Model Order Reduction (for ODE-Constrained Optimization)

Christian Himpe (christian.himpe@uni-muenster.de) Mario Ohlberger (mario.ohlberger@uni-muenster.de)

WWU Münster
Institute for Computational and Applied Mathematics
DCM Workshop
24.04.15

Disclaimer

- The presented methods are subject of ongoing research.
- I am a mathematician; there will be math!

Outline

1 Network Models
2 Connectivity Inference
3 Dynamic Causal Modelling
4 Model Reduction
5 Bringing It All Together

Motivation

- How are regions of the brain connected?
- How does (sensory) input disperse?
- How does connectivity change under input?
- How does the brain learn and unlearn?

Procedure

1 Experimental Data
2 Forward Model
3 Inverse Problem
Forward Problem

Inverse Problem

Notation

- $x(t)$ State Trajectory aka Neuronal Activity
- $y(t)$ Output Trajectory aka Measured Response
- $u(t)$ Input / Control aka External Stimulus
- θ Parameters aka Connectivity Strength

Act I

Network Models

Ordinary Differential Equations

Initial Value Problem (IVP) w Ordinary Differential Equation ${ }^{1}$ (ODE):

$$
\begin{aligned}
& \dot{x}(t)=a x(t) \\
& x(0)=x_{0}
\end{aligned}
$$

Components:
■ $x: \mathbb{R}^{+} \rightarrow \mathbb{R}$ Solution Trajectory

- $\dot{x}=\frac{d x}{d t}$ Newton Notation for a Time Derivative
- $x_{0} \in \mathbb{R}$ Initial Value
- $a \in \mathbb{R}$

Solution:

$$
x(t)=e^{a t} x_{0}
$$

[^0]
Systems of ODEs

IVP with a System of ODEs:

$$
\begin{aligned}
& \dot{x}(t)=A x(t) \\
& x(0)=x_{0}
\end{aligned}
$$

Components:
■ $x: \mathbb{R}^{+} \rightarrow \mathbb{R}^{N}$ Solution Trajectory

- $\dot{x}_{i}=\frac{d x_{i}}{d t}$ Component-Wise Derivative
- $x_{0} \in \mathbb{R}^{N}$ Initial Value
- $A \in \mathbb{R}^{N \times N}$

Solution:

$$
x(t)=e^{A t} x_{0}
$$

Control System

Linear Control System ${ }^{2}$:

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t) \\
& x(0)=x_{0}
\end{aligned}
$$

Components:

- $y: \mathbb{R}^{N} \rightarrow \mathbb{R}^{O}$ Output Trajectory
- $A \in \mathbb{R}^{N \times N}$ System Matrix
- $B \in \mathbb{R}^{N \times M}$ Input Matrix
- $C \in \mathbb{R}^{O \times N}$ Output Matrix

Solution:

$$
y(t)=(x * u)(t)=C e^{A t} x_{0}+\int_{0}^{t} C e^{A \tau} B u(\tau) d \tau
$$

Network Interpretation

Linear Dynamical System:

$$
\dot{x}(t)=A x(t)+B u(t)
$$

Example (single input, three region network):

$$
\left(\begin{array}{c}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t) \\
\dot{x}_{3}(t)
\end{array}\right)=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right)+\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) u(t)
$$

Connectivity Parametrization

Connectivity Strength:

$$
\theta_{i N+j}=a_{i j}
$$

Parametrized Linear Dynamical System:

$$
\dot{x}(t)=A(\theta) x(t)+B u(t)
$$

with Nonlinear Parameter Mapping.

General Control System

Possibly Nonlinear Control System:

$$
\begin{aligned}
\dot{x}(t) & =f(x(t), u(t), \theta) \\
y(t) & =g(x(t), u(t), \theta) \\
x(0) & =x_{0}
\end{aligned}
$$

(Special Case) Linear Control System:

$$
\begin{aligned}
& f(x(t), u(t), \theta)=A(\theta) x(t)+B u(t) \\
& g(x(t), u(t), \theta)=C x(t)
\end{aligned}
$$

(Nonlinear Example) Hyperbolic Network Model:

$$
\begin{aligned}
& \dot{x}(t)=A(\theta) \tanh (K x(t))+B u(t) \\
& y(t)=C x(t) \\
& x(0)=x_{0}
\end{aligned}
$$

Connectivity Inference

Data Model

Model-Data Relation:

$$
y_{d}:=y_{\theta}+\varepsilon
$$

Components:

- y_{d} Measured Output
- y_{θ} Parametrized Model Output
- ε Noise

Inverse Problem

ODE Constrained Optimization:

$$
\begin{aligned}
& \theta_{d}=\operatorname{argmin}_{\theta}\left\|y_{\theta}-y_{d}\right\|_{2}^{2} \\
& \text { s.t.: } \\
& \dot{x}(t)=f(x(t), u(t), \theta) \\
& y_{\theta}(t)=g(x(t), u(t), \theta) \\
& x(0)=x_{0}
\end{aligned}
$$

- $\|\cdot\|_{2}$ means L_{2} (Euclidian Distance).
- This is a least-squares minimization.

Difficulties

Well-Posed Problem:

- A solution exists
- The solution is unique
- Solution is stable

A problem not well-posed is ill-posed.

III-Conditioned Problem:

- Small Perturbation result in large errors

Regularization

Tikhonov Regularization:

$$
\theta_{d}=\operatorname{argmin}_{\theta}\left\|y_{\theta}-y_{d}\right\|_{2}^{2}+\beta\|\theta\|_{2}^{2}
$$

New Components:

- β Regularization Coefficient
- $\|\theta\|_{2}^{2}$ Regularization Operator

Act III

Dynamic Causal Modelling

Two-Part Model [Friston et al'03]

Dynamic Sub-Model:

- Models neuronal activity,
- and coupling between different brain regions

■ Multiple-Input-Multiple-Output

Forward Sub-Model:

- Transforms neuronal activity to measurable output
- Physiologically motivated
- Single-Input-Single-Output

Schematic Two-Part Model

Model Properties

Models differ for

- EEG / MEG
- fMRI / fNIRS
but have commonalities:

Both ...

- exhibit stable behaviour,
- (originally) contain nonlinearities,
- encode connectivity in parameters,
- are assumed to be deterministic.

A Closer Look at ...

... the fMRI Model,
because:

- the dynamic sub-model is easier to understand,
- and has less physiological assumptions.

Dynamic Sub-Model

- Models neuronal activity
- Hidden from (direct) measurement
- Most likely nonlinear
- Encodes coupling
- Input (External Stimulus)
- (Connectivity) Parameters

$$
\dot{x}(t)=f(x(t), u(t), \theta)
$$

Linear(ized) Model

Using a Taylor series approximation:

$$
\begin{aligned}
\dot{x}(t)= & f(x(t), u(t), \theta) \\
\approx & f(0,0, \theta)+\frac{\mathrm{d} f}{\mathrm{~d} x} x(t)+\frac{\mathrm{d} f}{\mathrm{~d} u} u(t) \\
& \Rightarrow \dot{\tilde{x}}(t)=A(\theta) \tilde{x}(t)+B(\theta) u(t)
\end{aligned}
$$

- Models effective connectivity
- Parameters θ are the components of A, B
- Stability constraints apply to θ

Bilinear Extension

Bilinear approximation [Friston et al'03]:

$$
\begin{aligned}
\dot{x}(t)= & f(x(t), u(t), \theta) \\
\approx & f(0,0, \theta)+\frac{\mathrm{d} f}{\mathrm{~d} x} x(t)+\frac{\mathrm{d} f}{\mathrm{~d} u} u(t)+\frac{\mathrm{d}^{2} f}{\mathrm{~d} x \mathrm{~d} u} x(t) u(t) \\
& \Rightarrow \dot{\tilde{x}}(t)=A(\theta) \tilde{x}(t)+B(\theta) u(t)+\sum_{i} u_{i}(t) G_{i}(\theta) \tilde{x}(t)
\end{aligned}
$$

$G_{i}(\theta)$ describes influence of i-th external input on coupling strength (lateral connectivity).

Quadratic Extension

Quadratic approximation [Stephan et al'08]:

$$
\begin{aligned}
\dot{x}(t)= & f(x(t), u(t), \theta) \\
\approx & f(0,0, \theta)+\frac{\mathrm{d} f}{\mathrm{~d} x} x(t)+\frac{\mathrm{d} f}{\mathrm{~d} u} u(t)+\frac{\mathrm{d}^{2} f}{\mathrm{~d} x \mathrm{~d} u} x(t) u(t)+\frac{\mathrm{d}^{2} f}{\mathrm{~d} x \mathrm{~d} x} x(t) x(t) \\
& \Rightarrow \dot{\tilde{x}}(t)=A(\theta) \tilde{x}(t)+B u(t)+\sum_{i} u_{i}(t) G_{i}(\theta) \tilde{x}(t)+\sum_{j} \tilde{x}_{j}(t) H_{j}(\theta) \tilde{x}(t)
\end{aligned}
$$

$H_{j}(\theta)$ describes influence of j-th state on coupling strength.

Forward-Submodel [Friston'02]

- Transforms neuronal activity to an observable BOLD signal
- Is a nonlinear SISO system

$$
\begin{aligned}
& \dot{s}_{i}(t)=\kappa_{x} x_{i}(t)-\kappa_{s} s_{i}(t)-\kappa_{f}\left(1-f_{i}(t)\right) \\
& \dot{f}_{i}(t)=s_{i}(t) \\
& \dot{v}_{i}(t)=\frac{1}{\kappa_{0}}\left(f_{i}(t)-v_{i}(t)^{\frac{1}{\alpha}}\right) \\
& \dot{q}_{i}(t)=\frac{1}{\kappa_{0}}\left(f_{i}(t) \frac{E\left(f_{i}(t), \kappa_{\rho}\right)}{\kappa_{\rho}}-v_{i}(t)^{\frac{1}{\alpha}} \frac{q_{i}(t)}{v_{i}(t)}\right) \\
& y_{i}(t)=k_{1}\left(1-v_{i}(t)\right)+k_{2}\left(1-q_{i}(t)\right)+ \\
& \left.k_{3}\left(1-\frac{q_{i}(t)}{v_{i}(t)}\right)\right)
\end{aligned}
$$

- Activity induced signal
- Inflow

■ Venous volume (inflow - outlow)

- Deoxy. Content (intake - release)
- BOLD Output
(volume + content + concentration)

Joint Model

Combining the

- MIMO dynamic sub-model
- SISO forward sub-model
yields a joint nonlinear state-space system:

$$
\begin{aligned}
\left(\begin{array}{c}
\dot{x}(t) \\
\dot{z}_{1}(t) \\
\vdots \\
\dot{z}_{n}(t)
\end{array}\right) & =\left(\begin{array}{c}
F_{\text {dyn }}(x(t), u(t), \theta) \\
F_{\text {out }, 1}\left(z_{1}(t), x_{1}(t)\right) \\
\vdots \\
F_{\text {out }, n}\left(z_{n}(t), x_{n}(t)\right)
\end{array}\right) \\
y & =g\left(z_{1}(t), \ldots, z_{n}(t)\right)
\end{aligned}
$$

Bayesian Inference

Bayes' Rule:

$$
P(\theta \mid y)=\frac{P(y \mid \theta) P(\theta)}{P(y)}
$$

- $P\left(\theta \mid y_{d}\right)$ Posterior (Probability of θ given y_{d})
- $P\left(y_{d} \mid \theta\right)$ Likelihood (Probability of y_{d} given θ)
- $P(\theta)$ Prior (Probability of θ)
- $P\left(y_{d}\right)$ Evidence (Probability of y_{d})

Proportionality:

$$
P(\theta \mid y) \propto P(y \mid \theta) P(\theta)
$$

Gaussian Setting

In case the prior and the noise are gaussian, $P(\theta)=\mathcal{N}(\kappa, K), P(\varepsilon)=\mathcal{N}(0, \Lambda):$

$$
\begin{aligned}
y_{d} & =y_{\theta}+\varepsilon \\
\Rightarrow \epsilon & =y_{d}-y_{\theta} \\
\Rightarrow P(\epsilon) & =P\left(y_{d}-y_{\theta}\right) \\
\Rightarrow P\left(\theta \mid y_{d}\right) & \propto P\left(y_{d}-y_{\theta}\right) P(\theta) \\
P\left(y_{d} \mid \theta\right) & \propto \exp \left(-\frac{1}{2}\left\|y_{\theta}-y_{d}\right\|_{\Lambda^{-1}}^{2}\right) \\
P(\theta) & \propto \exp \left(-\frac{1}{2}\|\theta-\kappa\|_{K^{-1}}^{2}\right) \\
\Rightarrow P\left(\theta \mid y_{d}\right) & \propto \exp \left(-\frac{1}{2}\left\|y_{\theta}-y_{d}\right\|_{\Lambda^{-1}}^{2}-\frac{1}{2}\|\theta-\kappa\|_{K^{-1}}^{2}\right)
\end{aligned}
$$

Maximum-A-Posteriori

MAP Estimator (Prior incorporated maximum likelihood estimator):

$$
\begin{aligned}
\theta_{\mathrm{MAP}} & =\operatorname{argmax}_{\theta \in \mathbb{R}^{P}} \exp \left(-\frac{1}{2}\left\|y_{\theta}-y_{d}\right\|_{\Lambda^{-1}}^{2}-\frac{1}{2}\|\theta-\kappa\|_{K^{-1}}^{2}\right) \\
& =\operatorname{argmin}_{\theta \in \mathbb{R}^{P}}\left(\frac{1}{2}\left\|y_{\theta}-y_{d}\right\|_{\Lambda^{-1}}^{2}+\frac{1}{2}\|\theta-\kappa\|_{K^{-1}}^{2}\right)
\end{aligned}
$$

At second glance this is a regularized least-square problem!

Large-Scale Models

The dynamic sub-model (dynamical system):

$$
\dot{x}(t)=A(\theta) x(t)+B u(t)
$$

dimensions determine the paramter space dimension: $P=N^{2}$.
The minimization algorithm for such a nonlinear problem computes many simulations of the system, due to the necessary perturbations of many directions in the parameter space.
\Rightarrow A few more nodes in the network may prolong the inversion procedure significantly.

Act IV

Model Reduction

Model Reduction

System:

$$
\begin{aligned}
\dot{x}(t) & =f(x(t), u(t), \theta) \\
y(t) & =g(x(t), u(t), \theta) \\
x(0) & =x_{0}
\end{aligned}
$$

Setting:
■ $\operatorname{dim}(x(t)) \gg 1 \quad$ (Many Network Nodes / Brain Regions)

- $\operatorname{dim}(u(t)) \ll \operatorname{dim}(x(t)) \quad$ (Significantly Less Inputs)
- $\operatorname{dim}(y(t)) \ll \operatorname{dim}(x(t)) \quad$ (Significantly Less Outputs)
- $\operatorname{dim}(\theta) \gg 1 \quad$ (Many Parameters)

Aim:

- $\operatorname{dim}\left(x_{r}(t)\right) \ll \operatorname{dim}(x(t))$
- $\operatorname{dim}\left(\theta_{r}\right) \ll \operatorname{dim}(\theta)$
- $\left\|y_{\theta}-y_{r, \theta_{r}}\right\| \ll 1$

Projection-Based Model Reduction

Trajectory Projection:

$$
\begin{aligned}
x_{r}(t) & :=U x(t) \\
x(t) & \approx V x_{r}(t)
\end{aligned}
$$

Petrov-Galerkin Projection:

$$
U \in \mathbb{R}^{n \times N}, \quad V \in \mathbb{R}^{N \times n}, \quad V^{T} U=\mathbb{1}, \quad n \ll N
$$

Galerkin Projection:

$$
U \in \mathbb{R}^{n \times N}, \quad V:=U^{T}, \quad U^{T} U=\mathbb{1}, \quad n \ll N
$$

- We will only be concerned with Galerkin projection.
- Petrov-Galerkin can pose issues with stability.

State-Space Reduction

General Control System:

$$
\begin{aligned}
\dot{x}(t) & =f(x(t), u(t), \theta) \\
y(t) & =g(x(t), u(t), \theta) \\
x(0) & =x_{0}
\end{aligned}
$$

Projection-Based Reduced Order Model (ROM):

$$
\begin{aligned}
& \dot{x}_{r}(t)=V f\left(U x_{r}(t), u(t), \theta\right) \\
& y_{r}(t)=g\left(U x_{r}(t), u(t), \theta\right) \\
& x_{r}(0)=V x_{0}
\end{aligned}
$$

Aim: $\left\|y-y_{r}\right\| \ll 1$

Linear State-Space Reduction

Linear Control System:

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t) \\
& x(0)=x_{0}
\end{aligned}
$$

Projection-Based ROM:

$$
\begin{aligned}
& \dot{x}_{r}(t)=U A V x_{r}(t)+U B u(t) \\
& y_{r}(t)=C V x_{r}(t) \\
& x_{r}(0)=V x_{0}
\end{aligned}
$$

(Side Note) PCA / POD / SVD

You may already have done model reduction!

Assume:

- given a discrete time series,
- to which a PCA is applied.

This is more or less a centered POD method of snapshots.

For finite dimensional operators PCA and POD are essentially a (sparse) SVD.

Parameter Identification

Parameter Space:

$$
\theta \in \mathbb{R}^{P}, \quad P \gg 1
$$

i.e. $P=N^{2}$.

- Which (linear combination of the) parameter is influencing the behaviour of the system the most?
- This is also related to sensitivity analysis.

Parameter (Galerkin) Projection:

$$
\begin{gathered}
\theta_{r}:=\Pi \theta \\
\theta \approx \Pi^{T} \theta_{r} \\
\Pi^{T} \Pi=\mathbb{1}
\end{gathered}
$$

Parameter-Space Reduction

General Control System:

$$
\begin{aligned}
\dot{x}(t) & =f(x(t), u(t), \theta) \\
y(t) & =g(x(t), u(t), \theta) \\
x(0) & =x_{0}
\end{aligned}
$$

Projection-Based ROM:

$$
\begin{aligned}
& \dot{x}(t)=f\left(x(t), u(t), \Pi^{T} \theta_{r}\right) \\
& y(t)=g\left(x(t), u(t), \Pi^{T} \theta_{r}\right)
\end{aligned}
$$

Aim: $\left\|y_{\theta}-y_{\theta_{r}}\right\| \ll 1$

Combined State and Parameter Reduction

General Control System:

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), u(t), \theta) \\
& y(t)=g(x(t), u(t), \theta)
\end{aligned}
$$

Reduced Order Model:

$$
\begin{aligned}
& \dot{x}_{r}(t)=f_{r}\left(x_{r}(t), u(t), \theta_{r}\right) \\
& y_{r}(t)=g_{r}\left(x_{r}(t), u(t), \theta_{r}\right)
\end{aligned}
$$

Projection-Based ROM:

$$
\begin{aligned}
& \dot{x}_{r}(t)=U^{T} f\left(U x_{r}(t), u(t), \Pi^{T} \theta_{r}\right) \\
& y_{r}(t)=g\left(U x_{r}(t), u(t), \Pi^{T} \theta_{r}\right)
\end{aligned}
$$

Aim: $\left\|y_{\theta}-y_{r, \theta_{r}}\right\| \ll 1$

Challenge

- How to find U ? (MOR)
- How to find Π ? (SYSID)
- Since $y(\theta), y_{r}$ has to be valid for all admissable θ ! (pMOR)
- Since $y(\theta), \theta_{r}$ has to approximate θ well! (COMRED)
- FYI: My Models are nonlinear! (nMOR)
- BTW: I have non-affine parameter dependencies!

Dual Approach

1 Gramian-Based Combined Reduction

2 Optimization-Based Combined Reduction

Gramian-Based Combined Reduction

Based on ...
■ System Theory / Control Theory

- Linear Control Systems and their encoded properties

Features:

- For Nonlinear Systems: Empirical Gramians [Lall et al'99]
- Combined Reduction: Empirical Cross Gramian and Joint Gramian [H. \& Ohlberger'14]

Controllability

Observability

Balanced Truncation [Moore'81]

For Linear Control Systems

- Controllability and Observability can be computed
- as singular values of the System's Gramian Matrices.
- Balancing these two matrices yields the so called Hankel Singular Values ${ }^{3}$.

Why HSVs?

- A state component that is neither controllable nor observable
- is not contributing to the input-to-output energy transfer.
- The smaller the HSV, the less important the associated (balanced) state is.

[^1]
Parameter Observability

Parameter Augmented General Control System:

$$
\begin{aligned}
\binom{\dot{x}(t)}{\dot{\theta}(t)} & =\binom{f(x(t), u(t), \theta(t))}{0} \\
y(t) & =g(x(t), u(t), \theta(t)) \\
\binom{x(0)}{\theta(0)} & =\binom{x_{0}}{\theta_{0}}
\end{aligned}
$$

Optimization-Based Combined Reduction

Based on:

- Greedy Algorithm
- Large-Scale Inverse Problems

Features:

- Combined Reduction: [Lieberman et al'12]

■ Data-Driven: [H. \& Ohlberger (submitted)]

Greedy Algorithm

Minimize Maximal Error:

$$
\begin{aligned}
\theta_{i+1} & =\operatorname{argmax}_{\theta \perp \theta_{0}, \ldots i}\left\|y_{\theta}-y_{\theta_{r}}\right\|_{2}^{2}+\gamma\|\theta\|_{2}^{2} \\
& =\operatorname{argmin}_{\theta \perp \theta_{0, \ldots i}}-\left\|y_{\theta}-y_{\theta_{r}}\right\|_{2}^{2}-\gamma\|\theta\|_{2}^{2}
\end{aligned}
$$

Parameter Projection:

$$
\Pi=\left[\theta_{0}, \ldots, \theta_{p}\right]
$$

Enhanced Greedy Algorithm

Monte-Carlo Parameter Base \& Data-Driven Regularization:

$$
\begin{aligned}
M & =\left[P(\theta)_{0}, \ldots, P(\theta)_{p}\right] \\
\tilde{\theta}_{i+1} & =\operatorname{argmax}_{M \theta \perp M \theta_{0}, \ldots i}\left\|y_{\tilde{\theta}}-y_{\tilde{\theta}_{r}}\right\|_{2}^{2}+\gamma\|\tilde{\theta}\|_{2}^{2}+\delta\left\|y_{d}-y_{\tilde{\theta}_{r}}\right\|_{2}^{2}
\end{aligned}
$$

Parameter Projection:

$$
\Pi=\left[M_{0}^{-1} \tilde{\theta}_{0}, \ldots, M_{p}^{-1} \tilde{\theta}_{p}\right]
$$

Combined Reduction

Parameter Greedy:

$$
\begin{aligned}
\theta_{i+1} & =\operatorname{argmax}_{\theta \perp \theta_{0}, \ldots i}\left\|y_{\theta}-y_{r, \theta_{r}}\right\|_{2}^{2}+\gamma\|\theta\|_{2}^{2} \\
\bar{x}_{i} & =\operatorname{pod}_{1}\left(x\left(\theta_{i}\right)\right)
\end{aligned}
$$

State Projection:

$$
U=\left[\bar{x}_{0}, \ldots, \bar{x}_{n}\right]
$$

Act V

Alltogether

Back to the Beginning

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), u(t), \theta) \\
& y(t)=g(x(t), u(t), \theta) \\
& x(0)=x_{0}
\end{aligned}
$$

Dimensions:

- $\operatorname{dim}(x(t)) \gg 1$
- $\operatorname{dim}(u(t)) \ll \operatorname{dim}(x(t))$
- $\operatorname{dim}(y(t)) \ll \operatorname{dim}(x(t))$
- $\operatorname{dim}(\theta) \gg 1$

Inverse Problem

ODE Constrained Optimization:

$$
\begin{aligned}
\theta_{d} & =\operatorname{argmin}_{\theta}\left\|y_{\theta}-y_{d}\right\|_{2}^{2} \\
\text { s.t.: } & \\
\dot{x}(t) & =f(x(t), u(t), \theta) \\
y_{\theta}(t) & =g(x(t), u(t), \theta) \\
x(0) & =x_{0}
\end{aligned}
$$

Remember:

- $\operatorname{dim}(x(t)) \gg 1$
- $\operatorname{dim}(u(t)) \ll \operatorname{dim}(x(t))$
- $\operatorname{dim}(y(t)) \ll \operatorname{dim}(x(t))$
- $\operatorname{dim}(\theta) \gg 1$

Reduced Order Inverse Problem

ODE Constrained Optimization:

$$
\begin{aligned}
\theta_{d} & =\operatorname{argmin}_{\theta_{r}}\left\|y_{\theta_{r}}-y_{d}\right\|_{2}^{2} \\
\text { s.t.: } & \\
\dot{x}_{r}(t) & =f_{r}\left(x_{r}(t), u(t), \theta_{r}\right) \\
y_{r, \theta}(t) & =g_{r}\left(x_{r}(t), u(t), \theta_{r}\right) \\
x_{r}(0) & =x_{r, 0}
\end{aligned}
$$

Remember:

- $\operatorname{dim}\left(x_{r}(t)\right) \ll \operatorname{dim}(x(t))$
- $\operatorname{dim}\left(\theta_{r}\right) \ll \operatorname{dim}(\theta)$
- $\left\|y_{\theta}-y_{r, \theta_{r}}\right\| \ll 1$

Numerical Results (HNM)

Gramian-Based and Optimization-Based Combined Reduction

What does this mean?

- State-Space dynamics can be bound to low-dimensional sub-spaces of the high-dimensional state-space.
- Identifiable parameters can be restricted to small sub-spaces of the high-dimensional parameter-space.
- State- and parameter-spaces can be reduced jointly,
- also for a nonlinear system.
- The inverse problem can be solved on the reduced spaces.
- Open issue: accurate parameter reconstruction

■ Networks can be modelled by control systems

- In this sense, the parameter inference is an ODE constrained inverse problem
- DCM is a flavor of such inverse problem in a bayesian setting
- Model Reduction approximates large models with smaller surrogate models
- and thus accelerates the inversion / optimization

More Info:
■ Me: http://wwwmath.uni-muenster.de/u/himpe
■ M. Ohlberger: http://wwwath.uni-muenster.de/u/ohlberger
■ MoRePaS: http://morepas.org
■ MORwiki: http://modelreduction.org

[^0]: ${ }^{1}$ Here: Autonomous \& Linear

[^1]: ${ }^{3}$ Singular values of the Hankel operator mapping inputs to outputs.

