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About

IOD ( = Implentation Of Dynamic-Causal-Modelling)

Version 1.0 (2011, Diploma Thesis)
Version 2.0 (planned for Q4/2012)
Open Source (zlib/libpng License)
Written in C++11
Parallelization using OpenMP
No required dependencies
Optional: gnuplot, graphwiz, tcmalloc, mutt

together with:
Prof. Dr. Mario Ohlberger, Dr. Thomas Seidenbecher, Dr. Jörg Lesting



Capabilities

Scientific:
DCM for fMRI (Linear, Bilinear, Nonlinear)
DCM for EEG (Default, Extended, Adaption, Habituation,
Linearized)
Simulations of Systems

Technical:
Modular Dynamic and Forward Models
Order 1, 2, 5 Runge-Kutta Solver (optionally adaptive)
Remote Execution (optionally mailing results)
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Extension

Major:
EM-Algorithm Optimization
Drift Filter

Minor:
Positive (Definite) Temporal Correlation
Fast Model Evidence Calculations
Bandpass Filter
XHTML/SVG Reporting



EM-Algorithm Optimization

Using the following linear algebra lemma:
1 (AB)T = BTAT

2 tr(AB) =
∑

i
∑

j aijbji

3 tr(ABC ) = tr(BCA) = tr(CAB)

reduces significantly the number of flops,
as well as the memory consumptions,
especially inside the M-step;
even more when recycling the E-step.

For more info see: http://j.mp/himpe (p.30-36).

http://j.mp/himpe
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Drift Filter

Drift Term Xβ:
Additional set of parameters β,
reflecting unrelated oscillations,
modelled by a discrete cosine set X .

The drift matrix X can be customized to a high-pass filter.
It is not advisable, though possible, to use as low-pass filter.
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Open Issues

Major:
1 Post-Hoc Model Selection (2.0)
2 EEG Model Restructuring (2.0)
3 Model Reduction (3.0)
4 Optimal Maps (3.0)



Post-Hoc Model Selection

An implementation of “Post-hoc selection of dynamic causal
models”, M.J. Rosa, K. Friston, W. Penny, Journal of
Neuroscience Methods, Volume 208, Issue 1, 30 June 2012,
Pages 66-78
http://j.mp/posthoc

Compute posterior of multiple reduced (connectivity) models,
by estimating the full (connectivity) model
and relate to the reduced models priors.

http://j.mp/posthoc
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EEG Model Restructuring

Split EEG model into:
linear
nonlinear

submodels,

to:
1 improve performance and
2 prepare for model reduction.
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Model Reduction

Considering many (>100) regions...

the estimation of connectivity parameters consumes the bulk
of computation time,
because the differentiation (requiring integrations) dominates
(except for exponential maps, but they are too limiting
anyway).
Thus the current model structure is not viable here.

Model Reduction to the Rescue!
Find a surrogate model, with a low dimensional parameter space.
Two approaches are considered:

1 Projection (Complex, Precise)
2 Truncation (Simple, Coarse)
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Optimal Maps

An implementation of “Bayesian Inference with Optimal
Maps”,T. A. El Moselhy, Y. M. Marzouk, arXiv
http://j.mp/optimalmaps

Replacing the EM-algorithm using optimal maps.
Find a map that transforms the prior into the posterior
distribution,
using for example low-order polynomials,
until the variance drops below some threshold.

http://j.mp/optimalmaps
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Sample Report

Goto:

http://j.mp/iodreport

http://j.mp/iodreport


tl;dl

Modular Implementation ( http://j.mp/himpe )
Replace the EM algorithm ( http://j.mp/optimalmaps )
Include Model Reduction

Thank You

http://j.mp/himpe
http://j.mp/optimalmaps

