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@v@ Motivation

The Gas Network Situation:
m Volatile renewable energies.
m Fluctuating supply and demand.
m Fast response of gas-fired plants.
Day-ahead forecasts.
Many simulations before dispatch.

MathEnergy project.
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& ® Challenges

m Multi-Scale
m Large-Scale
m Nonlinear

m Hyperbolic

m Parametric

— Structured (Data-Driven) Model Reduction
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@@ Multi-Scale Model

Multi-Scale Properties:
m Coupling of quantites,
m evolving on different scales.
m Practical issues:
m Numerical annihilation,
m Operator condition.

We Assume:
m Spatially discrete (PDAE — DAE),

m Index reduced (DAE — ODE),
m Sufficiently regular boundary values (i.e.: Ls).
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Gas Flow in a Pipe:

ps qd

as pd

m Modeled by Euler equations,
m coupling mass-flow and pressure.
m For example:

m Boundary values: p,, qq4,
= Quantites of Interest: py, qs.
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@@ Semi-Discrete Model

Coupled Input-Output System:

p(t) = fp(p(t), q(t),u(t),0)
q(t) = fo(p(t),q(t), u(t),0)
y(t) = g(p(t),q(t),ul(t),0)

m Large State: p: R — R™ (Large Degrees of Freedom)
m Small State: ¢ : R — R™ (Small Degrees of Freedom)
m Input: u: R — RM (Boundary Values)

m Output: y : R — R¥ (Quantites of Interest)

m Parameter: § € RP

m Large Vector Field: f, : RY» x RYe x RM x RP — R
m Small Vector Field: f, : RN x RN x RM x RP — RN
m Output Functional: ¢ : R x RMe x RM x R — R®

0
0
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& @ Reducibility

Input-Output Map:
m from Boundary Values u,
m via Degrees of Freedom (p, q),
m to Quantites of Interest y.

u — (p,q) — y
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& ® Model Reduction

Reduced Order System:
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m Reduced Large State: p, : R = R™, n, < N,

m Reduced Small State: ¢, : R — R", n, < N,

m Approximate Output: §: R — R?

m Reduced Large Vector Field: f,, : R™ x R™ x RM x R — R"™
m Reduced Small Vector Field: f,, : R x R" x RM x RF — R"
m Reduced Output Functional: g, : R™ x R™ x RM x R — R?
m Reduction Error: [|y(#) — 7(0)] < 1
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@*@ Structured Model Reduction

Structured System:
p(t) = fp(p(t)7 Q(t)a u(t>7 9)
q(t) = fo(p(t), q(t),u(t),0)
y(t) = g(p(t), q(t),u(t),0)

Structured (Truncated) Projections:

Vi) =pr Uplpr) =p, V(g =q, Ulq)=q

m Compute separate transformations for large and small equations.
m Per component computation.

m Per component approximation.

m Error estimator for linear systems!.

1H. Sandberg and R.M. Murray. Model reduction of interconnected linear systems. Optimal Control Applications and
Methods, 30(3): 225-245, 2009.
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@@ Projection-Based Model Reduction

Projected System:

Pr(t) = Vi fp(Uppr (1), Ugar(£), u(t), 0)
gr(t) = V:;qu(Uppr(t)v Uqgr(t),u(?),0)
g(t) = g(Up T(t)7 quf,«(t), u(t)7 9)

Reducing Large Projection: V,, € RNexm»

Reducing Small Projection: V, € RNe*ma

Reconstructing Large Truncated Projection: U, € RN»*mr
Reconstructing Small Truncated Projection: U, € RNa*"
Bi-Orthogonality: VU, =1, , VU, = 1,,

— Task: Compute V,,, U, V,, U,

Model Reduction Based on the Mapping from BV to Qol



@ Balanced Truncation

Linear Time-Invariant System:
#(t) = Az(t) + Bu(t)

y(t) = Cx(t)
Controllability Operator: Observability Operator:
Clu)(t) := / i e Bu(—t)dt O(x0)(t) := C e g
Controllability Gramian: Observability Gramian:
We = /0 T BBt AT Wo = /0 Tt OTC et at

Balancing (and Truncation):

UV :VIWeU = U 'WoV T = diag(oy,...,0n)

Model Reduction Based on the Mapping from BV to Qol



@@ Cross Gramian

Conjoining Controllability and Observability:
Wy = / e BC e dt
0

Approximate Balancing:

Wy 2 DV

m Combines controllability with observability operator.
m Basic variant only for square systems.

m Non-square extensions exist?

m Classic or approximate balancing.

ZC.H. and M. Ohlberger. A note on the cross Gramian for non-symmetric systems. System Science and Control
Engineering 4(1): 199-208, 2016.
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@@ From Linear To Nonlinear Systems

Data-Driven Computation (linear):
Wy = / (™ BY(eA™ €7 dt
0

m Cross-covariance of primal and adjoint impulse response,
m for linear systems only.

Data-Driven Computation (nonlinear):

M oo
Wy = Z/ U (t) dt
i=m 70

Wi = (@ (t) = Zi) (Y (t) — Um)
m cross-covariance of state and output trajectories,
m for linear systems equivalent to above3.

3C.H. and M. Ohlberger. Cross-Gramian-Based Combined State and Parameter Reduction for Large-Scale Control
Systems. Mathematical Problems in Engineering, 2014: 1-13, 2014.
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@@ Empirical Structured Cross Gramian

Large Empirical Cross Gramian:

Wy, = Z/m U(t) dt
o = 0" (1) = 5) (U3 (t) — Fim)

/Wx,p = UprVpT

Small Empirical Cross Gramian:

M o0
Wxg =) /0 () dt

W = (@ (t) = @) (Y (t) — Gm)
W\X,q SLD Uqu‘/qT
Note: Output scaling important!
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& @® Pipe Model

Isothermal Euler Equations*:

o _ 10
ot Sox
0 0 0 A qlq|
= —-S—p— By N AR 1k 1)
ot Sax Sgp@x 2DS p
p = RsTozp
m Density: p(x,t) m Constants: S, g, D
m Mass-Flux: ¢(x,t) m Parameters: Ty, Rs
m Pressure: p(x,t) m Friction Factor: A(q)
m Elevation: h(x) m Compressibility Factor: z(p,T')

4P. Benner, S. Grundel, C.H., C. Huck, T. Streubel, C. Tischendorf. Gas Network Benchmark Models.
In: Differential Algebraic Equation Forum (Accepted), 2018.
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https://opus4.kobv.de/opus4-trr154/files/184/gasbenchmark.pdf

& ® Network Model

Network as a Graph (N, &): Node Types:
m Node set /' (Junctions) = Internal nodes N
m Edge set £ (Pipes) m Supply nodes N,
m Demand nodes N}

Kirchhoff Rules®:
L pi=ps, pi€Ns

2.3 =D Gx=da €N

jeE- keéy

— Partial Differential Algebraic Equation (PDAE)

5T.P. Azevedo-Perdicolilis and G. Jank. Modelling Aspects of Describing a Gas Network Through a DAE System.
3rd IFAC Symposium on System Structure and Control 40(20): 40-45, 2007.
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@@ Input-Output Model

Semi-Discrete Gas Network Model:
()= (o, w0 ) 6 (oaan)
q qu 0 q B, 0 qd fq(pu 4, Ps, 44, 9)
pay _ (Ca O P
) \ 0 C; q

m Multi-Scale (~ 10°) — Structured Reduction
m Always square — Cross Gramian

m Nonlinear (Friction & Compressibility) — Empirical Gramian
m Stiff “linear” part — IMEX® Solver

m 2-dim parameter-space (Temperature & Specific Gas Constant)

6S. Grundel, L. Jansen. Efficient Simulation of Transient Gas Networks Using IMEX Integration Schemes and MOR
Methods. |IEEE 54th Annual Conference on Decision and Control: 4579-4584, 2015.
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& ® Model Reduction Workflow

Offline:

1. Design input perturbation
Design parameter samples
Compute structured empirical Gramians
for short time horizons (< 1h)
Decompose empirical Gramians

ok W

Online:
1. Design scenarios
2. Simulate scenarios
3. for long time horizons (24 h)
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@ Test Network and Scenario
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m Distribution network

m Tree topology

m Single supply, multiple demands
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m About 700 DoFs

m 24 h time horizon

® 1 min time resolution
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5 Empirical Balanced Truncation (Structured)
o 1074 mmmmmm Empirical Cross Gramian (Structured)
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(Unstructured or Structured) POD, (Unstructured Empircal BT & WX), DMD-Galerkin,
(Unstructured or Structured) Linearized BT & WX did not work!
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m System-theoretic interpretation
m Boundary-Value to Quantity-of-Interest mapping

m Structured empirical cross Gramian
m Output scaling necessary
m Gas network application

http://himpe.science
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