

The Versatile Cross Gramian for System-Theoretic Model Reduction and More

Christian Himpe (christian.himpe@uni-muenster.de) Mario Ohlberger (mario.ohlberger@uni-muenster.de)

WWU Münster - Institute for Computational and Applied Mathematics

MoRePaS 3 14.10.2015

System of Interest

$\dot{x}(t) = f(x(t), u(t), \theta)$ $y(t) = g(x(t), u(t), \theta)$

(A parametrized input-output system)

Controllability & Observability

 $\mathcal{C}: L_2 \to \mathbb{R}^N$ $\mathcal{O}:\mathbb{R}^N\to L_2$

(These dual operators are essential to system theory)

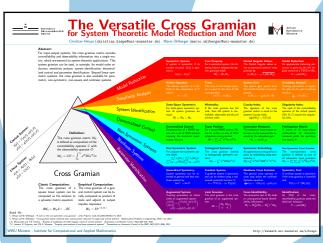
The Cross Gramian (Matrix)

$W_X := \mathcal{C} \circ \mathcal{O}$

(aka W_{CO} , introduced by [FERNANDO & NICHOLSON'83])

Balancedness

One System Gramian To Rule Them All!


For:

- Model Reduction
- Sensitivity Analysis
- System Identification
- Decentralized Control
- Parameter Identification
- Combined State and Parameter Reduction

Of:

- Symmetric Systems
- Orthogonally Symmetric Systems
- Gradient Systems
- Non-Symmetric Systems
- Non-Square Systems
- Nonlinear Systems

Do You Want To Know More?

Come By!