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Motivation

Scope:
Large-scale dynamical systems,
or discretized partial differential equations
together with an observer
(i.e. sensors generating measurements)

Many-Query Settings:
Model-constraint Optimization / Inverse Problems
Optimal Control / Model Predictive Control
Heuristic Development



Control Systems

Linear State-Space System:

Eẋ(t) = Ax(t) + Bu(t) + F ,
y(t) = Cx(t) + Du(t),

x(0) = x0

General State-Space System:

ẋ(t) = f (x(t), u(t)),

y(t) = g(x(t), u(t)),

x(0) = x0

System Dimension (Order): N := dim(x(t))



Aim

Enable simulations of high-dimensional systems.

Accelerate simulations in many-query settings.

Identify driving components of input-output systems.
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Model Order Reduction (MOR)

Typically:
dim(x(t))� 1
dim(u(t))� dim(x(t))

dim(y(t))� dim(x(t))

Want:

ẋr (t) = fr (xr (t), u(t)),

yr (t) = gr (xr (t), u(t)),

xr (0) = xr ,0

Such that:
dim(xr (t))� dim(x(t))

‖y − yr‖ � 1



Reduced Order Model (ROM)

General Case:

ẋr (t) = fr (xr (t), u(t)),

yr (t) = gr (xr (t), u(t)),

xr (0) = xr ,0

Linear Case:

ẋr (t) = Arxr (t) + Bru(t),

yr (t) = Crxr (t),

xr (0) = xr ,0



Projection-Based Model Reduction

Petrov-Galerkin Projection (Two-Sided):

U ∈ RN×n,V ∈ Rn×N , n� N,VU = 1

Galerkin Projection (One-Sided):

U ∈ RN×n,V = UT , n� N,UTU = 1

General Case:

ẋr (t) = Vf (Uxr (t), u(t)),

yr (t) = g(Uxr (t), u(t)),

xr (0) = Vx0

Linear Case:

ẋr (t) = VAUxr (t) + VBu(t),

yr (t) = CUxr (t),

xr (0) = Vx0



Hankel Singular Values (HSV)

Convolution Operator S (Infinite Rank):

y(t) = S(u)(t) =

∫ ∞
0

CeA(t−τ)Bu(τ)dτ

Time-Flip Operator F :

F (u)(t) = u(−t)

Hankel Operator H (Finite Rank):

H(u)(t) = (S ◦ F )(u)(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ)dτ

maps past inputs to future outputs: u C7→ RN O7→ y ′ ⇒ H = OC
singular values of the Hankel operator σi are system invariants,
describing the input-output coherence of the states.



Controllability & Observability (System Gramians)

Controllability Gramian:

WC := CCT =

∫ ∞
0

eAtBBT eAT tdt

Lyapunov Equation:

AWC + WCAT = BBT

Observability Gramian:

WO := OTO =

∫ ∞
0

eAT tCTCeAtdt

Lyapunov Equation:

ATWO + WOA = CTC



Balanced Truncation

System Gramian Relation to HSVs:

σi =
√
λi (WCWO)

Balancing Transformation1:√
WC
√

WO
SVD
= UDV

Truncated State-Space Petrov-Galerkin Projection U1,V1:

U =
(
U1,U2

)
,V =

(
V1
V2

)

1The matrix square root can be computed i.e. via a Cholesky decomposition LT L or an SVD UD
1
2 V



Cross Gramian

Cross Gramian (for square systems only):

WX := CO =

∫ ∞
0

eAtBCeAtdt

Sylvester Equation:

AWX + WXA = BC



Direct Truncation

For Symmetric Systems:

σi = |λi (WX )|

Approximate Balancing Transformation U:

WX
SVD
= UDV

Truncated State-Reducing Galerkin Projection U1:

U =
(
U1 U2

)



Empirical Gramians

System Gramians:

WC =

∫ ∞
0

(eAtB)(eAtB)Tdt,

WO =

∫ ∞
0

(CeAt)T (CeAt)dt,

WX =

∫ ∞
0

(eAtB)(CeAt)dt

Computable empirically by impulse responses,
thus also for nonlinear systems;
initially used in [Moore’81].



Empirical Controllability Gramian [Lall et al.’99]

(Impulse) Input Perturbations:

QU = {qk}k=1...K

Sampled State Trajectories:

xqk (t) = C(uqk )(t) = (C ◦ qk)(δ)(t)

Empirical Controllability Gramian2:

ŴC =
K∑

k=1

∫ ∞
0

Ψqk
C (t)dt

Ψqk
C (t) = xqk (t)xT

qk
(t)

2[Lall et al.’99] showed that for linear systems ŴC = WC .



Empirical Observability Gramian [Lall et al.’99]

Initial State Perturbations:

QX = {pl}l=1...L

Sampled Output Trajectories:

ypl (t) = O(xpl ,0)(t) = (O ◦ pl )(x0)(t)

Empirical Observability Gramian3:

ŴO =
L∑

l=1

∫ ∞
0

plΨ
pl
O (t)pT

l dt

Ψpl
O,ij(t) = ypl ,i (t)ypl ,j(t)

3[Lall et al.’99] showed that for linear systems ŴO = WO .



Empirical Cross Gramian [Streif et al.’06], [H. & Ohlberger’14]

Input and State Perturbations:

QU = {qk}k=1...K

QX = {pl}l=1...L

Sampled State and Output Trajectories:

xqk (t) = C(uqk )(t) = (C ◦ qk)(δ)(t)

ypl (t) = O(xpl ,0)(t) = (O ◦ pl )(x0)(t)

Empirical Cross Gramian4:

ŴX =
K∑

k=q

L∑
l=1

∫ ∞
0

plΨ
qk ,pl
X (t)pT

l dt

Ψqk ,pl
X ,ij (t) = plxqk ,i (t)qkypl ,j(t)

4[H. & Ohlberger’14] showed that for linear systems ŴX = WX .



Parameterized Systems

Parameterized Systems:

ẋ(t) = f (x(t), u(t), θ),

y(t) = g(x(t), u(t), θ),

x(0) = x0

Example:

ẋ(t) = A(θ)x(t) + Bu(t),

y(t) = Cx(t),

x(0) = x0



Parametric Model Order Reduction (pMOR)

Want:

ẋr (t) = fr (xr (t), u(t), θ),

yr (t) = gr (xr (t), u(t), θ),

xr (0) = xr ,0

Such that:
dim(xr (t))� dim(x(t))

‖y(θ)− yr (θ)‖ � 1

Projection-Based Parametric Model Order Reduction:

ẋr (t) = Vf (Ux(t), u(t), θ),

yr (t) = g(Ux(t), u(t), θ),

xr (0) = Vx0



Empirical Gramians for pMOR

Controllability-Based5:

W C =
∑
θ∈Θh

WC (θ),

Observability-Based5:

W O =
∑
θ∈Θh

WO(θ),

Cross-Gramian-Based5:

W X =
∑
θ∈Θh

WX (θ).

5For a discretized parameter space Θh



Application

Adjacency Matrix:

A =


a11 a12 . . . a1N
a21 a22 . . . a2N
...

...
. . .

...
aN1 aN2 . . . aNN


Linear Network Model:

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

x(0) = x0

Network Dynamics from Output Measurements yd :

θd = argminθ ‖yd − y(θ)‖22



Test Model

Hyperbolic Network Model [Quan et al.’01]:

ẋ(t) = A tanh(K (θ)x(t)) + Bu(t),

y(t) = Cx(t),

x(0) = x0

System Properties:

State x(t) ∈ R256

Input u ∈ L1
2

Output y ∈ L1
2

Parameter θ ∈ R256

K (θ) = diag(θ)

System Matrix A ∈ R256×256

Input Matrix B ∈ R256×1

Output Matrix C ∈ R1×256

Activation Matrix K ∈ R256×256

(diagonal)



Numerical Results
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Figure : L2 output error of the hyperbolic network model for varying
state dimension given a uniformly random parameter.



tl;dl

Parametrized Model Order Reduction
using empirical gramians
for linear and nonlinear systems.

Get the companion code: http://j.mp/twente15
Empirical Gramian Framework: http://gramian.de
Me: http://wwwmath.uni-muenster.de/u/himpe

Thanks!

http://j.mp/twente15
http://gramian.de
http://wwwmath.uni-muenster.de/u/himpe


Non-Symmetric Cross Gramian (Bonus)

Linear System Gramian Decentralization:

B =
(
b1 . . . bJ

)
, C =

(
c1 . . . cK

)T
⇒WC =

J∑
j=1

WC ,j , WO =
K∑

k=1

WO,k , WX =
J=K∑
j=1

WX ,jj

Non-Symmetric Cross Gramian [H. & Ohlberger’15 (Submitted)]:

W̃X :=
J∑

j=1

K∑
k=1

WX ,jk

W̃X 6= WX ⇒ W̃X 6= WCWO

System is not required to be square, symmetric or gradient.
Very efficient to compute as empirical non-symmetric cross gramian!


