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m The presented methods are subject of ongoing research.

m | am a mathematician; there will be math!



1 Network Models
2 Connectivity Inference

3 Dynamic Causal Modelling
4 Model Reduction
5 Bringing It All Together



Motivation

m How are regions of the brain connected?

m How does (sensory) input disperse?

m How does connectivity change under input?
]

How does the brain learn and unlearn?




Procedure

1 Experimental Data
2 Forward Model

3 Inverse Problem

Forward Problem

™\

"

Inverse Problem



Notation

m x(t) State Trajectory
aka Neuronal Activity

m y(t) Output Trajectory
aka Measured Response

m u(t) Input / Control
aka External Stimulus

m O Parameters
aka Connectivity Strength



Network Models



Ordinary Differential Equations

Initial Value Problem (IVP) w Ordinary Differential Equation! (ODE):

Components:
m x : R"™ — R Solution Trajectory
mX= % Newton Notation for a Time Derivative
m xo € R Initial Value
macR

Solution:

x(t) = e?*xg

1 .
Here: Autonomous & Linear



Systems of ODEs

IVP with a System of ODEs:

Components:
m x : Rt — RV Solution Trajectory
m X = % Component-Wise Derivative
m xp € RV Initial Value
m Ac RV

Solution:

x(t) = e’txg



Control System

Linear Control System?:
x(t) = Ax(t) + Bu(t)
y(t) = C(
x(0) = xo

~
~—

Components:
m y : RV = RO Output Trajectory
m A e RV*N System Matrix
m B € RV*M Input Matrix
m C € RO*N QOutput Matrix

Solution:

y(t) = (x * u)(t) = Ce’fxg + /Ot Ce"" Bu(t)dr

2.
in State-Space Form



Network Interpretation

Linear Dynamical System:
x(t) = Ax(t) + Bu(t)

Example (single input, three region network):

x1(t) ann az a3\ [x(t) by
X(t) | = (a1 ax a3 | | x(t) |+ | b2 u(t)
x3(t) a3 asx az/) \x3(t) b3



Connectivity Parametrization

Connectivity Strength:

Oinyj = aij

Parametrized Linear Dynamical System:
x(t) = A(0)x(t) + Bu(t)

with Nonlinear Parameter Mapping.



General Control System

Possibly Nonlinear Control System:
x(t) = f(x(t), u(t),0)

y(t) = g(x(1), u(t),0)
x(0) = xo

(Special Case) Linear Control System:
f(x(t),u(t),0) = A(0)x(t) + Bu(t)
g(x(t), u(t),0) = Cx(t)

(Nonlinear Example) Hyperbolic Network Model:
x(t) = A(9) tanh(Kx(t)) + Bu(t)
y(t) = Cx(t)
x(0)

X0



Connectivity Inference



Model-Data Relation:

Ydi=Yo+¢€

Components:
m yy; Measured Output
m yy Parametrized Model Output
m ¢ Noise



Inverse Problem

ODE Constrained Optimization:

04 = argming ||yp — de%

m || - ||]2 means Ly (Euclidian Distance).

m This is a least-squares minimization.



Difficulties

Well-Posed Problem:
m A solution exists
m The solution is unique
m Solution is stable

A problem not well-posed is ill-posed.

Ill-Conditioned Problem:

m Small Perturbation result in large errors



Regularization

Tikhonov Regularization:
0g = argming [lys — yali3 + 5110113
New Components:

m (3 Regularization Coefficient

m ||0||3 Regularization Operator



Dynamic Causal Modelling



Two-Part Model [Friston et al'03]

Dynamic Sub-Model:
m Models neuronal activity,
m and coupling between different brain regions
m Multiple-Input-Multiple-Output

Forward Sub-Model:
m Transforms neuronal activity to measurable output
m Physiologically motivated

m Single-Input-Single-Output



Schematic Two-Part Model

namic submodel_ _

Id'y




Model Properties

Models differ for
m EEG / MEG
m fMRI / fNIRS

but have commonalities:

Both ...
m exhibit stable behaviour,
m (originally) contain nonlinearities,
m encode connectivity in parameters,

m are assumed to be deterministic.



... the fMRI Model,

because:
m the dynamic sub-model is easier to understand,

m and has less physiological assumptions.



Dynamic Sub-Model

Models neuronal activity

Hidden from (direct) measurement

Most likely nonlinear

Encodes coupling

Input (External Stimulus)

(Connectivity) Parameters



Linear(ized) Model

Using a Taylor series approximation:

df df
~ f(0,0,0) + d—xx(t) + au(t)

= %(t) = A(0)X(t) + B(0)u(t)

m Models effective connectivity
m Parameters  are the components of A, B

m Stability constraints apply to 6



Bilinear Extension

Bilinear approximation [Friston et al'03]:

x(t) = f(x(), u(t),0)
df df d>f

~ £(0,0,0) + &x(t) + au(t) + mx(t)u(t)

= %(t) = A(0)X(t) + B(0)u(t) + Z ui(t) Gi(0)X(t)

G;(0) describes influence of i-th external input on coupling strength
(lateral connectivity).



Quadratic Extension

Quadratic approximation [Stephan et al'08]:

x(t) = f(x(t), u(t),0)

~ £(0,0,0) + Sox(0) + S ue) + D x(e)u(t) + <L x(e)x(e)

= %(t) = A0)%(t) + Bu(t +Zu, Gi(O)%(t) + > %(t)Hi(0)%(t)

H;(#) describes influence of j-th state on coupling strength.



Forward-Submodel [Friston'02]

m Transforms neuronal activity to an observable BOLD signal
m Is a nonlinear SISO system

$i(t) = rexi(t) — kssi(t) — e (1 — £(2)) m Activity induced signal
f;(t) _ S,-(t) m Inflow
U(t) = L(£(8) — vi(D)?) m Venous volume
o (inflow - outlow)
Gi(t) = L(Fi(t)EEDre) 4y alt)y m Deoxy. Content
o "o () (intake - release)
5(t) = k(1= v(e) + ka1 = qi(e)) + | BOLD Output
k(1 — q,-gt;)) (volume + content +
vi(t

concentration)



Joint Model

Combining the
m MIMO dynamic sub-model
m SISO forward sub-model

yields a joint nonlinear state-space system:

X(t) den(X(t)vu(t)79)
Zl(t) _ Fout,l(zl(t)7xl(t))
Z.n-(t) Fout,n(zn(-t)vxn(t))

Yy = g(zl(t)a s azn(t))



Bayesian Inference

Bayes' Rule:

p(oly) = )

P(8|y4) Posterior (Probability of 6 given yq)
P(yq4|0) Likelihood (Probability of y, given 6)
P(6) Prior (Probability of 0)

P(y4) Evidence (Probability of yq)

Proportionality:

P(6ly) oc P(y|0)P(0)



Gaussian Setting

In case the prior and the noise are gaussian,

P(0) = N(k,K), P(e) = N(0,A):

Yd =Yo+¢€
= €=Yd — Yo
= P(e) = P(yq — yo)
= P(0lya) o< P(ya — yo)P(0)

1
P(y4|0) o< eXP(_EHYe — yallA-1)

1
P(0) ox exp(— 510 — 3 )

1 1
= P(0lya) o exp(—3 llyo — Yalla1 — 1 G k)% 1),



Maximum-A-Posteriori

MAP Estimator (Prior incorporated maximum likelihood estimator):
1 2 1 2
Onap = argmaxgege exp |~ llyo = yvalla-2 = 5110 — Kl
= argmingge 5”)’9 — Yallp-1 + 5\\9 —hllk-1 ) -

At second glance this is a regularized least-square problem!



Large-Scale Models

The dynamic sub-model (dynamical system):
x(t) = A(0)x(t) + Bu(t)
dimensions determine the paramter space dimension: P = N2.

The minimization algorithm for such a nonlinear problem computes
many simulations of the system, due to the necessary perturbations
of many directions in the parameter space.

= A few more nodes in the network may prolong the inversion
procedure significantly.



Model Reduction



Model Reduction

System:
x(t) = f(x(¢), u(t),0)
y(t) = g(x(1), u(t),0)
x(0) = xo
Setting:
] d|m(X(t)) > 1 (Many Network Nodes / Brain Regions)
| | d|m(U(t)) <K d|m(X(t)) (Significantly Less Inputs)
] d|m( (t)) << dlm(X(t)) (Significantly Less Outputs)
] d|m( ) (Many Parameters)
Aim:

m dim(x.(t)) < dim(x(t))
m dim(4,) < dim(6)
m vy —yrgll <1



Projection-Based Model Reduction

Trajectory Projection:

xr(t) := Ux(t)
x(t) = Vx,(t)

Petrov-Galerkin Projection:

UeR™N  verRNV" viy=1 n<N

Galerkin Projection:

UeR™N v.=UT, UTU=1 n<N

m We will only be concerned with Galerkin projection.
m Petrov-Galerkin can pose issues with stability.



State-Space Reduction

General Control System:

Projection-Based Reduced Order Model (ROM):

% (t) = VF(Ux(t), u(t), 0)

}/r(t) = g(UXr(t)v u(t)v )
x-(0) = Vixo

Aim: |ly — v < 1



Linear State-Space Reduction

Linear Control System:

y(t) = Cx(1)
x(0) = xo

Projection-Based ROM:

xr(t) = UAVx,(t) + UBu(t)
yr(t) = CVx, (1)
x(0) = Vxo



(Side Note) PCA / POD / SVD

You may already have done model reduction!

Assume:
m given a discrete time series,
m to which a PCA is applied.

This is more or less a centered POD method of snapshots.

For finite dimensional operators PCA and POD are essentially a
(sparse) SVD.



Parameter Identification

Parameter Space:
geRF, P>1

ie. P= N2

m Which (linear combination of the) parameter is influencing the
behaviour of the system the most?
m This is also related to sensitivity analysis.

Parameter (Galerkin) Projection:
6, :=T160
0~N7o,
nn=1



Parameter-Space Reduction

General Control System:

x(t) = f(x(t), u(t), 0)

y(t) = g(x(t), u(t),0)
x(0) = xo

Projection-Based ROM:

Aim: |lys — yo, || < 1



Combined State and Parameter Reduction

General Control System:
x(t) = f(x(t), u(t),0)
y(t) = g(x(t), u(t),0)

Reduced Order Model:
x(t) = fr(x(t), u(t), 0r)
ye(t) = gr(x:(t), u(t), 0r)

Projection-Based ROM:
x(t) = UT F(Ux, (), u(t),N76,)
yr(t) = g(Uxi(t), u(t),N76,)

Aim: |lyp — yrp, |l < 1



Challenge

How to find U? (MOR)

How to find M7 (SYSID)

Since y(0), yr has to be valid for all admissable §! (pMOR)
Since y(0), 0, has to approximate 6 welll (COMRED)

FYI: My Models are nonlinear! (nMOR)

BTW: | have non-affine parameter dependencies!



1 Gramian-Based Combined Reduction

2 Optimization-Based Combined Reduction



Gramian-Based Combined Reduction

Based on ...
m System Theory / Control Theory

m Linear Control Systems and their encoded properties

Features:
m For Nonlinear Systems: Empirical Gramians [Lall et al'99]

m Combined Reduction: Empirical Cross Gramian and Joint
Gramian [H. & Ohlberger'14]



Controllability




Observability




Balanced Truncation [Moore'81]

For Linear Control Systems
m Controllability and Observability can be computed
m as singular values of the System's Gramian Matrices.

m Balancing these two matrices yields the so called Hankel
Singular Values3.

Why HSVs?
m A state component that is neither controllable nor observable
m is not contributing to the input-to-output energy transfer.

m The smaller the HSV, the less important the associated
(balanced) state is.

3Singular values of the Hankel operator mapping inputs to outputs.



Parameter Observability

Parameter Augmented General Control System:

<;<E: ) _ <f(><(t)7u0(t),9(t))>



Optimization-Based Combined Reduction

Based on:
m Greedy Algorithm

m Large-Scale Inverse Problems

Features:
m Combined Reduction: [Lieberman et al'12]
m Data-Driven: [H. & Ohlberger (submitted)]



Minimize Maximal Error:

Oi1 = argmaxg g, . |lvo — yo, |13 + 1015

= argming g, . —Ilve — vo, 15 = 1013

Parameter Projection:

M= [bo,...,0,



Enhanced Greedy Algorithm

Monte-Carlo Parameter Base & Data-Driven Regularization:

M = [P(G)Oavp(e)P]

5 2 5112 2
Oir1 = argmaxmg 1 Mo, ; ||)/9~ - )/§,||2 + 0[5 + dllya — yé,”z

Parameter Projection:

M= [My'b,....M;10,]



Parameter Greedy:

Oiy1 = argmaxg g, . |lye — Yroll5 + 110115
X; = pod;(x(0;))

State Projection:

U= [Ros....5%]



Alltogether



Back to the Beginning

Dimensions:
m dim(x(t)) > 1
m dim(u(t)) < dim(x(t))
m dim(y (t)) < dim(x(t))
(0) >

m dim(0



Inverse Problem

ODE Constrained Optimization:

04 = argming ||yp — yal3
s.t.:
x(t) = f(x(t), u(t).0)
yo(t) = g(x(t), u(t),0)

Remember:



Reduced Order Inverse Problem

ODE Constrained Optimization:

04 = argming, |lye, — yall3
s.t.:

x(t) = f(x.(t), u(t),6,)
yro(t) = &r(x(t), u(t),0r)
Xr(o) = Xr,0

Remember:
m dim(x.(t)) < dim(x(t))
m dim(6,) < dim(6)
myo—yrall <1



Numerical Results (HNM)

teso ot . 1640
1e-1 Te-1
1e-2 1e-2
1e-3 1e-3

17
25
Parameter Dimension

17
25

Gramian-Based and Optimization-Based Combined Reduction



What does this mean?

m State-Space dynamics can be bound to low-dimensional
sub-spaces of the high-dimensional state-space.

m |dentifiable parameters can be restricted to small sub-spaces of
the high-dimensional parameter-space.

State- and parameter-spaces can be reduced jointly,
also for a nonlinear system.

The inverse problem can be solved on the reduced spaces.

Open issue: accurate parameter reconstruction



tl;dl

m Networks can be modelled by control systems
m In this sense, the parameter inference is an ODE constrained

inverse problem

m DCM is a flavor of such inverse problem in a bayesian setting
m Model Reduction approximates large models with smaller

surrogate models
and thus accelerates the inversion / optimization

More Info:

Me: http://wwwmath.uni-muenster.de/u/himpe
M. Ohlberger: nttp://wiwmath.uni-muenster.de/u/ohlberger
MoRePaS: http://morepas.org

MORwiki: http://modelreduction.org

Thanks!


http://wwwmath.uni-muenster.de/u/himpe
http://wwwmath.uni-muenster.de/u/ohlberger
http://morepas.org
http://modelreduction.org

