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Motivation

Intracranial EEG and tuned model output1:

1[Himpe’11]
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How are brain regions connected?

How does sensory input disperse?

How does the brain learn and unlearn?

Parametrized Dynamical System

Output System

Bayesian Inference



Dynamic Causal Modelling

How are brain regions connected?

How does sensory input disperse?

How does the brain learn and unlearn?

Parametrized Dynamical System

Output System

Bayesian Inference



Dynamic Causal Modelling

How are brain regions connected?

How does sensory input disperse?

How does the brain learn and unlearn?

Parametrized Dynamical System

Output System

Bayesian Inference



Dynamic Causal Modelling

How are brain regions connected?

How does sensory input disperse?

How does the brain learn and unlearn?

Parametrized Dynamical System

Output System

Bayesian Inference



Jansen Neural Mass Model

Synaptic Input: u(t)

= S(v(t)) + ux(t)

Impulse Response: h(t) = Hκt exp(−tκ)

Postsynaptic Membrane Potential:

v(t) = h(t) ∗ u(t)

⇒ v̈(t) = Hκu(t)− 2κv̇(t)− κ2v(t)

⇒

{
v̇(t) = x(t)

ẋ(t) = Hκu(t)− 2κx(t)− κ2v(t)
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3-Layer Model2

v0(t) = he(t) ∗ u(v2)
v1(t) = hi (t) ∗ u(v3, v4)

v2(t) = he(t) ∗ u(v0, v1, ux)

v3(t) = he(t) ∗ u(v0, v1)
v4(t) = hi (t) ∗ u(v3, v4)

2see [Moran’07]



Single Region3 (SISO)

ẋ0 = x5

ẋ1 = x6

ẋ2 = x7

ẋ3 = x8

ẋ4 = x9

ẋ5 = κeHeγ2S(x2) − 2κex5 − κ2
ex0

ẋ6 = κiHiγ4S(x3 − x4) − 2κix6 − κ2
i x1

ẋ7 = κeHeγ1S(x0 − x1)− 2κex7 − κ2
ex2 + κeHeγ1u

ẋ8 = κeHeγ3S(x0 − x1)− 2κex8 − κ2
ex3

ẋ9 = κiHiγ5S(x3 − x4) − 2κix9 − κ2
i x4

y = x0 − x1

3see [Moran’07]



Connectivity4

Forward Connection: Backward Connection: Lateral Connection:

AF AB AL

4[David’04]



Multiple Regions5 (MIMO)

Ẋ0 = X5

Ẋ1 = X6

Ẋ2 = X7

Ẋ3 = X8

Ẋ4 = X9

Ẋ5 = κeHe(AB + AL + γ2 1)S(X2) − 2κeX5 − κ2
eX0

Ẋ6 = κiHiγ4 1 S(X3 − X4)− 2κiX6 − κ2
i X1

Ẋ7 = κeHe(AF + AL + γ1 1)S(X0 − X1)− 2κeX7 − κ2
eX2 + κeHeγ1U

Ẋ8 = κeHe(AB + AL + γ3 1)S(X0 − X1)− 2κeX8 − κ2
eX3

Ẋ9 = κiHiγ5 1 S(X3 − X4)− 2κiX9 − κ2
i X4

Y = C (X0 − X1)

5see [David’06]



Control System

Linear Control System:

ẋ = Ax + Bu
y = Cx

General Control System:

ẋ = f (x , u, θ)

y = g(x , u, θ)

DCM-EEG Neural Mass Model:

ẋ =

(
0 1

−κ2
1 −2κ1

)
x +

(
0 0

κHΣ(θ) 0

)
S(x) + Bu

y = Cx

→ Nonlinear Second-Order Control System!



(Nonlinear) Model Reduction

State-Space Reduction:
(Empirical) Gramian-Based

1 Balanced Truncation
2 Approximate Balancing (Cross Gramian)

Parameter-Space Reduction:
(Empirical) Gramian-Based

1 Controllability-Based (parameters as additional inputs)
2 Observability-Based (parameters as additional states)
3 Cross-Gramian-Based (parameters as additional states)

Combined (State and Parameter) Reduction:
(Empirical) Gramian-Based

1 Controllability-Based
2 Observability-Based
3 Cross-Gramian-Based
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Second-Order Balanced Truncation6

Second-Order System Gramians:

Controllability Gramian:

WC =

(
WC ,P WC ,PV
WC ,VP WC ,V

) Observability Gramian:

WO =

(
WO,P WO,PV
WO,VP WO,V

) Cross Gramian:

WX =

(
WX ,P WX ,PV
WX ,VP WX ,V

)

Position Gramian: W?,P

Velocity Gramian: W?,V

}
→ {UP ,UV ,VP ,VV }

Second-Order Projections:

ẋ =

 xV

f (

(
xP
xV

)
, u, θ)


y = g(

(
xP
xV

)
, u, θ)

⇒


˙̃x =

 x̃V

VV f (

(
UP x̃P

UV x̃V

)
, u, θ)


ỹ = g(

(
UP x̃P

UV x̃V

)
, u, θ)

6see [Reis’07]



A zoo of methods7

Balanced Decomposition:
BAL(WC ,P ,WO,P) → {UP ,VP} ≡ {UV ,VV }
BAL(WC ,V ,WO,V ) → {UV ,VV } ≡ {UP ,VP}
BAL(WC ,P ,WO,V ) → {UP ,VP} ≡ {UV ,VV }
BAL(WC ,V ,WO,P) → {UP ,VP} ≡ {UV ,VV }
BAL(WC ,P ,WO,P)

BAL(WC ,V ,WO,V )

}
→ {UP ,VP ,UV ,VV }

Singular Value Decomposition:
SVD(WC ,P) → {UP ,VP} ≡ {UV ,VV }
SVD(WC ,V ) → {UV ,VV } ≡ {UP ,VP}
SVD(WO,P) → {UP ,VP} ≡ {UV ,VV }
SVD(WO,V ) → {UV ,VV } ≡ {UP ,VP}
SVD(WC ,P)

SVD(WC ,V )

}
→ {UP ,VP ,UV ,VV }

SVD(WO,P)

SVD(WO,V )

}
→ {UP ,VP ,UV ,VV }

SVD(WX ,P) → {UP ,VP} ≡ {UV ,VV }
SVD(WX ,V ) → {UV ,VV } ≡ {UP ,VP}
SVD(WX ,P)

SVD(WX ,V )

}
→ {UP ,VP ,UV ,VV }

7[Teng’12]



Empirical Gramians8 I

POD-based method:

Empirical Controllability Gramian: WC = 〈
∫∞
0 xU(t)x∗U(t)dt〉U

Empirical Observability Gramian: WO = 〈
∫∞
0 ρ(y∗X (t)yX (t))dt〉X

Empirical Cross Gramian: WX = 〈
∫∞
0 ϕ(xU(t), yX (t))dt〉U×X

with perturbation spaces:

1 U perturbing the input u,

2 X perturbing the initial state x0

assembled from:

rotations, sets of orthogonal matrices Qu,Qx

scales, sets of real numbers Ru,Rx

for each input / state, the unit normal vectors Eu,Ex

determined by the operating range of the underlying contol system.
8see [Lall’99]



Empirical Gramians9 II

Empirical Controllability Gramian:

WC =
1

|Qu ||Ru |

|Qu |∑
h=1

|Ru |∑
i=1

m∑
j=1

1
c2h

∫ ∞
0

Ψhij (t)dt

Ψhij (t) = (xhij (t)− x̄)(xhij (t)− x̄)∗ ∈ Rn×n, uhij (t) = chSi eju(t) + ū

Empirical Observability Gramian:

WO =
1

|Qx ||Rx |

|Qx |∑
k=1

|Rx |∑
l=1

1
d2
k

Tl

∫ ∞
0

Ψkl (t)dt T∗l

Ψkl
ab(t) = (ykla(t)− ȳ)∗(yklb(t)− ȳ) ∈ R, xkla

0 = dkTl fa + x̄

Empirical Cross Gramian:

WX =
1

|Qu ||Ru |m|Qx ||Rx |

|Qu |∑
h=1

|Ru |∑
i=1

m∑
j=1

|Qx |∑
k=1

|Rx |∑
l=1

1
chdk

∫ ∞
0

Tl Ψ
hijkl (t)T∗l dt

Ψhijkl
ab (t) = f ∗b T∗k ∆xhij (t)e∗i S∗h ∆ykla(t) ∈ R

∆xhij (t) = (xhij (t)− x̄), uhij (t) = chSi eju(t) + ū

∆ykla(t) = (ykla(t)− ȳ), xkla
0 = dkTl fa + x̄

9[Hahn’02], [Streif’06], [Himpe’13a]



Empirical Gramians10 III

Empirical Sensitivity Gramian (Controllability-Based) WS :

û =

(
u
θ

)
→ ẋ = f (x , û) = f (x , u) +

P∑
k=1

f (x , θk)⇒WC = WC ,0 +
P∑

k=1

WC ,k

→WS = δi,j trace(WC ,i )

Empirical Identifiability Gramian (Observability-Based) WI :

x̂ =

(
x
θ

)
→ ˙̂x = f (x̂ , u) =

(
f (x , u, θ)

0

)
, x̂(0) =

(
x0
θ

)
⇒ ŴO =

(
WO WM
W ∗M WP

)
→WI = WP −W ∗MWO

−1WM ≈WP

Empirical Joint Gramian (Cross-Gramian-Based) WJ :

x̂ =

(
x
θ

)
⇒WJ := ŴX =

(
WX WM
0 0

)
→WÏ = −W ∗M(WX + W T

X )−1WM ≈ −W ∗M diag(WX + W T
X )−1WM

10[Sun’06], [Geffen’08], [Himpe’13a]



Combined Reduction

Controllability-Based

1 Compute WS
→WC

2 Decompose WS

3 Truncate θ
4 Compute WO

5 Balance WC ,WO

6 Decompose WCO

7 Truncate x

Observability-Based

1 Compute WI
→WO

2 Decompose WI

3 Truncate θ
4 Compute WC

5 Balance WC ,WO

6 Decompose WCO

7 Truncate x

Cross-Gramian-Based

1 Compute WÏ
→WX

2 Decompose WÏ

3 Truncate θ

4 Decompose WX

5 Truncate x



emgr - Empirical Gramian Framework11

Gramians:
Empirical Controllability Gramian
Empirical Observability Gramian
Empirical Cross Gramian
Empirical Sensitivity Gramian
Empirical Identifiability Gramian
Empirical Joint Gramian

Features:
Uniform Interface
Compatible with MATLAB & OCTAVE
Vectorized & Parallelizable
Open-Source licensed

More info at: http://gramian.de
11see [Himpe’13]

http://gramian.de


Numerical Experiments

Setup:
Nonlinear DCM-EEG model
Inverse problem on connectivity parameters: AF ,AB ,AL

Synthetic data for uniformly random connectivity
with additive Gaussian noise: yd = y + N(0, v)
Combined reduction with: {WS ,WO}, {WC ,WI},WJ

Leapfrog integration

Dimensions:
Regions: n = {4, . . . , 10}
States: dim(x) = N = 10n
Parameters: dim(θ) = 3n2

Reduced States: dim(x̃) = 4n
Reduced Parameters: dim(θ̃) = 6n



Combined Reduction for Inverse Problems

Inverse Problem:
Bayesian inference: P(θ|yd ) ∝ P(yd |θ)P(θ)

Prior distribution: AF ,prior = AB,priors = AL,prior = N(−1, 1)

Fixed biological parameters: κe ,He , κi ,Hi

Combined Reduction:
1 Offline Phase:

Assembly of reduced order model using combined reduction.
2 Online Phase:

Optimization reduced model using least-squares.



Applicability

Balanced Decomposition:
BAL(WC ,P ,WO,P) 3
BAL(WC ,V ,WO,V ) 3
BAL(WC ,P ,WO,V ) 7
BAL(WC ,V ,WO,P) 7

BAL(WC ,P ,WO,P)

BAL(WC ,V ,WO,V )

}
7

Singular Value Decomposition:
SVD(WC ,P) 7
SVD(WC ,V ) 7
SVD(WO,P) 7
SVD(WO,V ) 7

SVD(WC ,P)

SVD(WC ,V )

}
7

SVD(WO,P)

SVD(WO,V )

}
7

SVD(WX ,P) 3
SVD(WX ,V ) 3

SVD(WX ,P)

SVD(WX ,V )

}
7

For experiments:

BAL(WC ,P ,WO,P) for {WS ,WO}
BAL(WC ,P ,WO,P) for {WC ,WI }
SVD(WX ,P) for WJ



Numerical Results
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Reduction Effectivity
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tl;dl

Summary:
Model Reduction prior to inversion,
of Dynamic-Causal-EEG-Model.
Nonlinear Model Reduction: Empirical Gramians.
Combined Reduction: Reduction of States and Parameters.
Cross-Gramian-Based Joint Gramian: very efficient.

Get the Source Code: http://j.mp/modred13 .

Outlook:
Add delay elements
Towards Neural-Field-Model

Thanks!

http://j.mp/modred13

