
Zero-Copy Parallelized Empirical Gramians

Christian Himpe (christian.himpe@uni-muenster.de)
Mario Ohlberger (mario.ohlberger@uni-muenster.de)

WWU Münster
Institute for Computational and Applied Mathematics

PACO 2015
2015-07-06

christian.himpe@uni-muenster.de
mario.ohlberger@uni-muenster.de

Now Tell Me:

What are empirical gramians?

→ Empirical gramians are a system-theoretic tool for model
reduction and system identification of input-ouput systems!

Motivation

Why Model Order Reduction1 (MOR)?
Enable or accelerate large-scale system evaluation,
repeatedly in many-query settings,
such as model-constrained optimization or control problems.

Why Power-Aware Reduced Order Model (ROM) Computation?
Reduce waste of computationally resources.
Realistically, offline time is not infinite.
Save the Planet!

1Model Reduction is in itself PACO by using ROMs, i.e. on low-power devices.

Outline2

1 Mathematical Background

2 Computational Means

3 Power Aware COmputing

2Disclaimer: There are no experimental results yet due to unreleased hardware.

Mathematical Background

State-Space Systems

(Nonlinear) State-Space System:

ẋ(t) = f (x(t), u(t), θ),
y(t) = g(x(t), u(t), θ),
x(0) = x0

State: x(t), dim(x(t))� 1
Input: u(t), dim(u(t))� dim(x(t))

Output: y(t), dim(y(t))� dim(x(t))
Parameters: θ, dim(θ)� 1

Linear State-Space System:

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),
x(0) = x0

System Matrix: A ∈ RN×N

Input Matrix: B ∈ RN×J

Output Matrix: C ∈ RO×N

Projection-Based Model Reduction

Reduced Order Model (ROM):

ẋr (t) = fr (xr (t), u(t), θ),
yr (t) = gr (xr (t), u(t), θ),
xr (0) = xr ,0

dim(xr (t))� dim(x(t))
‖y(θ)− yr (θ)‖ � 1

Projection-Based ROM:

ẋr (t) = Vf (Uxr (t), u(t), θ),
yr (t) = g(Uxr (t), u(t), θ),
xr (0) = Vx0

U ∈ Rdim(x(t))×dim(xr (t))

V ∈ Rdim(xr (t))×dim(x(t))

VU = 1

Gramian-Based Model Reduction [Moore’81,Fernando & Nicholson’83]

Controllability Gramian:

WC =

∫ ∞

0
eAtBBT eA

T tdt

⇒AWC + WCAT = −BBT

Observability Gramian:

WO =

∫ ∞

0
eA

T tCTCeAtdt

⇒ATWO + WOA = −CTC

→ Balanced Truncation

Cross Gramian:

WX =

∫ ∞

0
eAtBCeAtdt

⇒AWX + WXA = −BC

→ Direct Truncation

Empirical Gramians [Lall et al’99]

System Gramians,
from primal and adjoint impulse response trajectories:

WC =

∫ ∞
0

(eAtB)(eAtB)Tdt =

∫ ∞
0

xδ(t)(xδ(t))Tdt

WO =

∫ ∞
0

(eAtC)T (CeAt)dt =

∫ ∞
0

x∗δ (t)(x
∗
δ (t))

Tdt

Empirical Gramians for Nonlinear Systems [H. & Ohlberger’14]

Extend to nonlinear system3, since only based on trajectories!

WX =
∑

{∆u,∆x0}

∫ ∞
0

xδ(t)(x∗δ (t))
Tdt

Empirical Gramians Computation:
1 Simulate Trajectories
2 Gramian Assembly

3This is better than linearization!

Combined Reduction [H. & Ohlberger’14]

Combined State and Parameter Reduction:
ẋr (t) = Vf (Uxr (t), u(t),Pθr),
yr (t) = g(Uxr (t), u(t),Pθr),
xr (0) = Vx0

θr = PT θ

P ∈ Rdim(θr)×dim(θ),PTP = 1

dim(θr)� dim(θ)

‖y(θ)− yr (θr)‖ � 1

Augmented System:(
ẋ(t)
θ̇(t)

)
=

(
f (x(t), u(t), θ(t))

0

)
y(t) = g(x(t), u(t), θ(t))(

x(0)
θ(0)

)
=

(
x0
θ0

)

Empirical Gramian Flavors4 [H. & Ohlberger’13]

Empirical Controllability Gramian

Empirical Observability Gramian

Empirical Cross Gramian

Empirical Linear Cross Gramian

Empirical Non-Symmetric Cross Gramian

Empirical Sensitivity Gramian (Parameter Controllability)

Empirical Identifiability Gramian (Parameter Observability)

Empirical Joint Gramian (Cross-Gramian-Based Combined Reduction)

4Compute with: emgr - Empirical Gramian Framework (http://gramian.de)

http://gramian.de

Computational Means

CPU vs GPU

CPU GPU
Cores 101 103

Clock ∼ 4 Ghz ∼ 1 Ghz
Flow-Control , /

GEMM / ,
Parallelism SMT, MT, SIMT, SIMD

SIMD

CPU + iGPU

Previously, on Game of CPUs:
1989 80486DX: CPU + iFPU
2004 GMA900: CPU + iGPU (Somewhat of a GPU)
2011 Llano: CPU + iGPU (=:APU)
2012 Intel HD: CPU + iGPU
2014 Kaveri: HSA-Ready APU (+hUMA)

Generally:
CPU and GPU in one package
CPU and GPU use shared memory

Zero-Copy

GPGPU with:

discrete GPU (roughly Distributed Memory):
CPU

copies→ GPU
computes→ GPU

copies→ CPU

integrated GPU (nUMA - Non-Uniform Memory Access):
CPU

copies→ GPU
computes→ GPU

copies→ CPU

zero-copy GPU (Shared Virtual Memory):

CPU
copies/transfers→ GPU

computes→ GPU
copies/transfers→ CPU

zero-copy iGPU (hUMA - Heterogenous Unified Memory Access):
CPU notifies→ GPU

computes→ GPU notifies→ CPU

Easy As BLAS

Requirements:
capable of zero-copy
should not affect high-level code (i.e. Matlab)
on BLAS layer

Weapon of Choice: Offloading via ACML5

Pro No changes in HLL implementation required
Con LUA configuration requires knowledge of the problem
Pro Effectively uses OpenCL
Con Works only on supported systems (i.e. HSA/huma)
Pro ACML backend is the open-source clBLAS
Con ACML is free (of charge), but not open-source

5The MKL can offload to Xeon Phi, too.

iGPU Offloading from ACML

Where the magic happens:
acmlbasedir/gfortran64_mp/lib/resource

1 create device context: context.lua

see: createContexts(platforms)

2 BLAS config: DEVICE_NAME/BLAS_CALL.lua

see for example: Spectre/gemm.lua

CPU / GPU heuristics in: tableOfThresholds

Zero-Copy Empirical Gramians

WX =
∑

{∆u,∆x0}

∫ ∞
0

xδ(t)(x∗δ (t))
Tdt

1 Trajectory Simulation
General Linear Methods such as (Two-Step) Runge-Kutta
Rather Serial
Parallelized on CPU (i.e. multiple trajectories in parallel each SIMD’d)

2 Gramian Assembly
Dense Matrix Multiplication
Very Parallel
(to be) Parallelized on GPU

Now, how is this PACO?

Why APUs?

Discrete GPU needs (more) power
Discrete GPU has relatively little memory
Virtual Shared Memory uses PCIe or copies

Integrated GPU needs less power
(i.e. A10-7850 APU (95W) vs Athlon X4 CPU (65W) + HD 7750 GPU (55W)

Integrated GPU6 can use full(!) system main memory
Literally, 0 copies!

6with hUMA or VSM

Mathematical Setup

Hyperbolic Network Model:

ẋ(t) = A tanh(K (θ)x(t)) + Bu(t)
y(t) = Cx(t)

System Dimensions:
x(t) ∈ R1024

u(t) ∈ R

y(t) ∈ R

dim(θ) = dim(x(t))

Numerical Experiment

64
128

192
256

320
384

448
512

576
640

704
768

832
896

960
1024

64
128
192
256
320
384
448
512
576
640
704
768
832
896
960
1024

10
-4

10
-3

10
-2

Parameter Dimension

State Dimension

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

Figure : L2-output-error for reduced state and parameter dimensions.

Performance

Offline Time Distribution:
Trajectory Computation: 99%
Gramian Assembly Time7: 1%

But:
With N = 1024, this is still a small system.
The trajectory computation parallelizes communication free.
Can also be used for vector field evaluations8.
It is basically free.

7This has been reduced by using Generalized Transpositions.
8For N > 512 the default thresholds are met.

Outlook

Next, on Game of CPUs (“OpenCL 2.0 is coming!”):
2015 Carrizo: Full HSA 1.0 (+hUMA)
2015 Broadwell: OpenCL 2.0 support

hUMA / VSM is on the rise9,
attractive for scientific computing,
accompanied by “smart” abstractions.

9This was one of the top developer requests for PS4 and XBone.

Rough Road Ahead!

So, hardware and opportunities are (about to be) available, yet...
the software stack:

1 Driver (Kernel, Propriety, HSA)
2 OpenCL (ICD, Dispatch)
3 Library (BLAS, LAPACK)

interaction is not trivial;
optimization of heuristics is tedious;
distributed memory systems with APUs are not on the horizon;
system memory is usually slower than video memory.

tl;dl

GPGPU becomes more accessible,
and potentially computes LA more energy-efficiently.
PACO (planned) by exploiting iGPUs
with zero-copy capabilities
for empirical gramian computation10.

http://wwwmath.uni-muenster.de/u/himpe

Thanks!

10Get the companion code: http://j.mp/paco15

http://wwwmath.uni-muenster.de/u/himpe
http://j.mp/paco15

