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Motivation

Intracranial EEG and tuned model output1:

1[Himpe’11]
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Jansen Neural Mass Model

Synaptic Input: u(t)

= S(v(t)) + ux(t)

Impulse Response: h(t) = Hκt exp(−tκ)

Postsynaptic Membrane Potential:

v(t) = h(t) ∗ u(t)

⇒ v̈(t) = Hκu(t)− 2κv̇(t)− κ2v(t)

⇒

{
v̇(t) = x(t)

ẋ(t) = Hκu(t)− 2κx(t)− κ2v(t)
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3-Layer Model2

v0(t) = he(t) ∗ u(v2)
v1(t) = hi (t) ∗ u(v3, v4)

v2(t) = he(t) ∗ u(v0, v1, ux)

v3(t) = he(t) ∗ u(v0, v1)
v4(t) = hi (t) ∗ u(v3, v4)

2see [Moran’07]



Single Region3 (SISO)

ẋ0 = x5

ẋ1 = x6

ẋ2 = x7

ẋ3 = x8

ẋ4 = x9

ẋ5 = κeHeγ2S(x2) − 2κex5 − κ2
ex0

ẋ6 = κiHiγ4S(x3 − x4) − 2κix6 − κ2
i x1

ẋ7 = κeHeγ1S(x0 − x1)− 2κex7 − κ2
ex2 + κeHeγ1u

ẋ8 = κeHeγ3S(x0 − x1)− 2κex8 − κ2
ex3

ẋ9 = κiHiγ5S(x3 − x4) − 2κix9 − κ2
i x4

y = x0 − x1

3see [Moran’07]



Connectivity4

Forward Connection: Backward Connection: Lateral Connection:

AF AB AL

4[David’04]



Multiple Regions5 (MIMO)

Ẋ0 = X5

Ẋ1 = X6

Ẋ2 = X7

Ẋ3 = X8

Ẋ4 = X9

Ẋ5 = κeHe(AB + AL + γ2 1)S(X2) − 2κeX5 − κ2
eX0

Ẋ6 = κiHiγ4 1 S(X3 − X4)− 2κiX6 − κ2
i X1

Ẋ7 = κeHe(AF + AL + γ1 1)S(X0 − X1)− 2κeX7 − κ2
eX2 + κeHeγ1U

Ẋ8 = κeHe(AB + AL + γ3 1)S(X0 − X1)− 2κeX8 − κ2
eX3

Ẋ9 = κiHiγ5 1 S(X3 − X4)− 2κiX9 − κ2
i X4

Y = C (X0 − X1)

5see [David’06]



Control System

Linear Control System:

ẋ = Ax + Bu
y = Cx

General Control System:

ẋ = f (x , u, θ)

y = g(x , u, θ)

DCM-EEG Neural Mass Model:

ẋ =

(
0 1

−κ2
1 −2κ1

)
x +

(
0 0

κHΣ(θ) 0

)
S(x) + Bu

y = Cx

→ Nonlinear Second-Order Control System!



(Nonlinear) Model Reduction

State-Space Reduction:
(Empirical) Gramian-Based

1 Balanced Truncation
2 Approximate Balancing (Cross Gramian)

Parameter-Space Reduction:
(Empirical) Gramian-Based

1 Controllability-Based (parameters as additional inputs)
2 Observability-Based (parameters as additional states)
3 Cross-Gramian-Based (parameters as additional states)

Combined (State and Parameter) Reduction:
(Empirical) Gramian-Based

1 Controllability-Based
2 Observability-Based
3 Cross-Gramian-Based
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Second-Order Balanced Truncation6

Second-Order System Gramians:

Controllability Gramian:

WC =

(
WC ,P WC ,PV
WC ,VP WC ,V

) Observability Gramian:

WO =

(
WO,P WO,PV
WO,VP WO,V

) Cross Gramian:

WX =

(
WX ,P WX ,PV
WX ,VP WX ,V

)

Position Gramian: W?,P

Velocity Gramian: W?,V

}
→ {UP ,UV ,VP ,VV }

Second-Order Projections:

ẋ =

 xV

f (

(
xP
xV

)
, u, θ)


y = g(

(
xP
xV

)
, u, θ)

⇒


˙̃x =

 x̃V

VV f (

(
UP x̃P

UV x̃V

)
, u, θ)


ỹ = g(

(
UP x̃P

UV x̃V

)
, u, θ)

6see [Reis’07]



A zoo of methods7

Balanced Decomposition:
BAL(WC ,P ,WO,P) → {UP ,VP} ≡ {UV ,VV }
BAL(WC ,V ,WO,V ) → {UV ,VV } ≡ {UP ,VP}
BAL(WC ,P ,WO,V ) → {UP ,VP} ≡ {UV ,VV }
BAL(WC ,V ,WO,P) → {UP ,VP} ≡ {UV ,VV }
BAL(WC ,P ,WO,P)

BAL(WC ,V ,WO,V )

}
→ {UP ,VP ,UV ,VV }

Singular Value Decomposition:
SVD(WC ,P) → {UP ,VP} ≡ {UV ,VV }
SVD(WC ,V ) → {UV ,VV } ≡ {UP ,VP}
SVD(WO,P) → {UP ,VP} ≡ {UV ,VV }
SVD(WO,V ) → {UV ,VV } ≡ {UP ,VP}
SVD(WC ,P)

SVD(WC ,V )

}
→ {UP ,VP ,UV ,VV }

SVD(WO,P)

SVD(WO,V )

}
→ {UP ,VP ,UV ,VV }

SVD(WX ,P) → {UP ,VP} ≡ {UV ,VV }
SVD(WX ,V ) → {UV ,VV } ≡ {UP ,VP}
SVD(WX ,P)

SVD(WX ,V )

}
→ {UP ,VP ,UV ,VV }

7[Teng’12]



Empirical Gramians8 I

POD-based method:

Empirical Controllability Gramian: WC = 〈
∫∞
0 xU(t)x∗U(t)dt〉U

Empirical Observability Gramian: WO = 〈
∫∞
0 ρ(y∗X (t)yX (t))dt〉X

Empirical Cross Gramian: WX = 〈
∫∞
0 ϕ(xU(t), yX (t))dt〉U×X

with perturbation spaces:

1 U perturbing the input u,

2 X perturbing the initial state x0

assembled from:

rotations, sets of orthogonal matrices Qu,Qx

scales, sets of real numbers Ru,Rx

for each input / state, the unit normal vectors Eu,Ex

determined by the operating range of the underlying contol system.
8see [Lall’99]



Empirical Gramians9 II

Empirical Controllability Gramian:

WC =
1

|Qu ||Ru |

|Qu |∑
h=1

|Ru |∑
i=1

m∑
j=1

1
c2h

∫ ∞
0

Ψhij (t)dt

Ψhij (t) = (xhij (t)− x̄)(xhij (t)− x̄)∗ ∈ Rn×n, uhij (t) = chSi eju(t) + ū

Empirical Observability Gramian:

WO =
1

|Qx ||Rx |

|Qx |∑
k=1

|Rx |∑
l=1

1
d2
k

Tl

∫ ∞
0

Ψkl (t)dt T∗l

Ψkl
ab(t) = (ykla(t)− ȳ)∗(yklb(t)− ȳ) ∈ R, xkla

0 = dkTl fa + x̄

Empirical Cross Gramian:

WX =
1

|Qu ||Ru |m|Qx ||Rx |

|Qu |∑
h=1

|Ru |∑
i=1

m∑
j=1

|Qx |∑
k=1

|Rx |∑
l=1

1
chdk

∫ ∞
0

Tl Ψ
hijkl (t)T∗l dt

Ψhijkl
ab (t) = f ∗b T∗k ∆xhij (t)e∗i S∗h ∆ykla(t) ∈ R

∆xhij (t) = (xhij (t)− x̄), uhij (t) = chSi eju(t) + ū

∆ykla(t) = (ykla(t)− ȳ), xkla
0 = dkTl fa + x̄

9[Hahn’02], [Streif’06], [Himpe’13a]



Empirical Gramians10 III

Empirical Sensitivity Gramian (Controllability-Based) WS :

û =

(
u
θ

)
→ ẋ = f (x , û) = f (x , u) +

P∑
k=1

f (x , θk)⇒WC = WC ,0 +
P∑

k=1

WC ,k

→WS = δi,j trace(WC ,i )

Empirical Identifiability Gramian (Observability-Based) WI :

x̂ =

(
x
θ

)
→ ˙̂x = f (x̂ , u) =

(
f (x , u, θ)

0

)
, x̂(0) =

(
x0
θ

)
⇒ ŴO =

(
WO WM
W ∗M WP

)
→WI = WP −W ∗MWO

−1WM ≈WP

Empirical Joint Gramian (Cross-Gramian-Based) WJ :

x̂ =

(
x
θ

)
⇒WJ := ŴX =

(
WX WM
0 0

)
→WÏ = −W ∗M(WX + W T

X )−1WM ≈ −W ∗M diag(WX + W T
X )−1WM

10[Sun’06], [Geffen’08], [Himpe’13a]



Combined Reduction

Controllability-Based

1 Compute WS
→WC

2 Decompose WS

3 Truncate θ
4 Compute WO

5 Balance WC ,WO

6 Decompose WCO

7 Truncate x

Observability-Based

1 Compute WI
→WO

2 Decompose WI

3 Truncate θ
4 Compute WC

5 Balance WC ,WO

6 Decompose WCO

7 Truncate x

Cross-Gramian-Based

1 Compute WÏ
→WX

2 Decompose WÏ

3 Truncate θ

4 Decompose WX

5 Truncate x



emgr - Empirical Gramian Framework11

Gramians:
Empirical Controllability Gramian
Empirical Observability Gramian
Empirical Cross Gramian
Empirical Sensitivity Gramian
Empirical Identifiability Gramian
Empirical Joint Gramian

Features:
Uniform Interface
Compatible with MATLAB & OCTAVE
Vectorized & Parallelizable
Open-Source licensed

More info at: http://gramian.de
11see [Himpe’13]

http://gramian.de


Numerical Experiments

Setup:
Nonlinear DCM-EEG model
Inverse problem on connectivity parameters: AF ,AB ,AL

Synthetic data for uniformly random connectivity
with additive Gaussian noise: yd = y + N(0, v)
Combined reduction with: {WS ,WO}, {WC ,WI},WJ

Leapfrog integration

Dimensions:
Regions: n = {4, . . . , 10}
States: dim(x) = N = 10n
Parameters: dim(θ) = 3n2

Reduced States: dim(x̃) = 4n
Reduced Parameters: dim(θ̃) = 6n



Combined Reduction for Inverse Problems

Inverse Problem:
Bayesian inference: P(θ|yd ) ∝ P(yd |θ)P(θ)

Prior distribution: AF ,prior = AB,priors = AL,prior = N(−1, 1)

Fixed biological parameters: κe ,He , κi ,Hi

Combined Reduction:
1 Offline Phase:

Assembly of reduced order model using combined reduction.
2 Online Phase:

Optimization reduced model using least-squares.



Applicability

Balanced Decomposition:
BAL(WC ,P ,WO,P) 3
BAL(WC ,V ,WO,V ) 3
BAL(WC ,P ,WO,V ) 7
BAL(WC ,V ,WO,P) 7

BAL(WC ,P ,WO,P)

BAL(WC ,V ,WO,V )

}
7

Singular Value Decomposition:
SVD(WC ,P) 7
SVD(WC ,V ) 7
SVD(WO,P) 7
SVD(WO,V ) 7

SVD(WC ,P)

SVD(WC ,V )

}
7

SVD(WO,P)

SVD(WO,V )

}
7

SVD(WX ,P) 3
SVD(WX ,V ) 3

SVD(WX ,P)

SVD(WX ,V )

}
7

For experiments:

BAL(WC ,P ,WO,P) for {WS ,WO}
BAL(WC ,P ,WO,P) for {WC ,WI }
SVD(WX ,P) for WJ



Numerical Results
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Reduction Effectivity
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tl;dl

Summary:
Model Reduction prior to inversion,
of Dynamic-Causal-EEG-Model.
Nonlinear Model Reduction: Empirical Gramians.
Combined Reduction: Reduction of States and Parameters.
Cross-Gramian-Based Joint Gramian: very efficient.

Get the Source Code: http://j.mp/modred13 .

Outlook:
Add delay elements
Towards Neural-Field-Model

Thanks!

http://j.mp/modred13

