An Implementation Of Dynamic-Causal-Modelling

Christian Himpe
christian.himpe@wwu.de

WWU Münster

Institute for Computational and Applied Mathematics
27.07.2012

Overview

Contents:
1 About
2 Capabilities
3 Extensions
4 Open Issues
5 Sample Report

About

IOD (= Implentation Of Dynamic-Causal-Modelling)
■ Version 1.0 (2011, Diploma Thesis)

- Version 2.0 (planned for Q4/2012)
- Open Source (zlib/libpng License)
- Written in $\mathrm{C}++11$
- Parallelization using OpenMP
- No required dependencies

■ Optional: gnuplot, graphwiz, tcmalloc, mutt
together with:
Prof. Dr. Mario Ohlberger, Dr. Thomas Seidenbecher, Dr. Jörg Lesting

Capabilities

Scientific:
■ DCM for fMRI (Linear, Bilinear, Nonlinear)

- DCM for EEG (Default, Extended, Adaption, Habituation, Linearized)
- Simulations of Systems

Capabilities

Scientific:

- DCM for fMRI (Linear, Bilinear, Nonlinear)
- DCM for EEG (Default, Extended, Adaption, Habituation, Linearized)
- Simulations of Systems

Technical:

- Modular Dynamic and Forward Models

■ Order 1, 2, 5 Runge-Kutta Solver (optionally adaptive)

- Remote Execution (optionally mailing results)

Extension

Major:

- EM-Algorithm Optimization
- Drift Filter

Minor:

- Positive (Definite) Temporal Correlation

■ Fast Model Evidence Calculations

- Bandpass Filter
- XHTML/SVG Reporting

EM-Algorithm Optimization

Using the following linear algebra lemma:

$$
\begin{aligned}
& 1(A B)^{T}=B^{T} A^{T} \\
& 2 \operatorname{tr}(A B)=\sum_{i} \sum_{j} a_{i j} b_{j i} \\
& 3 \operatorname{tr}(A B C)=\operatorname{tr}(B C A)=\operatorname{tr}(C A B)
\end{aligned}
$$

EM-Algorithm Optimization

Using the following linear algebra lemma:
$1(A B)^{T}=B^{T} A^{T}$
2 $\operatorname{tr}(A B)=\sum_{i} \sum_{j} a_{i j} b_{j i}$
$3 \operatorname{tr}(A B C)=\operatorname{tr}(B C A)=\operatorname{tr}(C A B)$

- reduces significantly the number of flops,

EM-Algorithm Optimization

Using the following linear algebra lemma:
$1(A B)^{T}=B^{T} A^{T}$
$2 \operatorname{tr}(A B)=\sum_{i} \sum_{j} a_{i j} b_{j i}$
$3 \operatorname{tr}(A B C)=\operatorname{tr}(B C A)=\operatorname{tr}(C A B)$

- reduces significantly the number of flops,
- as well as the memory consumptions,

EM-Algorithm Optimization

Using the following linear algebra lemma:
$1(A B)^{T}=B^{T} A^{T}$
$2 \operatorname{tr}(A B)=\sum_{i} \sum_{j} a_{i j} b_{j i}$
$3 \operatorname{tr}(A B C)=\operatorname{tr}(B C A)=\operatorname{tr}(C A B)$

- reduces significantly the number of flops,
- as well as the memory consumptions,
- especially inside the M-step;

EM-Algorithm Optimization

Using the following linear algebra lemma:
$1(A B)^{T}=B^{T} A^{T}$
2 $\operatorname{tr}(A B)=\sum_{i} \sum_{j} a_{i j} b_{j i}$
$3 \operatorname{tr}(A B C)=\operatorname{tr}(B C A)=\operatorname{tr}(C A B)$

- reduces significantly the number of flops,
- as well as the memory consumptions,
- especially inside the M-step;
- even more when recycling the E-step.

EM-Algorithm Optimization

Using the following linear algebra lemma:
$1(A B)^{T}=B^{T} A^{T}$
$2 \operatorname{tr}(A B)=\sum_{i} \sum_{j} a_{i j} b_{j i}$
$3 \operatorname{tr}(A B C)=\operatorname{tr}(B C A)=\operatorname{tr}(C A B)$

- reduces significantly the number of flops,
- as well as the memory consumptions,
- especially inside the M -step;
- even more when recycling the E-step.

For more info see: http://j.mp/himpe (p.30-36).

Drift Filter

Drift Term $X \beta$:

- Additional set of parameters β,
- reflecting unrelated oscillations,
- modelled by a discrete cosine set X.

Drift Filter

Drift Term $X \beta$:

- Additional set of parameters β,
- reflecting unrelated oscillations,
- modelled by a discrete cosine set X.
- The drift matrix X can be customized to a high-pass filter.

Drift Filter

Drift Term $X \beta$:

- Additional set of parameters β,
- reflecting unrelated oscillations,
- modelled by a discrete cosine set X.
- The drift matrix X can be customized to a high-pass filter.
- It is not advisable, though possible, to use as low-pass filter.

Open Issues

Major:
1 Post-Hoc Model Selection (2.0)
2 EEG Model Restructuring (2.0)
3 Model Reduction (3.0)
4 Optimal Maps (3.0)

Post-Hoc Model Selection

- An implementation of "Post-hoc selection of dynamic causal models", M.J. Rosa, K. Friston, W. Penny, Journal of Neuroscience Methods, Volume 208, Issue 1, 30 June 2012, Pages 66-78
- http://j.mp/posthoc

Post-Hoc Model Selection

- An implementation of "Post-hoc selection of dynamic causal models", M.J. Rosa, K. Friston, W. Penny, Journal of Neuroscience Methods, Volume 208, Issue 1, 30 June 2012, Pages 66-78
- http://j.mp/posthoc
- Compute posterior of multiple reduced (connectivity) models,

Post-Hoc Model Selection

- An implementation of "Post-hoc selection of dynamic causal models", M.J. Rosa, K. Friston, W. Penny, Journal of Neuroscience Methods, Volume 208, Issue 1, 30 June 2012, Pages 66-78
- http://j.mp/posthoc
- Compute posterior of multiple reduced (connectivity) models,
- by estimating the full (connectivity) model

Post-Hoc Model Selection

- An implementation of "Post-hoc selection of dynamic causal models", M.J. Rosa, K. Friston, W. Penny, Journal of Neuroscience Methods, Volume 208, Issue 1, 30 June 2012, Pages 66-78
- http://j.mp/posthoc
- Compute posterior of multiple reduced (connectivity) models,
- by estimating the full (connectivity) model
- and relate to the reduced models priors.

EEG Model Restructuring

Split EEG model into:

- linear
- nonlinear
submodels,

EEG Model Restructuring

Split EEG model into:

- linear
- nonlinear
submodels, to:
1 improve performance

EEG Model Restructuring

Split EEG model into:

- linear
- nonlinear
submodels, to:
1 improve performance and
2 prepare for model reduction.

Model Reduction

Considering many (>100) regions...

Model Reduction

Considering many (>100) regions...

- the estimation of connectivity parameters consumes the bulk of computation time,

Model Reduction

Considering many (>100) regions...

- the estimation of connectivity parameters consumes the bulk of computation time,
- because the differentiation (requiring integrations) dominates

Model Reduction

Considering many (>100) regions...

- the estimation of connectivity parameters consumes the bulk of computation time,
- because the differentiation (requiring integrations) dominates
- (except for exponential maps, but they are too limiting anyway).

Model Reduction

Considering many (>100) regions...

- the estimation of connectivity parameters consumes the bulk of computation time,
- because the differentiation (requiring integrations) dominates
- (except for exponential maps, but they are too limiting anyway).
- Thus the current model structure is not viable here.

Model Reduction

Considering many (>100) regions...

- the estimation of connectivity parameters consumes the bulk of computation time,
- because the differentiation (requiring integrations) dominates
- (except for exponential maps, but they are too limiting anyway).
- Thus the current model structure is not viable here.

Model Reduction to the Rescue!
Find a surrogate model, with a low dimensional parameter space.

Model Reduction

Considering many (>100) regions...

- the estimation of connectivity parameters consumes the bulk of computation time,
- because the differentiation (requiring integrations) dominates
- (except for exponential maps, but they are too limiting anyway).
- Thus the current model structure is not viable here.

Model Reduction to the Rescue!

Find a surrogate model, with a low dimensional parameter space.
Two approaches are considered:
1 Projection (Complex, Precise)

Model Reduction

Considering many (>100) regions...

- the estimation of connectivity parameters consumes the bulk of computation time,
- because the differentiation (requiring integrations) dominates
- (except for exponential maps, but they are too limiting anyway).
- Thus the current model structure is not viable here.

Model Reduction to the Rescue!

Find a surrogate model, with a low dimensional parameter space.
Two approaches are considered:
1 Projection (Complex, Precise)
2 Truncation (Simple, Coarse)

Optimal Maps

- An implementation of "Bayesian Inference with Optimal Maps", T. A. El Moselhy, Y. M. Marzouk, arXiv
■ http://j.mp/optimalmaps

Optimal Maps

- An implementation of "Bayesian Inference with Optimal Maps", T. A. El Moselhy, Y. M. Marzouk, arXiv
■ http://j.mp/optimalmaps
- Replacing the EM-algorithm using optimal maps.

Optimal Maps

- An implementation of "Bayesian Inference with Optimal Maps",T. A. El Moselhy, Y. M. Marzouk, arXiv
■ http://j.mp/optimalmaps
- Replacing the EM-algorithm using optimal maps.
- Find a map that transforms the prior into the posterior distribution,

Optimal Maps

- An implementation of "Bayesian Inference with Optimal Maps",T. A. El Moselhy, Y. M. Marzouk, arXiv
- http://j.mp/optimalmaps
- Replacing the EM-algorithm using optimal maps.
- Find a map that transforms the prior into the posterior distribution,
- using for example low-order polynomials,

Optimal Maps

- An implementation of "Bayesian Inference with Optimal Maps", T. A. El Moselhy, Y. M. Marzouk, arXiv
- http://j.mp/optimalmaps
- Replacing the EM-algorithm using optimal maps.
- Find a map that transforms the prior into the posterior distribution,
- using for example low-order polynomials,
- until the variance drops below some threshold.

Sample Report

Goto:
http://j.mp/iodreport

- Modular Implementation (http://j.mp/himpe)
- Replace the EM algorithm (http://j.mp/optimalmaps)
- Include Model Reduction

Thank You

