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Abstract

The growing infeed of renewable energy re-
quires a change in management of gas net-
works, as supply and demand become in-
creasingly volatile. To ensure safe operation of
the gas network, many scenario simulations of
a large-scale model are conducted prior to the
dispatch. Model reduction alleviates the asso-
ciated computational complexity by providing
surrogate models with resemblant behavior.

1a. Generic Model

(Possibly Nonlinear) Input-Output System:

ẋ(t) = f (x(t), u(t))
y (t) = g(x(t), u(t))

• Input: u : R→ RM

• State: x : R→ RN

• Output: y : R→ RQ

• Vectorfield: f : RN × RM → RN

• Output Functional: g : RN × RM → RQ

2. Linear Model Reduction

Reduced Linear Model:

ẋr (t) = (V ᵀAU)xr (t) + (V ᵀB)u(t)
ỹ (t) = (CU)xr(t)

• Projections can be applied a-priori.
• Reduced System Matrix Ar := V ᵀAU ∈ Rn×n

• Reduced Input Matrix: Br := V ᵀB ∈ Rn×M

• Reduced Output Matrix: Cr := CU ∈ RQ×n

• Extensive theory exists for linear (linearized) models.

5. Parametric Model Reduction

Parametric Input Output System:

ẋ(t) = f (x(t), u(t), θ)
y (t) = g(x(t), u(t), θ)

• Parameter: θ ∈ RP

• Vectorfield: f : RN × RM × RP → RN

• Output Functional: g : RN × RM × RP → RQ

• Goal: Find projections U, V valid over Θ ⊂ RP

• Parametric Approximate Output: ‖y (θ)− ỹ (θ)‖ � 1

Reduced Gas Network Model

Putting it all together:
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• Reduced Pressure: pr(t) := V ᵀ
p p(t)− p̄

• Reduced Mass-Flux: qr (t) := V ᵀ
q q(t)− q̄

• fq,r(pr , qr , θ) := V ᵀ
q fq(p̄ + Uppr , q̄ + Uqqr , θ)

Gas Network Model

Spatially Discrete Index-Reduced Isothermal Euler Equations:
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• Pressure: p : R→ RNp

• Mass-Flux: q : R→ RNq

• Supply Pressure (Input): us : R→ RMs

• Demand Mass-Flux (Input): ud : R→ RMd

• Supply Mass-Flux (Output): yd : R→ RQd

• Demand Pressure (Output): ys : R→ RQd

1b. Generic Model Reduction

Reduced Order Model:

ẋr(t) = fr(xr(t), u(t))
ỹ (t) = gr (xr(t), u(t))

• Reduced State: xr : R→ Rn

• Reduced State-Space Dimension: n� N
• Approximate Output: ỹ : R→ RQ

• Reduced Vectorfield: fr : Rn × RM → Rn

• Reduced Output Functional: gr : Rn × RM → RQ

3. Affine Model Reduction

Affinely Reduced Input-Output System:

ẋr (t) = V ᵀf (x̄ + Uxr (t), u(t))
ỹ (t) = g(x̄ + Uxr (t), u(t))

• Steady-State: x̄ ∈ RN

• Reduced State: xr (t) := V ᵀx(t)− x̄
• Reconstructed State: x(t) ≈ Uxr(t) + x̄
• Simple “nonlinear” model reduction method.
• Useful for nonlinear systems.

6. Combined Reduction*

Combined State and Parameter Reduction:

ẋr(t) = V ᵀf (Uxr (t), u(t),Πθr)
ỹ (t) = g(Uxr (t), u(t),Πθr)

• Reducing Truncated Projection: Π ∈ RP×p

• Reconstructing Truncated Projection: Λ ∈ RP×p

• Bi-Orthogonality: ΛᵀU = 1
• Reduced Parameter: θr := Λᵀθ ∈ Rp�P

• Model Reduction Error: ‖y (θ)− ỹ (θr )‖ � 1

Projection Computation

Nonlinear Data-Driven Methods Considered:

• Empirical Balanced Truncation
• Empirical Cross Gramian
• Empirical Non-Symmetric Cross Gramian
• Proper Orthogonal Decomposition
• Dynamic Mode Decomposition

A Step-By-Step Guide
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1c. Projection-Based Model Reduction

(Low-Dimensional) Projected Input-Output System:

ẋr(t) = V ᵀf (Uxr (t), u(t))
ỹ (t) = g(Uxr(t), u(t))

• Reducing Truncated Projection: U ∈ RN×n

• Reconstructing Truncated Projection: V ∈ RN×n

• Bi-Orthogonality: V ᵀU = 1
• Reduced State: xr (t) := V ᵀx(t)
• Model Reduction Error: ‖y − ỹ‖ � 1

4. Structured Model Reduction

Structured Reduced Order Model:
(
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ỹ (t) = g(Uppr(t), Uqqr(t), u(t))

• Reducing Projections: Up ∈ RNp×np, Uq ∈ RNq×nq

• Reconstructing Projections: Vp ∈ RNp×np, Vq ∈ RNq×nq

• Bi-Orthogonality: V ᵀ
p Up = 1, V ᵀ

q Uq = 1
• Reduced States: pr (t) := V ᵀ

p p(t), qr (t) := V ᵀ
q q(t)

7. Hyper Reduction*

Lifting Bottleneck:

ẋr(t) = V ᵀf (Uxr (t), u(t))
ỹ (t) = g(Uxr(t), u(t))

• fr requires evaluation of f .
• xr needs lifting to x .
• Approximate fr by interpolating between data points of f .
• (Likely) Not necessary for gas networks.
• Algorithm: (Discrete) Empirical Interpolation Method

Furthermore ...

Model reduction methods have different properties, i.e.:

• Galerkin (V = U) or Petrov-Galerkin (V 6= U) projections
• Target Error Norm: L1, L2, L∞, H2, H∞, ...
• Stability Preservation
• (Sharp) Error Indicators
• Input-Output Coherence
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