M.R. Opmeer. Model Order Reduction by Balanced Proper Orthogonal Decomposition and by Rational Interpolation. IEEE Transactions on Automatic Control 57(2): 472-477, 2012.

Main result:

- Rational inteprolation "is" balanced proper orthogonal decomposition.
- Number and step size of snapshots is related to interpolation points.


## 1. bPOD and RatInt <br> 2. RatInt as bPOD <br> 3. Two Examples

## csc Model Order Reduction

Full Order Model:

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t), \\
& y(t)=C x(t)+D u(t), \\
& x(0)=x_{0} .
\end{aligned}
$$

Reduced Order Model:

$$
\begin{aligned}
& \dot{x}_{r}(t)=A_{r} x_{r}(t)+B_{r} u(t), \\
& y_{r}(t)=C_{r} x_{r}(t)+D u(t), \\
& x_{r}(0)=x_{r, 0} .
\end{aligned}
$$

Petrov-Galerkin Projection Operators:

$$
\begin{aligned}
S & : \mathbb{R}^{N} \rightarrow \mathbb{R}^{n}, \\
T & : \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}, \\
T & \circ S=\mathbb{1}_{n}, \\
A_{r} & :=S \circ A \circ T \\
B_{r} & :=S \circ B \\
C_{r} & :=C \circ T \\
x_{r, 0} & :=S\left(x_{0}\right)
\end{aligned}
$$

## csc For Now: SISO Systems

We assume a real, asymptotically stable SISO LTI system:

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned}
$$

with:

- $A \in \mathbb{R}^{N \times N}$,
- $B \in \mathbb{R}^{N \times 1}$,
- $C \in \mathbb{R}^{1 \times N}$,
- $D \in \mathbb{R}$.


## CSC <br> Balanced Proper Orthogonal Decomposition

1. Numerically (i.e. by General Linear Methods) Compute:

$$
\begin{array}{llll}
\dot{x}(t)=A x(t), & x(0)=B \quad \rightarrow \quad \mathcal{B}=\left[\tilde{x}\left(t_{k}\right)\right]_{k=1 \ldots K}, \\
\dot{z}(t)=A^{\top} z(t), & z(0)=C^{\top} \quad \rightarrow & \mathcal{C}=\left[\tilde{z}\left(t_{k}\right)\right]_{k=1 \ldots K .} .
\end{array}
$$

2. Singular Value Decomposition of Empirical Hankel Operator:

$$
\mathcal{H}:=\mathcal{C}^{\top} \mathcal{B} \stackrel{\text { SVD }}{=} U \Sigma V
$$

3. Projection Operators by Method of Snapshots:

$$
\begin{aligned}
S & :=\Sigma^{-\frac{1}{2}} U^{\top} \mathcal{C}^{\top} \\
T & :=\mathcal{B} V \Sigma^{-\frac{1}{2}}
\end{aligned}
$$

A sidenote concerning the empirical cross Gramian:

$$
W_{X}:=\mathcal{B C ^ { \top }} \stackrel{\text { SVD }}{=}\left(u \Sigma^{\frac{1}{2}}\right)\left(\Sigma^{\frac{1}{2}} v\right)=S T .
$$

## (csc Rational Interpolation

1. Generalized controllability and observability operators:

$$
\begin{array}{ll}
\mathcal{R}(s):=\left[(s \mathbb{1}-A)^{-1} B, \ldots,(s \mathbb{1}-A)^{-K} B\right], & \mathcal{R}(\infty):=\left[B, A B, \ldots, A^{K-1} B\right], \\
\mathcal{O}(s):=\left[C(s \mathbb{1}-A)^{-1}, \ldots, C(s \mathbb{1}-A)^{-K}\right]^{\top}, & \mathcal{O}(\infty):=\left[C, C A, \ldots, C A^{K-1}\right]^{\top} .
\end{array}
$$

2. Form operators $V, W$ for $s_{i} \in \mathbb{C} \cup \infty, i=1 \ldots 2 m$ :

$$
\begin{aligned}
V & :=\left[\mathcal{R}\left(s_{1}\right), \ldots, \mathcal{R}\left(s_{m}\right)\right], \\
W & :=\left[\mathcal{O}\left(s_{m+1}\right), \ldots, \mathcal{O}\left(s_{2 m}\right)\right]^{\top} .
\end{aligned}
$$

3. Projection operators are then given by:

$$
\begin{aligned}
S & :=(W V)^{-1} W, \\
T & :=V,
\end{aligned}
$$

with $G_{r}\left(s_{i}\right)=G\left(s_{i}\right)$.

## csc Interpolation at Infinity

## Proposition:

Rational interpolation at $s=\infty$ yields the same reduced order models as balanced POD with samples obtained by the forward Euler (explicit) method.

Forward Euler Reminder $(k=1 \ldots K)$ :

$$
\begin{aligned}
\tilde{x}(h k) & =(\mathbb{1}+h A)^{k} B \\
\rightarrow \mathcal{B} & =\left[B,(\mathbb{1}+h A) B, \ldots,(\mathbb{1}+h A)^{K-1} B\right], \\
\rightarrow \mathcal{C} & =\left[C^{\top},\left(\mathbb{1}+h A^{\top}\right) C^{\top}, \ldots,\left(\mathbb{1}+h A^{\top}\right)^{K-1} C^{\top}\right] .
\end{aligned}
$$

## csc A Short Justification

## Proof:

For $K$ samples, consider the upper triangular matrix $M \in \mathbb{R}^{K \times K}$ :

$$
M_{i j}:=\binom{j-1}{i-1} h^{i-1} \Rightarrow\left\{\begin{array}{l}
\mathcal{B}=\mathcal{R}(\infty) M \\
\mathcal{C}=\mathcal{O}(\infty)^{*} M
\end{array} \Rightarrow \mathcal{H}=M^{\top} \mathcal{O}(\infty) \mathcal{R}(\infty) M\right.
$$

Projection operators:

$$
\begin{aligned}
S & :=\Sigma^{-\frac{1}{2}} U^{\top} M^{\top} \mathcal{O}(\infty) \\
T & :=\mathcal{R}(\infty) M V \Sigma^{-\frac{1}{2}}
\end{aligned}
$$

Let $Q:=M V \Sigma^{-\frac{1}{2}}$ (being a similarity transformation), then:

$$
\begin{aligned}
& \hat{S}:=Q \Sigma^{-\frac{1}{2}} U^{\top} M^{\top} \mathcal{O}(\infty)=M \mathcal{H}^{-1} M^{\top} \mathcal{O}(\infty)=(\mathcal{O}(\infty) \mathcal{R}(\infty))^{-1} \mathcal{O}(\infty), \\
& \hat{T}:=\mathcal{R}(\infty) M V \Sigma^{-\frac{1}{2}} Q^{-1}=\mathcal{R}(\infty)
\end{aligned}
$$

## © A $3 \times 3$ Example

Let's look at an example with 3 samples (remember the Pascal triangle?):

$$
M=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & h & 2 h \\
0 & 0 & h^{2}
\end{array}\right)
$$

then the reachability factor of the empirical Hankel operator is:

$$
\begin{aligned}
\mathcal{R}(\infty) M & =\left(\begin{array}{lll}
B & A B & A^{2} B
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & h & 2 h \\
0 & 0 & h^{2}
\end{array}\right) \\
& =\left(\begin{array}{lll}
B & (\mathbb{1}+h A) B & (\mathbb{1}+h A)^{2} B
\end{array}\right)=\mathcal{B}
\end{aligned}
$$

due to the binomial coefficent properties.
The same argument holds for the observability factor ...

## csc Interpolation at a Finite Point

## Proposition:

Rational interpolation at $s<\infty$ yields the same reduced order models as balanced POD with samples obtained by the backward Euler (implicit) method.

Backward Euler Reminder $(k=1 \ldots K)$ :

$$
\begin{aligned}
\tilde{x}(h k) & =(\mathbb{1}-h A)^{-k} B \\
\rightarrow \mathcal{B} & =\left[(\mathbb{1}-h A)^{-1} B, \ldots,(\mathbb{1}-h A)^{-K} B\right], \\
\rightarrow \mathcal{C} & =\left[\left(\mathbb{1}-h A^{\top}\right)^{-1} C^{\top}, \ldots,\left(\mathbb{1}-h A^{\top}\right)^{-K} C^{\top}\right] .
\end{aligned}
$$

## csc Frequency and Stepwidth

## Proof:

For $K$ samples, consider the diagonal matrix $M \in \mathbb{R}^{K \times K}$ :

$$
M_{i i}:=h^{-i} \Rightarrow\left\{\begin{array}{l}
\mathcal{B}=\mathcal{R}\left(h^{-1}\right) M \\
\mathcal{C}=\mathcal{O}\left(h^{-1}\right)^{*} M
\end{array} \Rightarrow \mathcal{H}=M^{\top} \mathcal{O}\left(h^{-1}\right) \mathcal{R}\left(h^{-1}\right) M\right.
$$

Similarly, we obtain:

$$
\begin{aligned}
& \hat{S}=\left(\mathcal{O}\left(h^{-1}\right) \mathcal{R}\left(h^{-1}\right)\right)^{-1} \mathcal{O}\left(h^{-1}\right), \\
& \hat{T}=\mathcal{R}\left(h^{-1}\right)
\end{aligned}
$$

corresponding to rational interpolation at $s=h^{-1}$.

## (csc Interpolation at Multiple Points

Multiple points by joining snapshot sets:

- Forward Euler snapshots for $s_{\infty}=\infty$ : $\mathcal{B}_{\infty}$

■ Backward Euler snapshots for $s_{i}<\infty$ : $\mathcal{B}_{i}$

$$
\mathcal{B}:=\left[\mathcal{B}_{1}, \ldots, \mathcal{B}_{K}, \mathcal{B}_{\infty}\right]
$$

Adapt $M$ accordingly.
Proceed similarly for the adjoint system.
csc Interpolation at Complex Points

Look at the stability functions of the Euler methods:
■ Forward Euler: $\Phi(z)=1+z$,

- Backward Euler: $\Phi(z)=\frac{1}{1-z}$.

The associated pole location relates to the interpolation points.
Higher order methods can produce the same results for larger time steps:
■ Crank-Nicholson: $\Phi(z)=\frac{1+0.5 z}{1-0.5 z}$.
In this case twice the step size.
For complex interpolation points one could use for example:
■ Hammer-Hollingsworth: $\Phi(z)=\frac{-12+6 z+z^{2}}{12-6 z+z^{2}}$.
The reciprocal of the poles determine the interpolation points.

For the Runge-Kutta SSP×2 method the stability function is: $\Phi(z)=\sum_{s=1}^{x} s^{-1} z^{s}$

## csc Extension to MIMO Systems

For MIMO systems, bPOD is similar to tangential interpolation (TanInt):

- Balanced POD for MIMO:

Sample for each column of $B$ and row of $C$ enlarging $\mathcal{B}$ and $\mathcal{C}$.

- Tangential interpolation:

Rational interpolation using linear combinations of $B$ and $C$ yielding SISO systems.
■ Matrix interpolation:
Rational interpolation using all columns and rows of $B$ and $C$ (square systems only).

SISO Example:
$\square$ FEM for 1D Heat equation $\frac{\partial w}{\partial t}=\frac{\partial w^{2}}{\partial x^{2}},(x, t) \in(0,1) \times \mathbb{R}_{>0}$, $w(0, x)=0, \quad \frac{\partial w}{\partial x}(t, 0)=u(t), \quad w(t, 1)=0, \quad y(t)=-w(t, 0)$

- bPOD vs RatInt
- Tested: FE, BE, HH, CN

MISO Example:
$\square$ FEM for 1D Heat equation $\frac{\partial w}{\partial t}=\frac{\partial w^{2}}{\partial x^{2}}+w_{2}(t) \delta_{2 / 3}(x), \ldots$

- bPOD vs Tanlnt
- Tested: BE


## csc tl;dl

Why do I like this article?
■ Connection between time- and frequency-domain and

- empirical Hankel operator with generalized operators.
- This somewhat extends to empirical Gramians.

Read: 10.1109/TAC.2011.2164018

