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About

IOD ( = Implentation Of Dynamic-Causal-Modelling)

m Version 1.0 (2011, Diploma Thesis)
m Version 2.0 (planned for Q4/2012)
m Open Source (zlib/libpng License)

m Written in C++11

m Parallelization using OpenMP

m No required dependencies

m Optional: gnuplot, graphwiz, tcmalloc, mutt

together with:
Prof. Dr. Mario Ohlberger, Dr. Thomas Seidenbecher, Dr. Jérg Lesting



Capabilities

Scientific:
m DCM for fMRI (Linear, Bilinear, Nonlinear)

m DCM for EEG (Default, Extended, Adaption, Habituation,
Linearized)

m Simulations of Systems



Capabilities

Scientific:
m DCM for fMRI (Linear, Bilinear, Nonlinear)

m DCM for EEG (Default, Extended, Adaption, Habituation,
Linearized)

m Simulations of Systems
Technical:
m Modular Dynamic and Forward Models
m Order 1, 2, 5 Runge-Kutta Solver (optionally adaptive)
m Remote Execution (optionally mailing results)



Extension

Major:
m EM-Algorithm Optimization
m Drift Filter
Minor:
m Positive (Definite) Temporal Correlation
m Fast Model Evidence Calculations
m Bandpass Filter
m XHTML/SVG Reporting



EM-Algorithm Optimization

Using the following linear algebra lemma:
1 (AB)T =BTAT
2 tr(AB) = ;> ; aijbji
3 tr(ABC) = tr(BCA) = tr(CAB)
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EM-Algorithm Optimization

Using the following linear algebra lemma:
1 (AB)T =BTAT
2 tr(AB) = ;> ; aijbji

tr(ABC) = tr(BCA) = tr(CAB)

w

reduces significantly the number of flops,
as well as the memory consumptions,

especially inside the M-step;

even more when recycling the E-step.

For more info see: http://j.mp/himpe (p.30-36).
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Drift Term X3:

m Additional set of parameters 3,
m reflecting unrelated oscillations,

m modelled by a discrete cosine set X.
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Drift Filter

Drift Term Xz:
m Additional set of parameters 3,
m reflecting unrelated oscillations,
m modelled by a discrete cosine set X.

m The drift matrix X can be customized to a high-pass filter.



Drift Filter

Drift Term Xz:
Additional set of parameters S,

m reflecting unrelated oscillations,

m modelled by a discrete cosine set X.

m The drift matrix X can be customized to a high-pass filter.
]

It is not advisable, though possible, to use as low-pass filter.



Major:

1 Post-Hoc Model Selection (2.0)

2 EEG Model Restructuring (2.0)
3 Model Reduction (3.0)

4 Optimal Maps (3.0)
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Post-Hoc Model Selection

m An implementation of “Post-hoc selection of dynamic causal
models”’, M.J. Rosa, K. Friston, W. Penny, Journal of
Neuroscience Methods, Volume 208, Issue 1, 30 June 2012,
Pages 66-78

m http://j.mp/posthoc


http://j.mp/posthoc

Post-Hoc Model Selection

m An implementation of “Post-hoc selection of dynamic causal
models”’, M.J. Rosa, K. Friston, W. Penny, Journal of
Neuroscience Methods, Volume 208, Issue 1, 30 June 2012,
Pages 66-78

m http://j.mp/posthoc

m Compute posterior of multiple reduced (connectivity) models,


http://j.mp/posthoc

Post-Hoc Model Selection

m An implementation of “Post-hoc selection of dynamic causal
models”’, M.J. Rosa, K. Friston, W. Penny, Journal of
Neuroscience Methods, Volume 208, Issue 1, 30 June 2012,
Pages 66-78

m http://j.mp/posthoc
m Compute posterior of multiple reduced (connectivity) models,
m by estimating the full (connectivity) model


http://j.mp/posthoc

Post-Hoc Model Selection

m An implementation of “Post-hoc selection of dynamic causal
models”’, M.J. Rosa, K. Friston, W. Penny, Journal of
Neuroscience Methods, Volume 208, Issue 1, 30 June 2012,
Pages 66-78

http://j.mp/posthoc
Compute posterior of multiple reduced (connectivity) models,

by estimating the full (connectivity) model

and relate to the reduced models priors.
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Split EEG model into

m linear

m nonlinear
submodels,

«O>r «Fr o«

ae



Split EEG model into:

m linear

m nonlinear

submodels, to:

1 improve performance
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EEG Model Restructuring

Split EEG model into:
m linear
m nonlinear
submodels, to:
1 improve performance and

2 prepare for model reduction.



Considering many (>100) regions...
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Model Reduction

Considering many (>100) regions...
m the estimation of connectivity parameters consumes the bulk
of computation time,
m because the differentiation (requiring integrations) dominates
m (except for exponential maps, but they are too limiting
anyway).
m Thus the current model structure is not viable here.
Model Reduction to the Rescue!
Find a surrogate model, with a low dimensional parameter space.
Two approaches are considered:
1 Projection (Complex, Precise)

2 Truncation (Simple, Coarse)



Optimal Maps

m An implementation of “Bayesian Inference with Optimal
Maps", T. A. El Moselhy, Y. M. Marzouk, arXiv

m http://j.mp/optimalmaps
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Optimal Maps

m An implementation of “Bayesian Inference with Optimal
Maps", T. A. El Moselhy, Y. M. Marzouk, arXiv

m http://j.mp/optimalmaps
m Replacing the EM-algorithm using optimal maps.

m Find a map that transforms the prior into the posterior
distribution,

m using for example low-order polynomials,

m until the variance drops below some threshold.
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Goto:

http://j.mp/iodreport
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tl;dl

m Modular Implementation ( http://j.mp/himpe )
m Replace the EM algorithm ( http://j.mp/optimalmaps )

m Include Model Reduction

Thank You


http://j.mp/himpe
http://j.mp/optimalmaps

