Model Reduction for Parameterized Systems Smaller Better Faster Stronger

Christian Himpe (christian.himpe@uni-muenster.de) Mario Ohlberger (mario.ohlberger@uni-muenster.de)

WWU Münster
Institute for Computational and Applied Mathematics

> 2nd Twente-Münster Minisymposium 2015-06-02

Motivation

Scope:
■ Large-scale dynamical systems,

- or discretized partial differential equations
- together with an observer
(i.e. sensors generating measurements)

Many-Query Settings:

- Model-constraint Optimization / Inverse Problems
- Optimal Control / Model Predictive Control

■ Heuristic Development

Control Systems

Linear State-Space System:

$$
\begin{aligned}
E \dot{x}(t) & =A x(t)+B u(t)+F, \\
y(t) & =C x(t)+D u(t), \\
x(0) & =x_{0}
\end{aligned}
$$

General State-Space System:

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), u(t)), \\
& y(t)=g(x(t), u(t)), \\
& x(0)=x_{0}
\end{aligned}
$$

System Dimension (Order): $N:=\operatorname{dim}(x(t))$

Aim

■ Enable simulations of high-dimensional systems.

- Accelerate simulations in many-query settings.
- Identify driving components of input-output systems.

Outline

1 Model Reduction
2 Gramian-Based Model Reduction
3 Empirical Gramians
4 Parametric Model Reduction
5 Numerical Experiments

Model Order Reduction (MOR)

Typically:

- $\operatorname{dim}(x(t)) \gg 1$
- $\operatorname{dim}(u(t)) \ll \operatorname{dim}(x(t))$
- $\operatorname{dim}(y(t)) \ll \operatorname{dim}(x(t))$

Want:

$$
\begin{aligned}
& \dot{x}_{r}(t)=f_{r}\left(x_{r}(t), u(t)\right), \\
& y_{r}(t)=g_{r}\left(x_{r}(t), u(t)\right), \\
& x_{r}(0)=x_{r, 0}
\end{aligned}
$$

Such that:

- $\operatorname{dim}\left(x_{r}(t)\right) \ll \operatorname{dim}(x(t))$
- $\left\|y-y_{r}\right\| \ll 1$

Reduced Order Model (ROM)

General Case:

$$
\begin{aligned}
& \dot{x}_{r}(t)=f_{r}\left(x_{r}(t), u(t)\right), \\
& y_{r}(t)=g_{r}\left(x_{r}(t), u(t)\right), \\
& x_{r}(0)=x_{r, 0}
\end{aligned}
$$

Linear Case:

$$
\begin{aligned}
& \dot{x}_{r}(t)=A_{r} x_{r}(t)+B_{r} u(t), \\
& y_{r}(t)=C_{r} x_{r}(t), \\
& x_{r}(0)=x_{r, 0}
\end{aligned}
$$

Projection-Based Model Reduction

Petrov-Galerkin Projection (Two-Sided):

$$
U \in \mathbb{R}^{N \times n}, V \in \mathbb{R}^{n \times N}, n \ll N, V U=\mathbb{1}
$$

Galerkin Projection (One-Sided):

$$
U \in \mathbb{R}^{N \times n}, V=U^{T}, n \ll N, U^{T} U=\mathbb{1}
$$

General Case:

$$
\begin{aligned}
& \dot{x}_{r}(t)=V f\left(U x_{r}(t), u(t)\right), \\
& y_{r}(t)=g\left(U x_{r}(t), u(t)\right), \\
& x_{r}(0)=V x_{0}
\end{aligned}
$$

Linear Case:

$$
\begin{aligned}
& \dot{x}_{r}(t)=V A U x_{r}(t)+V B u(t), \\
& y_{r}(t)=C U x_{r}(t), \\
& x_{r}(0)=V x_{0}
\end{aligned}
$$

Hankel Singular Values (HSV)

Convolution Operator S (Infinite Rank):

$$
y(t)=S(u)(t)=\int_{0}^{\infty} C e^{A(t-\tau)} B u(\tau) d \tau
$$

Time-Flip Operator F:

$$
F(u)(t)=u(-t)
$$

Hankel Operator H (Finite Rank):

$$
H(u)(t)=(S \circ F)(u)(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u(\tau) d \tau
$$

- maps past inputs to future outputs: $u \stackrel{\mathcal{C}}{\mapsto} \mathbb{R}^{N} \stackrel{\mathcal{O}}{\mapsto} y^{\prime} \Rightarrow H=\mathcal{O C}$
- singular values of the Hankel operator σ_{i} are system invariants,
- describing the input-output coherence of the states.

Controllability \& Observability (System Gramians)

Controllability Gramian:
$W_{C}:=\mathcal{C} C^{T}=\int_{0}^{\infty} e^{A t} B B^{T} e^{A^{T} t} d t$

Lyapunov Equation:

$$
A W_{C}+W_{C} A^{T}=B B^{T}
$$

Observability Gramian:
$W_{O}:=\mathcal{O}^{T} \mathcal{O}=\int_{0}^{\infty} e^{A^{T} t} C^{T} C e^{A t} d t$

Lyapunov Equation:

$$
A^{T} W_{O}+W_{O} A=C^{T} C
$$

Balanced Truncation

System Gramian Relation to HSVs:

$$
\sigma_{i}=\sqrt{\lambda_{i}\left(W_{C} W_{O}\right)}
$$

Balancing Transformation ${ }^{1}$:

$$
\sqrt{W_{C}} \sqrt{W_{O}} \stackrel{S V D}{=} U D V
$$

Truncated State-Space Petrov-Galerkin Projection U_{1}, V_{1} :

$$
U=\left(U_{1}, U_{2}\right), V=\binom{V_{1}}{V_{2}}
$$

${ }^{1}$ The matrix square root can be computed i.e. via a Cholesky decomposition $L^{\boldsymbol{T}} L$ or an SVD $U D^{\frac{1}{2}} V$

Cross Gramian

Cross Gramian (for square systems only):

$$
W_{X}:=\mathcal{C O}=\int_{0}^{\infty} e^{A t} B C e^{A t} d t
$$

Sylvester Equation:

$$
A W_{X}+W_{X} A=B C
$$

Direct Truncation

For Symmetric Systems:

$$
\sigma_{i}=\left|\lambda_{i}\left(W_{X}\right)\right|
$$

Approximate Balancing Transformation U :

$$
W_{X} \stackrel{S V D}{=} U D V
$$

Truncated State-Reducing Galerkin Projection U_{1} :

$$
U=\left(\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right)
$$

Empirical Gramians

System Gramians:

$$
\begin{aligned}
& W_{C}=\int_{0}^{\infty}\left(e^{A t} B\right)\left(e^{A t} B\right)^{T} d t \\
& W_{O}=\int_{0}^{\infty}\left(C e^{A t}\right)^{T}\left(C e^{A t}\right) d t \\
& W_{X}=\int_{0}^{\infty}\left(e^{A t} B\right)\left(C e^{A t}\right) d t
\end{aligned}
$$

- Computable empirically by impulse responses,
- thus also for nonlinear systems;
- initially used in [Moore'81].

Empirical Controllability Gramian [Lall et al.'99]

(Impulse) Input Perturbations:

$$
Q_{U}=\left\{q_{k}\right\}_{k=1 \ldots k}
$$

Sampled State Trajectories:

$$
x_{q_{k}}(t)=\mathcal{C}\left(u_{q_{k}}\right)(t)=\left(\mathcal{C} \circ q_{k}\right)(\delta)(t)
$$

Empirical Controllability Gramian ${ }^{2}$:

$$
\begin{aligned}
\widehat{W}_{C} & =\sum_{k=1}^{K} \int_{0}^{\infty} \Psi_{C}^{q_{k}}(t) d t \\
\Psi_{C}^{q_{k}}(t) & =x_{q_{k}}(t) x_{q_{k}}^{T}(t)
\end{aligned}
$$

[^0]
Empirical Observability Gramian [Lall et al.'99]

Initial State Perturbations:

$$
Q_{X}=\left\{p_{l}\right\}_{l=1 \ldots L}
$$

Sampled Output Trajectories:

$$
y_{p_{l}}(t)=\mathcal{O}\left(x_{p_{l}, 0}\right)(t)=\left(\mathcal{O} \circ p_{l}\right)\left(x_{0}\right)(t)
$$

Empirical Observability Gramian ${ }^{3}$:

$$
\begin{aligned}
\widehat{W}_{O} & =\sum_{l=1}^{L} \int_{0}^{\infty} p_{l} \Psi_{O}^{p_{I}}(t) p_{l}^{T} d t \\
\Psi_{O, i j}^{p_{I}}(t) & =y_{p_{l}, i}(t) y_{p_{l}, j}(t)
\end{aligned}
$$

[^1]
Empirical Cross Gramian [Streif et al.'06], [H. \& Ohlberger'14]

Input and State Perturbations:

$$
\begin{aligned}
Q_{U} & =\left\{q_{k}\right\}_{k=1 \ldots k} \\
Q_{X} & =\left\{p_{l}\right\}_{l=1 \ldots L}
\end{aligned}
$$

Sampled State and Output Trajectories:

$$
\begin{aligned}
x_{q_{k}}(t) & =\mathcal{C}\left(u_{q_{k}}\right)(t)=\left(\mathcal{C} \circ q_{k}\right)(\delta)(t) \\
y_{p_{l}}(t) & =\mathcal{O}\left(x_{p_{l}, 0}\right)(t)=\left(\mathcal{O} \circ p_{l}\right)\left(x_{0}\right)(t)
\end{aligned}
$$

Empirical Cross Gramian ${ }^{4}$:

$$
\begin{aligned}
\widehat{W}_{X} & =\sum_{k=q}^{K} \sum_{l=1}^{L} \int_{0}^{\infty} p_{l} \Psi_{X}^{q_{k}, p_{l}}(t) p_{l}^{T} d t \\
\Psi_{X, i j}^{q_{k}, p_{l}}(t) & =p_{l} x_{q_{k}, i}(t) q_{k} y_{p_{l}, j}(t)
\end{aligned}
$$

${ }^{4}\left[H . \&\right.$ Ohlberger'14] showed that for linear systems $\widehat{W}_{\boldsymbol{X}}=W_{\boldsymbol{X}}$.

Parameterized Systems

Parameterized Systems:

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), u(t), \theta), \\
& y(t)=g(x(t), u(t), \theta), \\
& x(0)=x_{0}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \dot{x}(t)=A(\theta) x(t)+B u(t), \\
& y(t)=C x(t), \\
& x(0)=x_{0}
\end{aligned}
$$

Parametric Model Order Reduction (pMOR)

Want:

$$
\begin{aligned}
& \dot{x}_{r}(t)=f_{r}\left(x_{r}(t), u(t), \theta\right) \\
& y_{r}(t)=g_{r}\left(x_{r}(t), u(t), \theta\right), \\
& x_{r}(0)=x_{r, 0}
\end{aligned}
$$

Such that:

- $\operatorname{dim}\left(x_{r}(t)\right) \ll \operatorname{dim}(x(t))$
- $\left\|y(\theta)-y_{r}(\theta)\right\| \ll 1$

Projection-Based Parametric Model Order Reduction:

$$
\begin{aligned}
& \dot{x}_{r}(t)=V f(U x(t), u(t), \theta) \\
& y_{r}(t)=g(U x(t), u(t), \theta) \\
& x_{r}(0)=V x_{0}
\end{aligned}
$$

Empirical Gramians for pMOR

Controllability-Based ${ }^{5}$:

$$
\bar{W}_{C}=\sum_{\theta \in \Theta_{h}} W_{C}(\theta)
$$

Observability-Based ${ }^{5}$:

$$
\bar{W}_{O}=\sum_{\theta \in \Theta_{h}} W_{O}(\theta)
$$

Cross-Gramian-Based ${ }^{5}$:

$$
\bar{W}_{X}=\sum_{\theta \in \Theta_{h}} W_{X}(\theta)
$$

Application

Adjacency Matrix:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 N} \\
a_{21} & a_{22} & \ldots & a_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
a_{N 1} & a_{N 2} & \ldots & a_{N N}
\end{array}\right)
$$

Linear Network Model:

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t), \\
& y(t)=C x(t), \\
& x(0)=x_{0}
\end{aligned}
$$

Network Dynamics from Output Measurements y_{d} :

$$
\theta_{d}=\operatorname{argmin}_{\theta}\left\|y_{d}-y(\theta)\right\|_{2}^{2}
$$

Test Model

Hyperbolic Network Model [Quan et al.'01]:

$$
\begin{aligned}
\dot{x}(t) & =A \tanh (K(\theta) x(t))+B u(t), \\
y(t) & =C x(t) \\
x(0) & =x_{0}
\end{aligned}
$$

System Properties:

- State $x(t) \in \mathbb{R}^{256}$
- Input $u \in L_{2}^{1}$
- Output $y \in L_{2}^{1}$
- Parameter $\theta \in \mathbb{R}^{256}$ $K(\theta)=\operatorname{diag}(\theta)$
- System Matrix $A \in \mathbb{R}^{256 \times 256}$
- Input Matrix $B \in \mathbb{R}^{256 \times 1}$
- Output Matrix $C \in \mathbb{R}^{1 \times 256}$
- Activation Matrix $K \in \mathbb{R}^{256 \times 256}$ (diagonal)

Numerical Results

Figure : L_{2} output error of the hyperbolic network model for varying state dimension given a uniformly random parameter.

- Parametrized Model Order Reduction
- using empirical gramians
- for linear and nonlinear systems.

■ Get the companion code: http://j.mp/twente15
■ Empirical Gramian Framework: http://gramian.de

- Me: http://wwwmath.uni-muenster.de/u/himpe

Thanks!

Non-Symmetric Cross Gramian (Bonus)

Linear System Gramian Decentralization:

$$
\begin{array}{r}
B=\left(\begin{array}{lll}
b_{1} & \ldots & b_{J}
\end{array}\right), \quad C=\left(\begin{array}{lll}
c_{1} & \ldots & c_{K}
\end{array}\right)^{T} \\
\Rightarrow W_{C}=\sum_{j=1}^{J} W_{C, j}, \quad W_{O}=\sum_{k=1}^{K} W_{O, k}, \quad W_{X}=\sum_{j=1}^{J=K} W_{X, j j}
\end{array}
$$

Non-Symmetric Cross Gramian [H. \& Ohlberger'15 (Submitted)]:

$$
\widetilde{W}_{X}:=\sum_{j=1}^{J} \sum_{k=1}^{K} W_{X, j k}
$$

- $\widetilde{W}_{x} \neq W_{x} \Rightarrow \widetilde{W}_{x} \neq W_{C} W_{O}$
- System is not required to be square, symmetric or gradient.
- Very efficient to compute as empirical non-symmetric cross gramian!

[^0]: ${ }^{2}$ [Lall et al.'99] showed that for linear systems $\widehat{W}_{\boldsymbol{C}}=W_{\boldsymbol{C}}$.

[^1]: ${ }^{3}$ [Lall et al.'99] showed that for linear systems $\widehat{W}_{\boldsymbol{O}}=W_{\boldsymbol{O}}$.

