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Main result:

m Rational inteprolation “is” balanced proper orthogonal decomposition.

m Number and step size of snapshots is related to interpolation points.
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1. bPOD and RatlInt
2. RatInt as bPOD

3. Two Examples
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@ Model Order Reduction

Full Order Model:

x(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

Reduced Order Model:

x(t) = Arx,(t) + Bru(t),
ye(t) = Crxe(t) + Du(t),

x(0) = xo. x(0) = X, 0.
Petrov-Galerkin Projection Operators:
S:RN R,
T:R" RV,
ToS=1,,
A :=S0AoT,
B, :=S08B,
C =CoT,
Xr0 1= S(xp)-
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@@ For Now: SISO Systems

We assume a real, asymptotically stable SISO LTI system:

x(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t).
with:
m AeRNVXN,
m B e RVxL
m C e RIXV,
mDeR
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@ Balanced Proper Orthogonal Decomposition

1. Numerically (i.e. by General Linear Methods) Compute:
x(t) = Ax(t), x(0)=B — B=[X(t)]k=1..k,
2(t) = ATz(t), z(0)=CT — C=[Z(ti)]k=1..k-

2. Singular Value Decomposition of Empirical Hankel Operator:

1 -=cBY¥P ysv.

3. Projection Operators by Method of Snapshots:
S:=Y 2U1CT,
T =BV 2,

A sidenote concerning the empirical cross Gran}ian: .
Wy == BCT 2 (us2)(£2v) = ST.
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@ Rational Interpolation

1. Generalized controllability and observability operators:
R(s):=[(s1 - A)'B,...,(s1 - A)XB], R(x):=[B,AB,...,AK"1B],
O(s) :=[C(s1—A)L,...,C(s1 — A)K]T, O(0):=[C,CA,..., CAKTT.
2. Form operators V, W fors; € CUoo, i=1...2m:
V :=[R(s1),...,R(sm)],
W :=[0(smt1)s-- - O(s2m)]T-
3. Projection operators are then given by:

S = (Wv)tw,
T =V,

with Gr(S,') = G(S,’).
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& @ Interpolation at Infinity

Proposition:
Rational interpolation at s = oo yields the same reduced order models as

balanced POD with samples obtained by the forward Euler (explicit)
method.

Forward Euler Reminder (k =1...K):
)"<(hk) = (1+ hA)*B
=[B,(1+ hA)B,...,(1+ hA)K1B],
=[CT,(1+ hAT)CT, .., (1+ hAT)KL T
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® A Short Justification

Proof:

For K samples, consider the upper triangular matrix M € RK*K:

M = (fl B D h=l = {f :g((z))/\,/\’/l = H = MTO(c0)R(c0) M.
Projection operators:
S =Y 2 UTMTO(c0),
T = R(c0)MVE 2.
Let Q := MVX~: (being a similarity transformation), then:
§ = QT IUTMTO(0) = MH L MTO(c0) = (O(c0)R(c0)) 1 O(0),
T = R(co)MVE3Q7! = R(o0),

C. Himpe, himpe@mpi-magdeburg.mpg.de MOR by bPOD and RatiInt


mailto:himpe@mpi-magdeburg.mpg.de

@ A 3 x3 Example

Let's look at an example with 3 samples (remember the Pascal triangle?):

11 1
M=|0 h 2n]|,
00 M

then the reachability factor of the empirical Hankel operator is:

11 1
R(cc)M = (B AB A2B) [0 h 2h

0 0 K
= (B (1+hA)B (1+ hA)’B) =B,

due to the binomial coefficent properties.
The same argument holds for the observability factor ...
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&@ Interpolation at a Finite Point

Proposition:
Rational interpolation at s < oo yields the same reduced order models as

balanced POD with samples obtained by the backward Euler (implicit)
method.

Backward Euler Reminder (k =1...K):
%(hk) = (1 — hA)"*B
—B=[(1-hA)1B,...,(1 - hA) KB,
—C=[1-hAT)"ICT ... (1 - hAT)"K(CT].
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& ® Frequency and Stepwidth

Proof:
For K samples, consider the diagonal matrix M € RK*K:

_ p(p-1
M = h"" = B=R(n M = H=MTO(h " )R(h")M.
C = O(h1yM

Similarly, we obtain:
§=(0(h MR(h M) ro(h™),

(h™).

-3
Il
b

corresponding to rational interpolation at s = h™1.
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@ Interpolation at Multiple Points

Multiple points by joining snapshot sets:
m Forward Euler snapshots for s, = 00: By

m Backward Euler snapshots for s; < oco: B;
B .= [Bl, . ,BK, Boo]
Adapt M accordingly.

Proceed similarly for the adjoint system.
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@ Interpolation at Complex Points

Look at the stability functions of the Euler methods:
m Forward Euler: ®(z) =1 —|— z,
m Backward Euler: ®(z) = =5.
The associated pole location re I tes to the interpolation points.

Higher order methods can produce the same results for larger time steps:
1+0 5z
m Crank-Nicholson: ®(z) = 15522,
In this case twice the step size.

For complex interpolation points one could use for example:

H — 2
m Hammer-Hollingsworth: ®(z) = —2_1122_4622;;2 )

The reciprocal of the poles determine the interpolation points.

For the Runge-Kutta SSPx2 method the stability function is: ®(z) = Y% s7'z°
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@ Extension to MIMO Systems

For MIMO systems, bPOD is similar to tangential interpolation (TanlInt):

m Balanced POD for MIMO:
Sample for each column of B and row of C
enlarging B and C.

m Tangential interpolation:
Rational interpolation using linear combinations of B and C
yielding SISO systems.

m Matrix interpolation:
Rational interpolation using all columns and rows of B and C
(square systems only).
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SISO Example:
= FEM for 1D Heat equation 2% = 2% (x, t) € (0,1) x Rso,

ot x2 !
w(0,x) =0, 2%(t,0) = u(t), fv(t, 1)=0, y(t)=—w(t,0)

m bPOD vs Ratlnt
m Tested: FE, BE, HH, CN

MISO Example:
= FEM for 1D Heat equation 9% = W + wa(t)d2/3(x), - -
m bPOD vs TanlInt
m Tested: BE
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Why do | like this article?

m Connection between time- and frequency-domain and

m empirical Hankel operator with generalized operators.

m This somewhat extends to empirical Gramians.

Read: 10.1109/TAC.2011.2164018
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