

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG



COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

## If the Mountain Won't Come ... ... Reduced Order Transport

Christian Himpe 2017–06–13 CSC Group Workshop Falkensee

## So The Transporter: Reduced

What is transport aka advection?

- Local effect.
- Propagation over time.

What's the problem with MOR for transport?

- State-space trajectory has no low-rank.
- Slow decay of singular values.



## Hyperbolic Symptoms:

- Jacobian has real eigenvalues
- and is diagonalizable.

Numerical Medicine:

- CFL (Courant-Friedrichs-Lewy) condition
- SSP (Strong-Stability-Preserving) integrators

## 🐟 ጩ Hyper, Hyper

Hyperbolc PDE Examples:

Advection Equation (1st Order Linear):  $\frac{\partial u}{\partial t} = a \frac{\partial u}{\partial x}$ 

• Wave Equation (2nd Order Linear):  $\partial^2 u \quad \partial^2 u$ 

• (Inviscid) Burgers' Equation (Quasi-Linear):  $\frac{\partial u}{\partial t} = u \frac{\partial u}{\partial x}$ 

• (Isothermal) Euler Equations (Nonlinear):

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= -\frac{\partial q}{\partial x} \\ \frac{\partial q}{\partial t} &= -a^2 \frac{\partial \rho}{\partial x} + b \frac{q|q|}{\rho} - g\rho \frac{\partial h}{\partial x} \end{aligned}$$

 $\frac{1}{\partial t^2} = a \frac{3}{\partial r^2}$ 



- 1. Define center C:  $\int_0^C [f(x)]^2 dt = \int_C^N [f(x)]^2 dt$ .
- 2. Determine center for each time step.
- 3. Center trajectory around C.
  - Computationally easy.
  - Theoretically low ranks possible.
  - Practically difficult.

<sup>&</sup>lt;sup>1</sup>S. Glavaski, J.E. Marsden, and R.M. Murray. **Model Reduction, Centering, and the Karhunen-Loeve Expansion**. Proceedings of the 37th IEEE Conference on Decision & Control: 2071–2076, 1998.



- 1. Linearize Model.
- 2. Determine inner product P for some Q > 0:  $A^{\intercal}P + PA = -Q$ .
- 3. Build linear reduced model:  $A_r := U^{\intercal} P A U, B_r := U^{\intercal} P B, C := C U.$ 
  - Computationally OK.
  - Theoretically doable (works for linearized Euler equations).
  - Practically what Q?

<sup>&</sup>lt;sup>2</sup>I. Kalashnikova, M.F. Barone, S. Arunajatesan and B.G. van Bloemen Waanders. **Construction of energy-stable projection-based reduced order models**. Applied Mathematics and Computation 249: 569–596, 2014.



- 1. Compute projections using a kernel method.
- 2. Mind the gap: Don't forget to center.
- 3. Construct ROM: Map to original space (Ay, there is the rub).
  - Computationally challenging (Solve large optimization problem).
  - Theoretically supported.
  - Practically maybe doable.

<sup>&</sup>lt;sup>3</sup>J. Bouvrie and B. Hamzi. Kernel Methods for the Approximation of Nonlinear Systems. arXiv math.OC(1108.2903): 1–31, 2016.



Gas Transport Networks in MathEnergy:

- Large-Scale (10<sup>4</sup>, Many-Query)
- Hyperbolic (Conservation Laws)
- Nonlinear (Possibly Non-Differentiable)
- Descriptor System (Better Decoupling)

<sup>&</sup>lt;sup>4</sup>Leia Organa after jumping down a garbage chute into a trash compactor on the death star.



All implemented model reduction techniques (#datadriven):

- Unstructured / Structured Empirical Cross Gramian
- Unstructured / Structured Empirical Balanced Truncation
- Unstructured / Structured Proper Orthogonal Decomposition
- Unstructured / Structured Dynamic Mode Decomposition

can all handle the previous hyperbolicity treatments.

<sup>&</sup>lt;sup>5</sup>Raoul Duke on the edge of the desert when the drugs began to take hold.



Questions:

- Any war stories about MOR for hyperbolic systems?
- Enough redundancy in the networks to not care?
- Opinions or further methods?

P.S.: Other methods considered: Freezing, Shifted POD