truncated-projection-based model reduction:

θr(t) := Λθ → θ ≈ Πθr

•Target reduced order model property:

‖y(θ)− yr(θr)‖ ≪ 1

•Augmented System:
(

ẋ

θ̇

)

=

(

f (x(t), u(t), θ)
0

)

•Empirical cross-identifiability Gramian [4]:

WJ =

(

WX Wm

0 0

)

→WÏ = W ⊺

m(WX+W
⊺

X)
−1Wm

•Direct Truncation:

WÏ

TSVD
= Π∆Λ→ Λ := Π⊺

•Reduced Order Model:

ẋr(t) = V f (Uxr(t), u(t),Πθr)

yr(t) = g(Uxr(t), u(t),Πθr)

•Bayesian inference:

P (θ|y) ∝ P (y|θ)P (θ)

•Optimization of posterior:

P (θ|y) ∝ argmin
θ

‖yd − y(θ)‖2L2
+ β‖θ‖22

← 3. Inverse Problem

4. Evaluation →

•Maximum-A-Posteriori Estimate:

vec−1(P (θ|y))

•Model comparison based on model evidence

P (y(θ1))
?
> P (y(θ2))

Summary & Conclusion

•Respective sources for cross-gramian-based information extraction:

– State-space reduction: input-to-output coherence

–Parameter-space reduction: state-to-output coherence

•The empirical-cross-gramian-based combined state and parameter reduction applies to any
model of the form:

ẋ(t) = f (x(t), u(t), θ), y(t) = g(x(t), u(t), θ)

• For the dynamic causal models, low-dimensional spaces contain the principal information.

What’s Next?

• Instead of specific models for each neuroimaging technique:

•A universal connectivity model;

• promising candidate: Hyperbolic Network Model [5]:

ẋ(t) = A(θ) tanh(Kx(t)) + Bu(t), y(t) = Cx(t)

•Preliminary results show:

–Works well for EEG & MEG due to the similar nonlinearities

–Has to be tuned for fMRI & fNIRS.
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RUNME
The presented numerical results are part of
[1] and can be reproduced using the com-
panion code:

Correlation: ✗Causality: ✓
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