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Disclaimer

1 There will be no �ashy images.

2 There will be formulas.



Why Model Reduction?

My simulation is based on a model, ...

... that is large.

... that needs to be simulated many times.

... that has to be simulated in n seconds.

What it usually boils down to:
�It takes too long!�



Popular Beliefs

1 �I just buy a faster computer.�

Moore's Law
The memory bottleneck
Resource coverage (DM, NUMA, SMP, SMT, SIMD, GPGPU)

2 �I just use a coarser grid.�

Detail Resolution
Numerical Properties
Information Disregard



A Mathematical Model

(Pretty) General Input-Output System:

ẋ(t) = f (x(t), u(t), θ),

y(t) = g(x(t), u(t), θ),

x(0) = x0

System Components:

x(t) - State

u(t) - Input / Control

y(t) - Output

θ - Parameter



One of Many Interpretations

x0 is a equilibrium state of the system.

u(t) is an external perturbation

to a system with dynamic behavor x(t).

y(t) is a measurement from a few sensors.



The Poster Child

Linear (Time-Invariant) System:

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

x(0) = x0



In The Wild

Input-Output Systems are used in:

Industrial Control

Mechanics

Electro Dynamics

Fluid Dynamics

Reaction Networks

Neuro Imaging

Network Dynamics

...



Play It Again, Sam

Many-Query Settings:

Optimal Control

Model Predictive Control

Model Constraint Optimization

Inverse Problems

Sensitivity Analysis

�Uncertainty Quanti�cation�



Setting the Stage

Now, what means large?

High-Dimensional State-Space: dim(x(t))� 1

High-Dimensional Parameter-Space: dim(θ)� 1

(Input- and output-space are usually small.)



Enter MOR

Model Order Reduction (MOR):

Low-Dimensional State-Space: dim(xr (t))� dim(x(t))

Low-Dimensional Parameter-Space: dim(θr )� dim(θ)

Model Reduction Error1 ‖y − yr‖ � 1 (!)

1
In a suitable norm.



Intermission I

What we use model order reduction (MOR) for:

Network Connectivity Reconstruction

(from neuroimaging data for brain connectivity analysis)



Intermission II

We have:

Low-dimensional time-series measurements

from a large network of known size,

which is controllably perturbed.

We want:

statistics

on the inter-node connectivity

(This is a bayesian inverse problem treated with model constraint optimization)



It's A Bird ... It's A Plane ... It's A

Reduced Order Model (ROM):

ẋr (t) = fr (xr (t), u(t), θr ),

yr (t) = gr (xr (t), u(t), θr ),

xr (0) = xr ,0



Project Me If You Can

Projection-Based ROM2:

ẋr (t) = Vf (Uxr (t), u(t),Πθr ),

yr (t) = g(Uxr (t), u(t),Πθr ),

xr (0) = Vx0,

θr = Λθ

With:

(Low-rank) state-space projection {U,V }
(Low-rank) parameter projection {Π,Λ}

2
We delibaretly ignore the lifting bottleneck here.



A New State-Space Hope

Recipe for a reducing state-space projection:

1 Select a criteria for importance of states.

2 Transform the sytem so states are sorted.

3 Discard the least important states.

(We choose input-output energy transfer.)



The Dual Duo

Controllability:

C(u) :=

∫ 0

−∞
e−At Bu(t)dt

(How well can the states be driven by input)

Observability:

O(x0)(t) = C eAt x0

(How well changes in the state are re�ected by the output)



Back To The Future

System Gramians:

WC := CC∗

WO := O∗O

Relation to the Hankel Operator H := OC:√
λ(WCWO) =

√
λ(CC∗O∗O)

=
√
λ(C∗O∗CO)

=
√
λ((OC)∗OC)

=
√
λ(H∗H)

=σ(H)

(H maps past inputs to future outputs and has �nite rank.)



Weighing Yin and Yang

Balancing:

W
1
2

C W
1
2

O
SVD
= UDV

(U and V constitute a balancing transformation)

Truncating:

U =
(
U1 U2

)
, V =

(
V1

V2

)
(Partitioning is based on the decay of the σi )

Balanced Truncation:
�If I can't control it or observe it I don't need it.�



Symmetric Encounter ...

Hankel Operator:

H = OC

What if H is symmetric?

H = H∗

⇒ OC = (OC)∗

⇒ CC∗O∗O = C(OC)∗O
= C(OC)O
= (CO)(CO)



... Of The Third Kind

A third system gramian - the cross gramian:

WX := CO
(Controllability and observability in one matrix!)

Approximate Balancing:

WX
SVD
= UDV

Direct Truncation:

U =
(
U1 U2

)
, V1 = UT

1



By Empirical Decree

How to compute these system gramians?

Solving matrix equations

Use empirical gramians (∗)



The Parameter-Space Strikes Back

Same recipe:

1 Select critera

2 Sort states

3 Discard tail

(Spoiler alert: We will use state-to-ouput in�uence)



A Parameter In A Tuxedo ...

Parameter Augmented System:(
ẋ(t)

θ̇(t)

)
=

(
f (x(t), u(t), θ)

0

)
,

y(t) = g(x(t), u(t), θ),(
x(0)
θ(0)

)
=

(
x0
θ

)



Double Cross

Block structure of the joint gramian:

WJ =

(
WX WM

0 0

)
(The joint gramian is the cross gramian of an augmented system.)

Cross-Identi�ability gramian:

WÏ = 0− 1

2
W T

M (WX + W T
X )−1WM

(WÏ encodes the �observability� of parameters.)

Parameter Truncation:

WÏ
SVD
= Π∆Λ→ Π =

(
Π1 Π2

)



Return Of The Combined Reduction

State-space projection:

WX
SVD
= UDV

Parameter-space projection:

WÏ
SVD
= Π∆Λ

Combined state and parameter ROM:

ẋr (t) = UT
1 f (U1xr (t), u(t),Π1θr ),

yr (t) = g(U1xr (t), u(t),Π1θr ),

xr (0) = UT
1 x0,

θr = ΠT
1 θ



Not Too Nonlinear

Hyperbolic Network Model:

ẋ(t) = A tanh(K (θ)x(t)) + Bu(t),

y(t) = Cx(t),

x(0) = x0



Better Call emgr

emgr - Empirical Gramian Framework (Version: 3.6, 10/2015)

Empirical Gramians:
Empirical Controllability Gramian

Empirical Observability Gramian

Empirical Linear Cross Gramian

Empirical Cross Gramian

Empirical Sensitivity Gramian

Empirical Identi�ability Gramian

Empirical Joint Gramians

Features:
Custom Solver Interface

Non-Symmetric Cross Gramian

Compatible with OCTAVE and MATLAB

Vectorized and Parallelizable

Permissive Open Source License (BSD 2-Clause)

More info at: http://gramian.de

http://gramian.de


L2 ⊗ L2 output error for varying reduced state and parameter dimensions
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tl;dl

Summary:

Combined state and parameter reduction

using empirical gramians

for nonlinear input-output systems.

wwwmath.uni-muenster.de/u/himpe

Thanks!

Get the Companion Code: j.mp/mornet15

wwwmath.uni-muenster.de/u/himpe
j.mp/mornet15

