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Motivation

How are brain regions coupled?
How does this coupling change in an experimental context?
How are stimuli propagated between brain regions?
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Dynamic Causal Modeling Process

1 Form Hypothesis
2 Conduct Experiment
3 Preprocess Data (Filtering, Reduction)
4 Select Model
5 Estimate Parameters
6 Compute Solution
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Model Principles

Dynamic
Deterministic
Multiple Inputs and Outputs
Two Component Model

Dynamic Submodel
Forward Submodel

Differ by Data Acquisition Method

fMRI
EEG/MEG
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DCM for fMRI

Dynamic Submodel: Bilinear Dynamic System
Forward Submodel: Balloon-Windkessel Model
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DCM for fMRI (Dynamic)

Example:
3 brain regions (z ∈ R3)
2 input sources (i ∈ R2)

1 direct input source (i1)
1 lateral input source (i2)

ż = Az + B2zi2 + Ci

A =

−1 0 0
0.2 −1 0.4
0.3 0 −1

 B1 =

0 0 0
0 0 0
0 0 0

 B2 =

 0 0 0
0 0 0
0.7 0 0

 C =

1 0
0 0
0 0


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ż = Az + B1zi1 + B2zi2 + Ci

A =

−1 0 0
0.2 −1 0.4
0.3 0 −1

 B1 =

0 0 0
0 0 0
0 0 0

 B2 =

 0 0 0
0 0 0
0.7 0 0

 C =

1 0
0 0
0 0


Christian Himpe () DCM 08.12.2011 7 / 23



DCM for fMRI (Dynamic)

Example:
3 brain regions (z ∈ R3)
2 input sources (i ∈ R2)

1 direct input source (i1)
1 lateral input source (i2)
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DCM for MRI (Forward)

vasolidatory signal (s):

receives input (output of the dynamic system)
dampens with itself
and with normalized inflow

normalized inflow (f ):
is caused by the vasoladitory signal

normalized venomous volume (v):
difference between normalized inflow and outflow

normalized deoxyhemoglobin content (q):
difference between inflow and outflow

output (y):
weighted sum of venomous volume and deoxyhemoglobin content
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DCM for MRI (Forward)

z
↑
ṡ

↑↓
ḟ

↗ ↖
v̇ −→ q̇

↖ ↗
y
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DCM for EEG

Dynamic Submodel: Jansen Model
Forward Submodel: Linear Transformation
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DCM for EEG (Dynamic)

Tripartioning:

E Excitatory Subpopulation
↑↓ (Intrinsic Coupling)
O (Excitatory) Output Subpopulation
↑↓ (Intrinsic Coupling)
I Inhibitory Subpopulation

CF =

0 . .
. 0 .
. . 0

 CB =

0 . .
. 0 .
. . 0

 CL =

0 . .
. 0 .
. . 0


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DCM for EEG (Dynamic)

Forward, Backward, Lateral Connections:

E1 E2 E1 E2 E1 E2
↑↓ ↗ ↑↓ ↑↓ ↑↓ ↑↓ ↗ ↑↓
O1 O2 O1 → O2 O1 → O2
↑↓ ↑↓ ↑↓ ↘ ↑↓ ↑↓ ↘ ↑↓
I1 I2 I1 I2 I1 I2

CF =

0 . .
. 0 .
. . 0

 CB =

0 . .
. 0 .
. . 0

 CL =

0 . .
. 0 .
. . 0



Christian Himpe () DCM 08.12.2011 12 / 23



DCM for EEG (Dynamic)

Forward, Backward, Lateral Connections:

E1 E2 E1 E2 E1 E2
↑↓ ↗ ↑↓ ↑↓ ↑↓ ↑↓ ↗ ↑↓
O1 O2 O1 → O2 O1 → O2
↑↓ ↑↓ ↑↓ ↘ ↑↓ ↑↓ ↘ ↑↓
I1 I2 I1 I2 I1 I2

CF =

0 . .
. 0 .
. . 0

 CB =

0 . .
. 0 .
. . 0

 CL =

0 . .
. 0 .
. . 0



Christian Himpe () DCM 08.12.2011 12 / 23



Model Overview and Drift

h = y + Xβ + ε

Drift:

Frequency Filtering (ie equipment-related drift) →Discrete Cosine Set
Y-shift of data → 0th-Order is Constant Term

Model is now complete!
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Parameter Estimation

Bayesian Inversion
All parameters are assumed to independently and identically distributed
Bayes Rule is assumed to apply P(A|B) = P(B|A)P(B)

P(A)

Prior Information on Parameters
EM-algorithm (Two Step Procedure)

1 E-Step (Expectation)

Estimate Mean
Least-Squares-Method

2 M-Step (Maximization)

Estimate Hyperparameters
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Parameter Distribution Estimation
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Parameter Distribution Estimation

Bayesian Inversion
All parameters are assumed to independently and identically distributed
Bayes Rule is assumed to apply
Prior Information on Parameters

EM-algorithm (Two Step Procedure)
1 E-Step (Expectation)

Estimate Mean
Weighted-Least-Squares-Method

2 M-Step (Maximization)

Estimate Hyperparameters

Christian Himpe () DCM 08.12.2011 14 / 23



Parameter Distribution Estimation

Bayesian Inversion
All parameters are assumed to independently and identically distributed
Bayes Rule is assumed to apply
Prior Information on Parameters

EM-algorithm (Two Step Procedure)
1 E-Step (Expectation)

Estimate Mean
Augmented-Weighted-Least-Squares-Method

2 M-Step (Maximization)

Estimate Hyperparameters
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Parameter Distribution Estimation

Bayesian Inversion
All parameters are assumed to independently and identically distributed
Bayes Rule is assumed to apply
Prior Information on Parameters

EM-algorithm (Two Step Procedure)
1 E-Step (Expectation)

Estimate Mean
Augmented-Weighted-Least-Squares-Method

2 M-Step (Maximization)

Estimate Hyperparameters
Newton-method
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Parameter Distribution Estimation

Bayesian Inversion
All parameters are assumed to independently and identically distributed
Bayes Rule is assumed to apply
Prior Information on Parameters

EM-algorithm (Two Step Procedure)
1 E-Step (Expectation)

Estimate Mean
Augmented-Weighted-Least-Squares-Method

2 M-Step (Maximization)

Estimate Hyperparameters
Newton-method for Maximum Likelihood Problems
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Parameter Distribution Estimation

Bayesian Inversion
All parameters are assumed to independently and identically distributed
Bayes Rule is assumed to apply
Prior Information on Parameters

EM-algorithm (Two Step Procedure)
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Augmented-Weighted-Least-Squares-Method

2 M-Step (Maximization)
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EM-algorithm (Two Step Procedure)
1 E-Step (Expectation)

Estimate Mean
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Parameter Distribution Estimation

Bayesian Inversion
All parameters are assumed to independently and identically distributed
Bayes Rule is assumed to apply
Prior Information on Parameters

EM-algorithm (Two Step Procedure)
1 E-Step (Expectation)

Estimate Mean
Augmented-Weighted-Least-Squares-Method

2 M-Step (Maximization)

Estimate Hyperparameters
Fisher-Scoring-Algorithm
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EM-Algorithm Improvements

1 Residual Forming Matrix (Residuals in M-Step)
→Rearrange computation sequence

2 Traces of Products (Derivatives in M-Step)
→Compute traces directly

3 Solving Linear Systems (in E- and M-Step)
→Cholesky direct solver

4 Preventing Double Calculations (M-Step and E-Step)
→Rearrange E-Step and recycle in M-Step
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Implementation Details
6500 LoC in C++
· no parsing and interpreting overhead
· machine specific optimizations possible

Parallelization with OpenMP
· Parallelization of 1st Derivative of E-Step (Jacobian)
· Parallelization of 1st and “2nd” Derivative of M-Step

Runge-Kutta-Fehlberg Solver

· 5th Order Single Step Solver
· allows extension to adaptive stepping

Modular Dynamic and Forward Submodels
· Extendable to further submodels
· Easy Switching between submodels
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Benchmarks

Dataset Classic | Classic ‖ Improved | Improved ‖
syn2f 74.68s 33.43s 8.38s 2.73s
syn2b 74.61s 32.92s 8.44s 2.66s
syn2l 74.40s 33.12s 9.97s 2.41s
syn3a 498.78s 169.14s 21.57s 5.39s
syn3b 495.31s 167.75s 21.66s 5.35s
syn3c 499.30s 166.36s 21.50s 5.52s
syn3d 500.64s 168.26s 21.68s 5.44s
syn3e 496.84s 168.27s 21.56s 5.33s
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Benchmarks
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Estimation Process (Real Data)

Experimental context:
Fear Extinction

Situation:
3 Regions (AMY, CA1, PFC)
1 (direct) Input (sound)

Hypothesis:
full connectivity possible
AMY → CA1 → PFC

Christian Himpe () DCM 08.12.2011 19 / 23



Estimation Process (Real Data)
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Estimation Process (Real Data)

‘
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Estimation Process (Real Data)
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Outlook

Runtime reduction
Improvement of EM-algorithm
More dynamic and forward submodels
Include preprocessing capabilities
Lower order and adaptive solvers
Include further DCM extensions
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tl;dl

A modular and extendable implementation of dynamic causal modeling
with a notable runtime reduction.

( Thesis: http://j.mp/himpe )
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