Accelerating the Computation of Empirical Gramians and Related Methods

Christian Himpe (christian.himpe@uni-muenster.de) Mario Ohlberger (mario.ohlberger@uni-muenster.de)

WWU Münster
Institute for Computational and Applied Mathematics

5th IWMRRF
2015-06-29

Motivation

Research Question:
■ Is it possible to reconstruct a large network,

- stimulated by low-dimensional stimuli,
- and low-dimensional measurements.
- Let's say: the brain

Mathematical Problem:

- Nonlinear (!)
- Parametric

■ Large-Scale ODEs / Discretized PDEs

- Many-Query Setting
- Such as: Model-Constrained Optimization

MRRF?

What does this have to do with "model reduction in reactive flows"?

Same models if investigating input-output behaviour of a flow!

See for example: [Bagheri et al'09], [Holmes et al'12], [Nguyen et al'14].

Outline

1 Empirical Gramians
2 Improved Runge-Kutta Methods
3 Generalized Transpositions
4 Approximate Inverse
5 Re-Orthogonalized Lanczos Method

Control Systems

Linear Control System:

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t) \\
& x(0)=x_{0}
\end{aligned}
$$

$\left(x(t) \in \mathbb{R}^{\boldsymbol{N}}, \boldsymbol{u}(t) \in \mathbb{R}^{\boldsymbol{M}}, y(t) \in \mathbb{R}^{\boldsymbol{O}}, \boldsymbol{A} \in \mathbb{R}^{\boldsymbol{N} \times \boldsymbol{N}}, B \in \mathbb{R}^{\boldsymbol{N} \times \boldsymbol{M}}, C \in \mathbb{R}^{\boldsymbol{O} \times \boldsymbol{N}}\right)$

General Control System:

$$
\begin{aligned}
\dot{x}(t) & =f(x(t), u(t), \theta) \\
y(t) & =g(x(t), u(t), \theta) \\
x(0) & =x_{0}
\end{aligned}
$$

$\left(x(t) \in \mathbb{R}^{\boldsymbol{N}}, u(t) \in \mathbb{R}^{\boldsymbol{M}}, y(t) \in \mathbb{R}^{\boldsymbol{O}}, f: \mathbb{R}^{\boldsymbol{N}} \times \mathbb{R}^{\boldsymbol{M}} \rightarrow \mathbb{R}^{\boldsymbol{N}}, \boldsymbol{g}: \mathbb{R}^{\boldsymbol{N}} \times \mathbb{R}^{\boldsymbol{M}} \rightarrow \mathbb{R}^{\boldsymbol{O}}, \theta \in \mathbb{R}^{\boldsymbol{P}}\right)$

Model Order Reduction

General Control System:

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), u(t), \theta) \\
& y(t)=g(x(t), u(t), \theta) \\
& x(0)=x_{0}
\end{aligned}
$$

(In a many query setting, numerous solutions for varying $x_{\mathbf{0}}, u, \theta$ are required)

Common System Dimensions:

- $\operatorname{dim}(x(t)) \gg 1$
- $\operatorname{dim}(u(t)) \ll \operatorname{dim}(x(t))$
- $\operatorname{dim}(y(t)) \ll \operatorname{dim}(x(t))$
- $\operatorname{dim}(\theta) \gg 1$
(Important is a mapping $u \mapsto y$)

Projection-Based Combined Reduction

Reduced Order Model (ROM):

$$
\begin{aligned}
\dot{x}_{r}(t) & =f_{r}\left(x_{r}(t), u(t), \theta_{r}\right) \\
y_{r}(t) & =g_{r}\left(x_{r}(t), u(t), \theta_{r}\right) \\
x_{r}(0) & =x_{r, 0}
\end{aligned}
$$

$\left(x_{\boldsymbol{r}}(t) \in \mathbb{R}^{\boldsymbol{n}}, \theta_{\boldsymbol{r}} \in \mathbb{R}^{\boldsymbol{P}}, \operatorname{dim}\left(x_{\boldsymbol{r}}(t)\right) \ll \operatorname{dim}(x(t)), \operatorname{dim}\left(\theta_{\boldsymbol{r}}\right) \ll \operatorname{dim}(\theta),\left\|y(\theta)-y_{\boldsymbol{r}}\left(\theta_{\boldsymbol{r}}\right)\right\| \ll 1\right)$
(Galerkin) Projection-Based ROM:

$$
\begin{aligned}
& \dot{x}_{r}(t)=U^{T} f\left(U x_{r}(t), u(t), Q \theta_{r}\right) \\
& y_{r}(t)=g\left(U x_{r}(t), u(t), Q \theta_{r}\right) \\
& x_{r}(0)=U^{T} x_{0}
\end{aligned}
$$

$\left(U \in \mathbb{R}^{\boldsymbol{N} \times \boldsymbol{n}}, U^{\boldsymbol{T}} U=\mathbb{1}, Q \in \mathbb{R}^{\boldsymbol{P} \times \boldsymbol{p}}, \theta_{\boldsymbol{r}}=\boldsymbol{Q}^{\boldsymbol{T}} \theta\right)$

Cross-Gramian-Based Model Reduction

Controllability \& Observability:

$$
\begin{aligned}
\mathcal{C}(u) & :=\int_{0}^{\infty} e^{A t} B u(t) d t \\
\mathcal{O}(x) & :=C e^{A t} x
\end{aligned}
$$

Cross Gramian (square systems only):

$$
W_{X}:=\mathcal{C O}=\int_{0}^{\infty} e^{A t} B C e^{A t} d t
$$

$\left(A w_{x}+w_{x} A=-B C\right)$

Direct Truncation (symmetric systems only):

$$
W_{X} \stackrel{T S V D}{=} U D V
$$

$\left(U \in \mathbb{R}^{\boldsymbol{N} \times \boldsymbol{n}}, D \in \mathbb{R}^{\boldsymbol{n} \times \boldsymbol{n}}, V \in \mathbb{R}^{\boldsymbol{n} \times \boldsymbol{N}}, D_{i j} \approx \sigma_{i}(H)\right.$, all SISO systems are symmetric)

Empirical Cross Gramian [Streif et al'06], [H. \& Ohlberger'14]

Linear Empirical Cross Gramian:

$$
W_{X}=\int_{0}^{\infty}\left(e^{A t} B\right)\left(e^{A^{T} t} C^{T}\right) d t
$$

Nonlinear Empirical Cross Gramian ${ }^{1}$:

$$
\begin{aligned}
\widehat{W}_{X} & =\frac{1}{\left|Q_{u}\right|\left|R_{u}\right| M\left|Q_{x}\right|\left|R_{x}\right|} \sum_{h=1}^{\left|Q_{u}\right|} \sum_{i=1}^{\left|R_{u}\right|} \sum_{j=1}^{M} \sum_{k=1}^{\left|Q_{x}\right|} \sum_{l=1}^{\left|R_{x}\right|} \frac{1}{c_{h} d_{k}} \int_{0}^{\infty} T_{l} \Psi^{h i j k l}(t) T_{l}^{T} \mathrm{~d} t \\
\Psi_{a b}^{h i j k l}(t) & =f_{b}^{T} T_{k}^{T} \Delta x^{h i j}(t) e_{i}^{T} S_{h}^{T} \Delta y^{k l a}(t) \in \mathbb{R}, \\
\Delta x^{h i j}(t) & =\left(x^{h i j}(t)-\bar{x}^{h i j}\right), \\
\Delta y^{k l a}(t) & =\left(y^{k l a}(t)-\bar{y}^{k l a}\right) .
\end{aligned}
$$

${ }^{1}$ [H. \& Ohlberger'15] proposes a non-symmetric extension to the cross gramian, which can be efficiently computed for the empirical cross gramian.

Cross-Identifiability Gramian [H. \& Ohlberger'14]

Parameter augmented system (assume constant parameters):

$$
\begin{aligned}
\binom{\dot{x}(t)}{\dot{\theta}(t)} & =\binom{f(x(t), u(t), \theta(t))}{0} \\
y(t) & =g(x(t), u(t), \theta(t)) \\
\binom{x(0)}{\theta(0)} & =\binom{x_{0}}{\theta_{0}}
\end{aligned}
$$

Cross Gramian parameter augmented system (joint gramian W_{J}):

$$
W_{J}=\left(\begin{array}{cc}
W_{X} & W_{M} \\
0 & 0
\end{array}\right)
$$

Schur-complement of symmetric part of W_{J} (cross-identifiability gramian W_{i}):

$$
W_{i}=\frac{1}{2}\left(W_{M}^{T}\left(W_{X}+W_{X}^{T}\right)^{-1} W_{M}\right)
$$

Trajectories for Nonlinear Systems

Single-Step Methods:

- Averages vector field evaluations of intermediate time-steps
- i.e. Runge-Kutta methods

Multi-Step Methods:

- Averages vector field evaluations of past time-steps
- Require s starting values, i.e. by single-step methods

■ i.e. Adams-Bashforth methods

General Linear Methods:

- Averages vector field evaluations of past and intermediate time-steps

■ i.e. Two-Step Runge-Kutta (TSRK) methods

Improved Runge-Kutta Methods [Rabiei'13]

TSRK Example: IRK3

$$
\begin{aligned}
k_{-1} & =h f\left(t_{i-1}, y_{i-1}\right) \\
k_{-2} & =h f\left(t_{i-1}+\frac{1}{2} h, y_{i-1}+\frac{1}{2} k_{i-1}\right) \\
k_{1} & =h f\left(t_{i}, y_{i}\right) \\
k_{2} & =h f\left(t_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} k_{i}\right) \\
y_{k+1} & =y_{k}+\frac{2}{3} k_{1}-\left(-\frac{1}{3} k_{1}\right)+\frac{5}{6}\left(k_{2}-k_{-2}\right)
\end{aligned}
$$

Starting Values [LeVeque'07]:

- Ensure order of one-step-error
- 2nd order explicit midpoint-rule, because: same sample points
- Two starting values yield more accurate results for TSRK

Numerical Experiment Setup

Hyperbolic Network Model:

$$
\begin{aligned}
& \dot{x}(t)=A \tanh (K \theta)+B u(t) \\
& y(t)=C x(t)
\end{aligned}
$$

$\left(K_{\in \mathbb{R}^{N \times N}},\left|K_{i j}\right| \leq 1, \kappa_{i j, i \neq j}=0\right)$
System Dimensions:

- $\operatorname{dim}(u(t))=1$
- $\operatorname{dim}(x(t)) \in\{4,16,256,1024\}$
- $\operatorname{dim}(y(t))=1$
- $\operatorname{dim}(\theta)=\operatorname{dim}(x(t))$
- 100 Time-Steps
(In PDE terms: $\operatorname{dim}(x(t))=1024 \Rightarrow 102400$ DOFs)

Numerical Comparison (I)

Figure: Comparison of Timings and Frobenius Norm.

Generalized Transpositions

The Tensor Transpose:

- Given an n-Tensor A, a n-Tensor B is called its transpose if
- $B_{i_{\sigma(1)}, \ldots, i_{\sigma(n)}}=A_{i_{1}, \ldots, i_{n}}$
- for a permutation $\sigma \neq \mathbb{1}$

For example:

- Given a 3-tensor
- it has n ! $-1=5$ transposes
- which corresponds to "rotations"

Empirical Cross Gramian

Essence of the Empirical Cross Gramian:

$$
W_{X}=\sum_{k} \omega_{X}^{k}, \quad \omega_{X, i j}^{k}=\left\langle x_{i}^{k}(t), y_{k}^{j}(t)\right\rangle
$$

$$
\begin{aligned}
& \left(\begin{array}{lll}
x^{3}\left(t_{1}\right) & \ldots & x^{3}\left(t_{T}\right)
\end{array}\right) \quad\left(\begin{array}{llll}
y^{6}\left(t_{1}\right) & \ldots & y^{6}\left(t_{T}\right)
\end{array}\right) \\
& \left(\begin{array}{lllll}
x^{2}\left(t_{1}\right) & \ldots & x^{2}\left(t_{T}\right)
\end{array}\right) \quad\left(\begin{array}{llll}
y^{5}\left(t_{1}\right) & \ldots & y^{5}\left(t_{T}\right)
\end{array}\right) \\
& \left(\begin{array}{lllll}
x^{1}\left(t_{1}\right) & \ldots & x^{1}\left(t_{T}\right)
\end{array}\right) \quad\left(\begin{array}{lll}
y^{4}\left(t_{1}\right) & \ldots & y^{4}\left(t_{T}\right)
\end{array}\right) \\
& \left(\begin{array}{lll}
y^{3}\left(t_{1}\right) & \ldots & y^{3}\left(t_{T}\right)
\end{array}\right) \\
& \left(\begin{array}{llll}
y^{2}\left(t_{1}\right) & \ldots & y^{2}\left(t_{T}\right)
\end{array}\right) \\
& \left(\begin{array}{lll}
y^{1}\left(t_{1}\right) & \ldots & y^{1}\left(t_{T}\right)
\end{array}\right)
\end{aligned}
$$

Empirical Cross Gramian

Essence of the Empirical Cross Gramian:

$$
W_{X}=\sum_{k} \omega_{X}^{k}, \quad \omega_{X, i j}^{k}=\left\langle x_{i}^{k}(t), y_{k}^{j}(t)\right\rangle
$$

$\omega_{X, 11}^{1}$:

$$
\begin{aligned}
& \left(\begin{array}{lll}
x^{3}\left(t_{1}\right) & \ldots & x^{3}\left(t_{T}\right)
\end{array}\right) \quad\left(\begin{array}{llll}
y^{6}\left(t_{1}\right) & \ldots & y^{6}\left(t_{T}\right)
\end{array}\right) \\
& \left(\begin{array}{llllll}
x^{2}\left(t_{1}\right) & \ldots & x^{2}\left(t_{T}\right)
\end{array}\right) \quad\left(\begin{array}{lll}
y^{5}\left(t_{1}\right) & \ldots & y^{5}\left(t_{T}\right)
\end{array}\right) \\
& \left(\begin{array}{llllll}
x_{1}^{1}\left(t_{1}\right) & \ldots & x_{1}^{1}\left(t_{T}\right)
\end{array}\right) \quad\left(\begin{array}{llll}
y^{4}\left(t_{1}\right) & \ldots & y^{4}\left(t_{T}\right)
\end{array}\right) \\
& \left(\begin{array}{llll}
y^{3}\left(t_{1}\right) & \ldots & y^{3}\left(t_{T}\right)
\end{array}\right) \\
& \left(\begin{array}{lll}
y^{2}\left(t_{1}\right) & \ldots & y^{2}\left(t_{T}\right)
\end{array}\right) \\
& \left(\begin{array}{lll}
y_{1}^{1}\left(t_{1}\right) & \ldots & y_{1}^{1}\left(t_{T}\right)
\end{array}\right)
\end{aligned}
$$

Empirical Cross Gramian

Essence of the Empirical Cross Gramian:

$$
W_{X}=\sum_{k} \omega_{X}^{k}, \quad \omega_{X, i j}^{k}=\left\langle x_{i}^{k}(t), y_{k}^{j}(t)\right\rangle
$$

$$
\begin{aligned}
& \left(\begin{array}{c}
y_{3}^{1}\left(t_{1}\right) \ldots y_{3}^{1}\left(t_{T}\right) \\
\vdots \\
y_{3}^{3}\left(t_{1}\right) \ldots y_{3}^{3}\left(t_{T}\right)
\end{array}\right) \\
& \left(\begin{array}{lll}
x^{3}\left(t_{1}\right) & \ldots & x^{3}\left(t_{T}\right)
\end{array}\right) \\
& \left(\begin{array}{lll}
x^{2}\left(t_{1}\right) & \ldots & x^{2}\left(t_{T}\right)
\end{array}\right) \\
& \left(\begin{array}{lll}
x^{1}\left(t_{1}\right) & \ldots & x^{1}\left(t_{T}\right)
\end{array}\right) \\
& \left(\begin{array}{c}
y_{2}^{1}\left(t_{1}\right) \ldots y_{2}^{1}\left(t_{T}\right) \\
\vdots \\
y_{2}^{3}\left(t_{1}\right) \ldots y_{2}^{3}\left(t_{T}\right)
\end{array}\right) \\
& \left(\begin{array}{c}
y_{1}^{1}\left(t_{1}\right) \ldots y_{1}^{1}\left(t_{T}\right) \\
\vdots \\
y_{1}^{3}\left(t_{1}\right) \ldots y_{1}^{3}\left(t_{T}\right)
\end{array}\right)
\end{aligned}
$$

Empirical Cross Gramian

Essence of the Empirical Cross Gramian:

$$
W_{X}=\sum_{k} \omega_{X}^{k}, \quad \omega_{X, i j}^{k}=\left\langle x_{i}^{k}(t), y_{k}^{j}(t)\right\rangle
$$

$\omega_{X}^{1}:$

$$
\begin{gathered}
\left(\begin{array}{c}
y_{3}^{1}\left(t_{1}\right) \ldots y_{3}^{1}\left(t_{T}\right) \\
\vdots \\
y_{3}^{N}\left(t_{1}\right) \ldots y_{3}^{N}\left(t_{T}\right)
\end{array}\right) \\
\left(\begin{array}{c}
y_{2}^{1}\left(t_{1}\right) \ldots y_{2}^{1}\left(t_{T}\right) \\
\vdots \\
y_{2}^{N}\left(t_{1}\right) \ldots y_{2}^{N}\left(t_{T}\right)
\end{array}\right) \\
\left(\begin{array}{c}
y_{1}^{1}\left(t_{1}\right) \ldots y_{1}^{1}\left(t_{T}\right) \\
\vdots \\
y_{1}^{N}\left(t_{1}\right) \ldots y_{1}^{N}\left(t_{T}\right)
\end{array}\right)^{T}
\end{gathered}
$$

Numerical Comparison (II)

Figure: Comparison of Timings.

Approximate Schur-Complement [Wu et al.'13]

Schur-complement of symmetric part of W_{J} :

$$
W_{i}=\frac{1}{2}\left(W_{M}^{T}\left(W_{X}+W_{X}^{T}\right)^{-1} W_{M}\right)
$$

(Cross-identifiability gramian W_{i} - observability of parameters)
Neumann Series Represenation of Matrix Inverse:

$$
A^{-1}=\sum_{k=0}^{\infty}(\mathbb{1}-A)^{k}
$$

(Truncate for an approximate inverse)
Approximate Inverse in $\mathcal{O}\left(N^{2}\right)$ flops:

$$
A^{-1} \approx D^{-1}-D^{-1} E D^{-1}
$$

$\left(A=D+E, D_{i j}=\delta_{i j} A_{i j}, E=A-D\right)$

Numerical Comparison (III)

Figure: Comparison of Timings and Frobenius Norm.

TSVD via Lanczos

Algorithmic phases:
1 Tridiagonalization
2 Small eigenvalue problem

Properties:

- Iterative (Common strategy for eigenvalue problems)
- Requires only operator evaluations (Similar to the power method)

■ Determines dominant singular values (Or eigenvalues respectively)

- Adaptive and bounded variants available (Useful for MOR)

(Double) Re-Orthogonalization

Re-Orthogonalization I [Chen \& Saad'09]:
■ During tridiagonalization,

- using Gram-Schmidt.

Re-Orthogonalization II:

- Post-processing of (left) singular vectors,
- by an economic (low-dimensional) QR-decomposition

Numerical Comparison (IV)

Figure: Comparison of Timings and Euclidean Norm.

Alltogether

"Legacy" Empirical Joint Gramian:

- Ralston's 3rd Order Runge-Kutta Method
- Component-Wise Dot-Products
- $\mathcal{O}\left(N^{3}\right)$ Inverse
- SVD via eigendecomposition of Gramian

Improved Empirical Joint Gramian:

- 3rd Order Improved Runge Kutta Method
- Generalized Transpositions
- $\mathcal{O}\left(N^{2}\right)$ Approximate Inverse
- Double Re-Orthgonalized Lanczos SVD

Numerical Comparison (V)

Figure: Comparison of Timings and Frobenius Norm.

- Empirical Cross Gramian for
- Combined State and Parameter Reduction
- Accelerated by

■ irk, permute, ainv and lsvd.
http://wwwmath.uni-muenster.de/u/himpe

Thanks ${ }^{2,3}$!

[^0]
[^0]: ${ }^{2}$ Get the companion code: http://j.mp/iwmrrf5
 ${ }^{3}$ If you have large test problems consider contributing them as a benchmark to the MORwiki: http://modelreduction.org

