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Abstract

In applications requiring model-constrained optimization, model reduction may be indispensable to facilitate an acceptable timescale for the solution. For models with high-dimensional
state- and also high-dimensional parameter-spaces the optimization is impeded twice. First, due to the high-dimensional parameter-space many solutions for varying locations in the
parameter-space are usually required, second, each of these solutions is costly due to the high-dimensional state-space. A combined state- and parameter-space reduction as proposed in
[1] can adress these issues. This combined reduction relies on a greedy sampling of the parameter-space to iteratively assemble a low-dimensional parameter base and a POD-based
reduction at locations of the parameter base components. Yet, the greedy algorithm still requires the sampling in the high-dimensional parameter-space. An extensions to this algorithm
is proposed in [2], which uses a Monte-Carlo approach to select low-dimensional “hyper”-bases for the parameter-space over which the greedy sampling is performed. And since this
combined reduction only requires solutions of the associated model, it is generally applicable also to nonlinear system, which will be demonstrated.

github.com/gramian/optmor
open-source, compatible with Matlab & Octave

Model Properties

Nonlinear control system model,
assumed to be asymptotically stable,
and a nonlinear parameter mapping θ 7→ [f , g ],
high-dimensional state-space dim(x(t))� 1,
high-dimensional parameter-space dim(θ)� 1,
low-dimensional input-space dim(u(t))� dim(x(t)),
low-dimensional output-space dim(y(t))� dim(x(t)).

ẋ(t) = f (x(t), u(t), θ),

y(t) = g(x(t), u(t), θ),

x(0) = x0,

u(t) ∈ L2

θI+1 = arg max
θ∈Θ,‖θ‖=1

‖y(θ)− y(ΠIΠ
T
I θ)‖2

2,

subject to:

ẋ(t) = f (x(t), u(t), θ),

y(t) = g(x(t), u(t), θ),

x(0) = x0,

ΠT
I ΠI = 1,

Parameter-Space Reduction

Iterative procedure, each iteration extends reduced basis incrementally,
based on best approximating subspace,
using (adaptive) greedy sampling strategy [3],
selecting location in the parameter-space that maximizes the error between full and reduced order model (ROM),
leads to model-constrained optimization problem,
with regularization handling parameter-space constraints [4], here Tikhonov regularization;
numerical computation by negation of cost-functional resulting in a minimzation problem.

State-Space Reduction

Extract dominant mode(s) from current iterations selected parameter,
using energy-based methods, either:
input-to-state mapping: proper orthogonal decomposition (POD) [5],
state-to-output mapping: Hessian-based reduction [6],
input-to-output mapping: goal-oriented reduction [7],
state-space reduction depends on parameter-space basis;
for nonlinear systems POD is the most accessible method,

UI = arg min
UTU=1

‖r(U)‖2
2

r =





x(u)− xr(u;U)

y(x0)− yr(xr ,0;U)

y(u)− yr(u;U)

Optimization-Based Combined Reduction
θ0 ←− θ̄
Π0 ←− θ0

x̄0 ←− Pod1(x(θ0))
U0 ←− x̄(θ0)
for I = 1 : R do
θI+1 ←− arg min−J(θ;UI ,ΠI) +R2(θ; ΠI)
ΠI+1 ←− orth(ΠI , θI)
UI+1 ←− orth(UI , x̄(θI))

Combined Reduction

Fuses greedy-algorithm-based parameter-space reduction with the POD-based state-space reduction,
initialized by nominal (prior) parameter,
solves each iteration the greedy regularized optimization problem,
incorporates new parameter and state base components by orthogonalization,
iterates until a certain base size or error criteria is met,
assembles parameter and state Galerkin projections; algorithm based on [1].

Enhancements

Inverse problems naturally contain observed / measured data,
by a data-driven regularization operator [2],
this improves ROM accuracy, but fixes ROM to data-set.
Greedy sampling still requires high-dimensional optimization,
selecting a random low-dimensional random hyper-base each iteration,
leads to the Monte-Carlo base extension [2] which reduces offline times.
Both enhancements complement each other.

Rd(θ) := ‖yd − yr(θ)‖2
2

→ θI = arg max
θ∈Θ

‖y(θ)− yr(θr)‖2
2 − β2R2(θ)− βdRd(θ)

θ ≈ θ̃ :=
∑

i�dim(θ)

airi , ri ← U[0,1]

→ θI = arg max
θ∈Θ

‖y(θ̃r)− yr(θ̃r)‖2
2 − β2R2(θ̃)

ẋ(t) = A tanh(K (θ)x(t)) + Bu(t),

y(t) = Cx(t),

x(0) = 0,

u(t) = δ(t)

Numerical Test

SISO system,
hyperbolic network model,
random, but stable network,
state-space dimension dim(x(t)) = 100,
parameter-space dimension dim(θ) = 100,
uniformly random parameters θi ← U[0,1],
parametrization: Kii = θi .
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