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Disclaimer

The presented methods are subject of ongoing research.
I am a mathematician; there will be math!
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Motivation

How are regions of the brain connected?
How does (sensory) input disperse?
How does connectivity change under input?
How does the brain learn and unlearn?



Procedure

1 Experimental Data
2 Forward Model
3 Inverse Problem

Forward Problem

Inverse Problem



Notation

x(t) State Trajectory
aka Neuronal Activity

y(t) Output Trajectory
aka Measured Response

u(t) Input / Control
aka External Stimulus

θ Parameters
aka Connectivity Strength



Act I

Network Models



Ordinary Differential Equations

Initial Value Problem (IVP) w Ordinary Differential Equation1 (ODE):

ẋ(t) = ax(t)

x(0) = x0

Components:
x : R+ → R Solution Trajectory
ẋ = dx

dt Newton Notation for a Time Derivative
x0 ∈ R Initial Value
a ∈ R

Solution:

x(t) = eatx0

1Here: Autonomous & Linear



Systems of ODEs

IVP with a System of ODEs:

ẋ(t) = Ax(t)

x(0) = x0

Components:
x : R+ → RN Solution Trajectory
ẋi = dxi

dt Component-Wise Derivative

x0 ∈ RN Initial Value
A ∈ RN×N

Solution:

x(t) = eAtx0



Control System

Linear Control System2:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

x(0) = x0

Components:
y : RN → RO Output Trajectory
A ∈ RN×N System Matrix
B ∈ RN×M Input Matrix
C ∈ RO×N Output Matrix

Solution:

y(t) = (x ∗ u)(t) = CeAtx0 +

∫ t

0
CeAτBu(τ)dτ

2in State-Space Form



Network Interpretation

Linear Dynamical System:

ẋ(t) = Ax(t) + Bu(t)

Example (single input, three region network):

ẋ1(t)
ẋ2(t)
ẋ3(t)

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

x1(t)
x2(t)
x3(t)

+

b1
b2
b3

 u(t)



Connectivity Parametrization

Connectivity Strength:

θiN+j = aij

Parametrized Linear Dynamical System:

ẋ(t) = A(θ)x(t) + Bu(t)

with Nonlinear Parameter Mapping.



General Control System

Possibly Nonlinear Control System:

ẋ(t) = f (x(t), u(t), θ)

y(t) = g(x(t), u(t), θ)

x(0) = x0

(Special Case) Linear Control System:

f (x(t), u(t), θ) = A(θ)x(t) + Bu(t)

g(x(t), u(t), θ) = Cx(t)

(Nonlinear Example) Hyperbolic Network Model:

ẋ(t) = A(θ) tanh(Kx(t)) + Bu(t)

y(t) = Cx(t)

x(0) = x0



Act II

Connectivity Inference



Data Model

Model-Data Relation:

yd := yθ + ε

Components:
yd Measured Output
yθ Parametrized Model Output
ε Noise



Inverse Problem

ODE Constrained Optimization:

θd = argminθ ‖yθ − yd‖22
s.t.:
ẋ(t) = f (x(t), u(t), θ)

yθ(t) = g(x(t), u(t), θ)

x(0) = x0

‖ · ‖2 means L2 (Euclidian Distance).
This is a least-squares minimization.



Difficulties

Well-Posed Problem:
A solution exists
The solution is unique
Solution is stable

A problem not well-posed is ill-posed.

Ill-Conditioned Problem:
Small Perturbation result in large errors



Regularization

Tikhonov Regularization:

θd = argminθ ‖yθ − yd‖22 + β‖θ‖22

New Components:
β Regularization Coefficient
‖θ‖22 Regularization Operator



Act III

Dynamic Causal Modelling



Two-Part Model [Friston et al’03]

Dynamic Sub-Model:
Models neuronal activity,
and coupling between different brain regions
Multiple-Input-Multiple-Output

Forward Sub-Model:
Transforms neuronal activity to measurable output
Physiologically motivated
Single-Input-Single-Output



Schematic Two-Part Model



Model Properties

Models differ for
EEG / MEG
fMRI / fNIRS

but have commonalities:

Both ...
exhibit stable behaviour,
(originally) contain nonlinearities,
encode connectivity in parameters,
are assumed to be deterministic.



A Closer Look at ...

... the fMRI Model,

because:
the dynamic sub-model is easier to understand,
and has less physiological assumptions.



Dynamic Sub-Model

Models neuronal activity
Hidden from (direct) measurement
Most likely nonlinear

Encodes coupling
Input (External Stimulus)
(Connectivity) Parameters

ẋ(t) = f (x(t), u(t), θ)



Linear(ized) Model

Using a Taylor series approximation:

ẋ(t) = f (x(t), u(t), θ)

≈ f (0, 0, θ) +
df
dx

x(t) +
df
du

u(t)

⇒ ˙̃x(t) = A(θ)x̃(t) + B(θ)u(t)

Models effective connectivity
Parameters θ are the components of A,B
Stability constraints apply to θ



Bilinear Extension

Bilinear approximation [Friston et al’03]:

ẋ(t) = f (x(t), u(t), θ)

≈ f (0, 0, θ) +
df
dx

x(t) +
df
du

u(t) +
d2f

dxdu
x(t)u(t)

⇒ ˙̃x(t) = A(θ)x̃(t) + B(θ)u(t) +
∑
i

ui (t)Gi (θ)x̃(t)

Gi (θ) describes influence of i-th external input on coupling strength
(lateral connectivity).



Quadratic Extension

Quadratic approximation [Stephan et al’08]:

ẋ(t) = f (x(t), u(t), θ)

≈ f (0, 0, θ) +
df
dx

x(t) +
df
du

u(t) +
d2f

dxdu
x(t)u(t) +

d2f

dxdx
x(t)x(t)

⇒ ˙̃x(t) = A(θ)x̃(t) + Bu(t) +
∑
i

ui (t)Gi (θ)x̃(t) +
∑
j

x̃j(t)Hj(θ)x̃(t)

Hj(θ) describes influence of j-th state on coupling strength.



Forward-Submodel [Friston’02]

Transforms neuronal activity to an observable BOLD signal
Is a nonlinear SISO system

ṡi (t) = κxxi (t)−κssi (t)−κf (1− fi (t))

ḟi (t) = si (t)

v̇i (t) = 1
κ0

(fi (t)− vi (t)
1
α )

q̇i (t) = 1
κ0

(fi (t)
E(fi (t),κρ)

κρ
−vi (t)

1
α

qi (t)
vi (t) )

yi (t) = k1(1− vi (t)) + k2(1− qi (t)) +

k3(1− qi (t)
vi (t) ))

Activity induced signal
Inflow
Venous volume
(inflow - outlow)
Deoxy. Content
(intake - release)
BOLD Output
(volume + content +
concentration)



Joint Model

Combining the
MIMO dynamic sub-model
SISO forward sub-model

yields a joint nonlinear state-space system:


ẋ(t)
ż1(t)
...

żn(t)

 =


Fdyn(x(t), u(t), θ)
Fout,1(z1(t), x1(t))

...
Fout,n(zn(t), xn(t))


y = g(z1(t), . . . , zn(t))



Bayesian Inference

Bayes’ Rule:

P(θ|y) =
P(y |θ)P(θ)

P(y)

P(θ|yd) Posterior (Probability of θ given yd)
P(yd |θ) Likelihood (Probability of yd given θ)
P(θ) Prior (Probability of θ)
P(yd) Evidence (Probability of yd)

Proportionality:

P(θ|y) ∝ P(y |θ)P(θ)



Gaussian Setting

In case the prior and the noise are gaussian,
P(θ) = N (κ,K ), P(ε) = N (0,Λ):

yd = yθ + ε

⇒ ε = yd − yθ

⇒ P(ε) = P(yd − yθ)

⇒ P(θ|yd) ∝ P(yd − yθ)P(θ)

P(yd |θ) ∝ exp(−1
2
‖yθ − yd‖2Λ−1)

P(θ) ∝ exp(−1
2
‖θ − κ‖2K−1)

⇒ P(θ|yd) ∝ exp(−1
2
‖yθ − yd‖2Λ−1 −

1
2
‖θ − κ‖2K−1),



Maximum-A-Posteriori

MAP Estimator (Prior incorporated maximum likelihood estimator):

θMAP = argmaxθ∈RP exp
(
−1
2
‖yθ − yd‖2Λ−1 −

1
2
‖θ − κ‖2K−1

)
= argminθ∈RP

(
1
2
‖yθ − yd‖2Λ−1 +

1
2
‖θ − κ‖2K−1

)
.

At second glance this is a regularized least-square problem!



Large-Scale Models

The dynamic sub-model (dynamical system):

ẋ(t) = A(θ)x(t) + Bu(t)

dimensions determine the paramter space dimension: P = N2.

The minimization algorithm for such a nonlinear problem computes
many simulations of the system, due to the necessary perturbations
of many directions in the parameter space.

⇒ A few more nodes in the network may prolong the inversion
procedure significantly.



Act IV

Model Reduction



Model Reduction

System:

ẋ(t) = f (x(t), u(t), θ)

y(t) = g(x(t), u(t), θ)

x(0) = x0

Setting:
dim(x(t))� 1 (Many Network Nodes / Brain Regions)

dim(u(t))� dim(x(t)) (Significantly Less Inputs)

dim(y(t))� dim(x(t)) (Significantly Less Outputs)

dim(θ)� 1 (Many Parameters)

Aim:
dim(xr (t))� dim(x(t))

dim(θr )� dim(θ)

‖yθ − yr ,θr ‖ � 1



Projection-Based Model Reduction

Trajectory Projection:

xr (t) := Ux(t)

x(t) ≈ Vxr (t)

Petrov-Galerkin Projection:

U ∈ Rn×N , V ∈ RN×n, V TU = 1, n� N

Galerkin Projection:

U ∈ Rn×N , V := UT , UTU = 1, n� N

We will only be concerned with Galerkin projection.
Petrov-Galerkin can pose issues with stability.



State-Space Reduction

General Control System:

ẋ(t) = f (x(t), u(t), θ)

y(t) = g(x(t), u(t), θ)

x(0) = x0

Projection-Based Reduced Order Model (ROM):

ẋr (t) = Vf (Uxr (t), u(t), θ)

yr (t) = g(Uxr (t), u(t), θ)

xr (0) = Vx0

Aim: ‖y − yr‖ � 1



Linear State-Space Reduction

Linear Control System:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

x(0) = x0

Projection-Based ROM:

ẋr (t) = UAVxr (t) + UBu(t)

yr (t) = CVxr (t)

xr (0) = Vx0



(Side Note) PCA / POD / SVD

You may already have done model reduction!

Assume:
given a discrete time series,
to which a PCA is applied.

This is more or less a centered POD method of snapshots.

For finite dimensional operators PCA and POD are essentially a
(sparse) SVD.



Parameter Identification

Parameter Space:

θ ∈ RP , P � 1

i.e. P = N2.

Which (linear combination of the) parameter is influencing the
behaviour of the system the most?
This is also related to sensitivity analysis.

Parameter (Galerkin) Projection:

θr := Πθ

θ ≈ ΠT θr

ΠTΠ = 1



Parameter-Space Reduction

General Control System:

ẋ(t) = f (x(t), u(t), θ)

y(t) = g(x(t), u(t), θ)

x(0) = x0

Projection-Based ROM:

ẋ(t) = f (x(t), u(t),ΠT θr )

y(t) = g(x(t), u(t),ΠT θr )

Aim: ‖yθ − yθr ‖ � 1



Combined State and Parameter Reduction

General Control System:

ẋ(t) = f (x(t), u(t), θ)

y(t) = g(x(t), u(t), θ)

Reduced Order Model:

ẋr (t) = fr (xr (t), u(t), θr )

yr (t) = gr (xr (t), u(t), θr )

Projection-Based ROM:

ẋr (t) = UT f (Uxr (t), u(t),ΠT θr )

yr (t) = g(Uxr (t), u(t),ΠT θr )

Aim: ‖yθ − yr ,θr ‖ � 1



Challenge

How to find U? (MOR)
How to find Π? (SYSID)
Since y(θ), yr has to be valid for all admissable θ! (pMOR)
Since y(θ), θr has to approximate θ well! (COMRED)
FYI: My Models are nonlinear! (nMOR)
BTW: I have non-affine parameter dependencies!



Dual Approach

1 Gramian-Based Combined Reduction

2 Optimization-Based Combined Reduction



Gramian-Based Combined Reduction

Based on ...
System Theory / Control Theory
Linear Control Systems and their encoded properties

Features:
For Nonlinear Systems: Empirical Gramians [Lall et al’99]
Combined Reduction: Empirical Cross Gramian and Joint
Gramian [H. & Ohlberger’14]



Controllability



Observability



Balanced Truncation [Moore’81]

For Linear Control Systems
Controllability and Observability can be computed
as singular values of the System’s Gramian Matrices.
Balancing these two matrices yields the so called Hankel
Singular Values3.

Why HSVs?
A state component that is neither controllable nor observable
is not contributing to the input-to-output energy transfer.
The smaller the HSV, the less important the associated
(balanced) state is.

3Singular values of the Hankel operator mapping inputs to outputs.



Parameter Observability

Parameter Augmented General Control System:(
ẋ(t)

θ̇(t)

)
=

(
f (x(t), u(t), θ(t))

0

)
y(t) = g(x(t), u(t), θ(t))(

x(0)
θ(0)

)
=

(
x0
θ0

)



Optimization-Based Combined Reduction

Based on:
Greedy Algorithm
Large-Scale Inverse Problems

Features:
Combined Reduction: [Lieberman et al’12]
Data-Driven: [H. & Ohlberger (submitted)]



Greedy Algorithm

Minimize Maximal Error:

θi+1 = argmaxθ⊥θ0,...i ‖yθ − yθr ‖22 + γ‖θ‖22
= argminθ⊥θ0,...i −‖yθ − yθr ‖22 − γ‖θ‖22

Parameter Projection:

Π = [θ0, . . . , θp]



Enhanced Greedy Algorithm

Monte-Carlo Parameter Base & Data-Driven Regularization:

M = [P(θ)0, . . . ,P(θ)p]

θ̃i+1 = argmaxMθ⊥Mθ0,...i ‖yθ̃ − yθ̃r ‖
2
2 + γ‖θ̃‖22 + δ‖yd − yθ̃r ‖

2
2

Parameter Projection:

Π = [M−1
0 θ̃0, . . . ,M

−1
p θ̃p]



Combined Reduction

Parameter Greedy:

θi+1 = argmaxθ⊥θ0,...i ‖yθ − yr ,θr ‖22 + γ‖θ‖22
x̄i = pod1(x(θi ))

State Projection:

U = [x̄0, . . . , x̄n]



Act V

Alltogether



Back to the Beginning

ẋ(t) = f (x(t), u(t), θ)

y(t) = g(x(t), u(t), θ)

x(0) = x0

Dimensions:
dim(x(t))� 1
dim(u(t))� dim(x(t))

dim(y(t))� dim(x(t))

dim(θ)� 1



Inverse Problem

ODE Constrained Optimization:

θd = argminθ ‖yθ − yd‖22
s.t.:
ẋ(t) = f (x(t), u(t), θ)

yθ(t) = g(x(t), u(t), θ)

x(0) = x0

Remember:
dim(x(t))� 1
dim(u(t))� dim(x(t))

dim(y(t))� dim(x(t))

dim(θ)� 1



Reduced Order Inverse Problem

ODE Constrained Optimization:

θd = argminθr ‖yθr − yd‖22
s.t.:
ẋr (t) = fr (xr (t), u(t), θr )

yr ,θ(t) = gr (xr (t), u(t), θr )

xr (0) = xr ,0

Remember:
dim(xr (t))� dim(x(t))

dim(θr )� dim(θ)

‖yθ − yr ,θr ‖ � 1



Numerical Results (HNM)
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Gramian-Based and Optimization-Based Combined Reduction



What does this mean?

State-Space dynamics can be bound to low-dimensional
sub-spaces of the high-dimensional state-space.
Identifiable parameters can be restricted to small sub-spaces of
the high-dimensional parameter-space.
State- and parameter-spaces can be reduced jointly,
also for a nonlinear system.
The inverse problem can be solved on the reduced spaces.
Open issue: accurate parameter reconstruction



tl;dl

Networks can be modelled by control systems
In this sense, the parameter inference is an ODE constrained
inverse problem
DCM is a flavor of such inverse problem in a bayesian setting
Model Reduction approximates large models with smaller
surrogate models
and thus accelerates the inversion / optimization

More Info:
Me: http://wwwmath.uni-muenster.de/u/himpe
M. Ohlberger: http://wwwmath.uni-muenster.de/u/ohlberger

MoRePaS: http://morepas.org
MORwiki: http://modelreduction.org

Thanks!

http://wwwmath.uni-muenster.de/u/himpe
http://wwwmath.uni-muenster.de/u/ohlberger
http://morepas.org
http://modelreduction.org

