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Motivation

The Gas Network Situation:

Volatile renewable energies.

Fluctuating supply and demand.

Fast response of gas-fired plants.

Day-ahead forecasts.

Many simulations before dispatch.

MathEnergy project.
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Challenges

Multi-Scale

Large-Scale

Nonlinear

Hyperbolic

Parametric

→ Structured (Data-Driven) Model Reduction
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Multi-Scale Model

Multi-Scale Properties:

Coupling of quantites,

evolving on different scales.

Practical issues:

Numerical annihilation,

Operator condition.

We Assume:

Spatially discrete (PDAE → DAE),

Index reduced (DAE → ODE),

Sufficiently regular boundary values (i.e.: L2).
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Simple Example

Gas Flow in a Pipe:

Modeled by Euler equations,

coupling mass-flow and pressure.
For example:

Boundary values: ps, qd,
Quantites of Interest: pd, qs.
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Semi-Discrete Model

Coupled Input-Output System:

ṗ(t) = fp(p(t), q(t), u(t), θ)

q̇(t) = fq(p(t), q(t), u(t), θ)

y(t) = g(p(t), q(t), u(t), θ)

Large State: p : R→ RNp (Large Degrees of Freedom)

Small State: q : R→ RNq (Small Degrees of Freedom)

Input: u : R→ RM (Boundary Values)

Output: y : R→ RQ (Quantites of Interest)

Parameter: θ ∈ RP

Large Vector Field: fp : RNp × RNq × RM × RP → RNp

Small Vector Field: fq : RNp × RNq × RM × RP → RNq

Output Functional: g : RNp × RNq × RM × RP → RQ
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Reducibility

Input-Output Map:
from Boundary Values u,
via Degrees of Freedom (p, q),
to Quantites of Interest y.

u 7→ (p, q) 7→ y

Np = dim(p(t))
Nq = dim(q(t))
Np +Nq � 1
M = dim(u(t))� Np +Nq

Q = dim(y(t))� Np +Nq
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Model Reduction

Reduced Order System:

ṗr(t) = fp,r(pr(t), qr(t), u(t), θ)

q̇r(t) = fq,r(pr(t), qr(t), u(t), θ)

ỹ(t) = gr(pr(t), qr(t), u(t), θ)

Reduced Large State: pr : R→ Rnp , np � Np

Reduced Small State: qr : R→ Rnq , nq � Nq

Approximate Output: ỹ : R→ RQ

Reduced Large Vector Field: fp,r : Rnp × Rnq × RM × RP → Rnp

Reduced Small Vector Field: fq,r : Rnp × Rnq × RM × RP → Rnq

Reduced Output Functional: gr : Rnp × Rnq × RM × RP → RQ

Reduction Error: ‖y(θ)− ỹ(θ)‖ � 1
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Structured Model Reduction

Structured System:

ṗ(t) = fp(p(t), q(t), u(t), θ)

q̇(t) = fq(p(t), q(t), u(t), θ)

y(t) = g(p(t), q(t), u(t), θ)

Structured (Truncated) Projections:

V ᵀ
p (p) = pr, Up(pr) ≈ p, V ᵀ

q (q) = qr, Uq(qr) ≈ q

Compute separate transformations for large and small equations.

Per component computation.

Per component approximation.

Error estimator for linear systems1.
1

H. Sandberg and R.M. Murray. Model reduction of interconnected linear systems. Optimal Control Applications and
Methods, 30(3): 225–245, 2009.
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Projection-Based Model Reduction

Projected System:

ṗr(t) = V ᵀ
p fp(Uppr(t), Uqqr(t), u(t), θ)

q̇r(t) = V ᵀ
q fq(Uppr(t), Uqqr(t), u(t), θ)

ỹ(t) = g(Uppr(t), Uqqr(t), u(t), θ)

Reducing Large Projection: Vp ∈ RNp×np

Reducing Small Projection: Vq ∈ RNq×nq

Reconstructing Large Truncated Projection: Up ∈ RNp×np

Reconstructing Small Truncated Projection: Uq ∈ RNq×nq

Bi-Orthogonality: V ᵀ
p Up = 1np , V ᵀ

q Uq = 1nq

→ Task: Compute Vp, Up, Vq, Uq
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Balanced Truncation
Linear Time-Invariant System:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

Controllability Operator:

C(u)(t) :=
∫ 0

−∞
eAtBu(−t) dt

Controllability Gramian:

WC =

∫ ∞
0

eAtBBᵀ eA
ᵀt dt

Observability Operator:

O(x0)(t) := C eAt x0

Observability Gramian:

WO =

∫ ∞
0

eA
ᵀtCᵀC eAt dt

Balancing (and Truncation):

U, V : V ᵀWCU = U−1WOV
−ᵀ = diag(σ1, . . . , σN )
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Cross Gramian

Conjoining Controllability and Observability:

WX :=

∫ ∞
0

eAtBC eAt dt

Approximate Balancing:

WX
SVD
= UDV

Combines controllability with observability operator.

Basic variant only for square systems.

Non-square extensions exist2

Classic or approximate balancing.

2
C.H. and M. Ohlberger. A note on the cross Gramian for non-symmetric systems. System Science and Control

Engineering 4(1): 199–208, 2016.
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From Linear To Nonlinear Systems

Data-Driven Computation (linear):

WX :=

∫ ∞
0

(eAtB)(eA
ᵀtC)ᵀ dt

Cross-covariance of primal and adjoint impulse response,
for linear systems only.

Data-Driven Computation (nonlinear):

ŴX :=
M∑

i=m

∫ ∞
0

Ψm(t) dt

Ψm
ij = (xmi (t)− x̄i)(yjm(t)− ȳm)

cross-covariance of state and output trajectories,
for linear systems equivalent to above3.

3
C.H. and M. Ohlberger. Cross-Gramian-Based Combined State and Parameter Reduction for Large-Scale Control

Systems. Mathematical Problems in Engineering, 2014: 1–13, 2014.

C. Himpe Model Reduction Based on the Mapping from BV to QoI 13/21



Empirical Structured Cross Gramian

Large Empirical Cross Gramian:

ŴX,p :=
M∑

i=m

∫ ∞
0

Ψm
p (t) dt

Ψm
p,ij = (pmi (t)− p̄i)(yjm(t)− ȳm)

ŴX,p
SVD
= UpDpV

ᵀ
p

Small Empirical Cross Gramian:

ŴX,q :=
M∑

i=m

∫ ∞
0

Ψm
q (t) dt

Ψm
q,ij = (qmi (t)− q̄i)(yjm(t)− ȳm)

ŴX,q
SVD
= UqDqV

ᵀ
q

Note: Output scaling important!
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Pipe Model
Isothermal Euler Equations4:

∂

∂t
ρ = − 1

S

∂

∂x
q

∂

∂t
q = −S ∂

∂x
p− Sgρ ∂

∂x
h− λ

2DS

q|q|
ρ

p = RST0zρ

Density: ρ(x, t)

Mass-Flux: q(x, t)

Pressure: p(x, t)

Elevation: h(x)

Constants: S, g, D

Parameters: T0, RS

Friction Factor: λ(q)

Compressibility Factor: z(p, T )

4
P. Benner, S. Grundel, C.H., C. Huck, T. Streubel, C. Tischendorf. Gas Network Benchmark Models.

In: Differential Algebraic Equation Forum (Accepted), 2018.
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Network Model

Network as a Graph (N , E):

Node set N (Junctions)

Edge set E (Pipes)

Node Types:

Internal nodes N0

Supply nodes Ns

Demand nodes Nd

Kirchhoff Rules5:

1. pi = ps, pi ∈ Ns

2.
∑
j∈E−

qj −
∑
k∈E+

qk = qd, qd ∈ Nd

→ Partial Differential Algebraic Equation (PDAE)
5

T.P. Azevedo-Perdicoúlis and G. Jank. Modelling Aspects of Describing a Gas Network Through a DAE System.
3rd IFAC Symposium on System Structure and Control 40(20): 40–45, 2007.
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Input-Output Model

Semi-Discrete Gas Network Model:(
ṗ
q̇

)
=

(
0 Apq

Aqp 0

)(
p
q

)
+

(
0 Bd

Bs 0

)(
ps
qd

)
+

(
0

fq(p, q, ps, qd, θ)

)
(
pd
qs

)
=

(
Cd 0
0 Cs

)(
p
q

)

Multi-Scale (∼ 105) → Structured Reduction

Always square → Cross Gramian

Nonlinear (Friction & Compressibility) → Empirical Gramian

Stiff “linear” part → IMEX6 Solver

2-dim parameter-space (Temperature & Specific Gas Constant)

6
S. Grundel, L. Jansen. Efficient Simulation of Transient Gas Networks Using IMEX Integration Schemes and MOR

Methods. IEEE 54th Annual Conference on Decision and Control: 4579–4584, 2015.
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Model Reduction Workflow

Offline:

1. Design input perturbation

2. Design parameter samples

3. Compute structured empirical Gramians

4. for short time horizons (< 1 h)

5. Decompose empirical Gramians

Online:

1. Design scenarios

2. Simulate scenarios

3. for long time horizons (24 h)
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Test Network and Scenario
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Tree topology

Single supply, multiple demands

About 700 DoFs

24 h time horizon

1min time resolution
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Numerical Results
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(Unstructured or Structured) POD, (Unstructured Empircal BT & WX), DMD-Galerkin,

(Unstructured or Structured) Linearized BT & WX did not work!
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Summary

System-theoretic interpretation

Boundary-Value to Quantity-of-Interest mapping

Structured empirical cross Gramian

Output scaling necessary

Gas network application

http://himpe.science
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