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Motivation

Why:

Computationally less involved.

Less accurate but universal.

Nonlinearity may not be main challenge.

Nonlinear methods may not apply.

Theoretical results for linear systems.
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Input-Output System

Nonlinear Input-Output System:

ẋ(t) = f(t, x(t), u(t), θ)

y(t) = g(t, x(t), u(t), θ)

Input: u : R→ RM

State: x : R→ RN

Output y : R→ RQ

Parameter: θ ∈ RP

Vector Field: f : R× RN × RM × RP → RN

Output Functional: g : R× RN × RM × RP → RQ
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Model Reduction

Reduced Order Model (ROM):

ẋr(t) = fr(t, xr(t), u(t), θ)

ỹ(t) = gr(t, xr(t), u(t), θ)

Reduced State: xr : R→ Rn, n� N

Reduced Vector Field: fr : R× Rn × RM × RP → Rn

Reduced Output Func.: gr : R× Rn × RM × RP→ RQ

Approximate Output: ỹ : R→ RQ

Goal I: ‖y(θ)− ỹ(θ)‖ � 1

Goal II: Preserve stability, structure, etc.
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Projection-Based Model Reduction

Projected System:

ẋr(t) = V ᵀf(t, Uxr(t), u(t), θ)

ỹ(t) = g(t, Uxr(t), u(t), θ)

Reducing projection: V ∈ RN×n

Reconstructing projection: U ∈ RN×n

Projection ansatz: xr(t) := V ᵀx(t)→ x(t) ≈ Uxr(t)

(Bi-)Orthogonality: V ᵀU = 1
Galerkin projection: V = U

Petrov-Galerkin projection: U 6= V
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Linear Model Reduction

Linear Time-Invariant System:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

Reduced Linear System:

ẋr(t) = V ᵀ(A(Uxr(t))) +Bu(t))

ỹ(t) = C(Uxr(t))

System matrix: A ∈ RN×N

Input matrix: B ∈ RN×M

Output matrix: C ∈ RQ×N
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Linear Model Reduction

Linear Time-Invariant System:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

Reduced Linear System:

ẋr(t) = (V ᵀAU)xr(t) + (V ᵀB)u(t)

ỹ(t) = (CU)xr(t)

System matrix: A ∈ RN×N

Input matrix: B ∈ RN×M

Output matrix: C ∈ RQ×N
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Linear Model Reduction

Linear Time-Invariant System:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

Reduced Linear System:

ẋr(t) = Arxr(t) +Bru(t)

ỹ(t) = Crxr(t)

Reduced System Matrix: Ar ∈ Rn×n

Reduced Input Matrix: Br ∈ Rn×M

Reduced Output Matrix: Cr ∈ RQ×n
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Linear Model Reduction

Nonlinear System:

ẋ(t) = f(t, xr(t), u(t), θ)

y(t) = g(t, xr(t), u(t), θ)

Reduced Nonlinear System:

ẋr(t) = V ᵀf(t, Uxr(t), u(t), θ)

ỹ(t) = g(t, Uxr(t), u(t), θ)

Reduced Vector Field: fr : R× Rn × RM × RP → Rn

Reduced Output Func.: gr : R× Rn × RM × RP→ RQ

Linear model reduction for a nonlinear system.

C. Himpe Linear Model Reduction for Nonlinear Input-Output Systems 6/22



Briefly: Hyper Reduction

Tackling the lifting bottleneck:

Reducing the reduced order model.

Approximate action of projected nonlinearity.

Solely low-dimensional operator applications.

Hyper Reduction Methods:

Discrete Empirical Interpolation Method1 (DEIM)

Dynamic Mode Decomposition2 (DMD)

Numerical Linearization3

. . .
1

S. Chaturantabut, D.C. Sorensen. Nonlinear model reduction via discrete empirical interpolation. SIAM Journal on
Scientific Computing, 32: 2737–2764, 2010. doi:10.1137/090766498.

2
M.O. Williams, P.J. Schmid, J.N. Kutz. Hybrid Reduced-Order Integration with Proper Orthogonal Decomposition and

Dynamic Mode Decomposition. Multiscale Modeling & Simulation, 11: 522–544, 2013. doi:10.1137/120874539.
3

B.C. Moore. Principal Component Analysis in Nonlinear Systems: Preliminary Results. 18th IEEE Conference on
Decision and Control including the Symposium on Adaptive Processes, 2: 1057–1060, 1979. doi:10.1109/CDC.1979.270114.
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Superlinear Model Reduction

Idea:

Use nonlinear information to build linear subspaces.

Simulate perturbed systems to capture nonlinearity.

Data-driven, hence specific to operating region.

Independent of system structure.

Superior to linearization4.

4
I. Dones, S. Skogestad, H.A. Preisig. Application of Balanced Truncation to Nonlinear Systems. Industrial & Engineering

Chemistry Research, 50: 10093–10101, 2011.
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Proper Orthogonal Decomposition

POD5 (Simplified):

Xk =
(
xk1 . . . xkT

)
∈ RN×T

X :=
[
X1 . . . XK

]
X tSVD

= UDW

V := U

State trajectory Xk,

for k-th perturbation,

with T snapshots each.
5

L. Sirovich. Turbulence and the Dynamics of Coherent Structures: I-Coherent structures, II-Symmetries and
transformations, III-Dynamics and scaling. Quarterly of Applied Mathematics, 45(3): 561–590, 1987.
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Dynamic Mode Decomposition

Extended DMD-Galerkin6 (Simplified):

Xk =
(
xk1 . . . xkT

)
∈ RN×T

→ Xk
0 :=

(
xk1 . . . xkT−1

)
, Xk

1 :=
(
xk2 . . . xkT

)
→ X0 :=

[
X1

0 . . . XK
0

]
,X1 :=

[
X1

1 . . . XK
1

]
X1

!
= AX0 → A ≈ X1X+

0

X1X+
0 T = ΛT

U := orth(T ), V := U

6
A. Alla and J.N. Kutz. Nonlinear Model Order Reduction via Dynamic Mode Decomposition. SIAM J Sci Comput,

39(5): B778–B796, 2017.
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Empirical Balanced Truncation

Empirical Gramians7 (Simplified):

Xmk = (xmk
1 . . . xmk

T )→ WC :=
∑
m,k

αmkXmk(Xmk)ᵀ,

Y q` =
(
y`1q . . . y`Nq

)
→ WO :=

∑
q,`

βn`(Y q`)ᵀY q`

W
1
2

CW
1
2

O
tSVD
= UDV

q-th component of output trajectory: y`nq ,

for `-th perturbation,

of the n-th initial state component.
7

S. Lall, J.E. Marsden, and S. Glavaski. Empirical Model Reduction of Controlled Nonlinear Systems. In: Proceedings of
the 14th IFAC Congress, F: 473–478, 1999.
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Empirical Approximate Balancing

Empirical Cross Gramian8 (Simplified):

Xmk :=
(
xmk
1 . . . xmk

T

)
Y `m :=

(
y`1m . . . y`Nm

)
WX :=

∑
k,`,m

γk`mXmkY `m

WXWX
tSVD
= UDV

8
C.H. and M. Ohlberger. Cross-Gramian-Based Model Reduction: A Comparison. In: Modeling, Simulation and

Applications, 17: 271–283, 2017.
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Comparison

Model Reduction Methods:

Proper Orthogonal Decomposition

Dynamic Mode Decomposition-Galerkin

Empirical Balanced Truncation

Empirical Approximate Balancing
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Preliminary Results

Isothermal Euler Equations9:

∂

∂t
ρ = − 1

S

∂

∂x
q

∂

∂t
q = −S ∂

∂x
p− Sgρ ∂

∂x
h− λ

2DS

q|q|
ρ

p = RST0zρ

Density: ρ(x, t)

Mass-Flux: q(x, t)

Pressure: p(x, t)

Elevation: h(x)

Constants: S, g, D

Parameters: T0, RS

Friction Factor: λ(q)

Compressibility Factor: z(p, T )
9

P. Benner, S. Grundel, C.H., C. Huck, T. Streubel, C. Tischendorf. Gas Network Benchmark Models. In: Differential
Algebraic Equation Forum (Online First), 2018.
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Test System

Semi-Discrete Gas Network Model10:(
ṗ
q̇

)
=

(
0 Apq

Aqp 0

)(
p
q

)
+

(
0 Bd

Bs 0

)(
ps
qd

)
+

(
0

ffr(p, q, ps, qd, θ)

)
(
pd
qs

)
=

(
Cd 0
0 Cs

)(
p
q

)
Pipe network preprocessing:

Index reduction (Analytic).

Spatial discretization (Midpoint).

Pressure and mass-flux states.

IMEX integrator.
10

S. Grundel, L. Jansen, N. Hornung, T. Clees, C. Tischendorf, P. Benner. Model Order Reduction of Differential Algebraic
Equations Arising from the Simulation of Gas Transport Networks. In: Progress in Differential-Algebraic Equations,
Differential-Algebraic Equations Forum: 183–205, 2014.
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Structured Reduction

Structured Reduced Order Model11:

ṗr(t) = V ᵀ
p fp(t, Uppr(t), Uqqr(t), u(t), θ)

q̇r(t) = V ᵀ
q fq(t, Uppr(t), Uqqr(t), u(t), θ)

ỹ(t) = g(t, Uppr(t), Uqqr(t), u(t), θ)

Reducing pressure projection: Vp ∈ RNp×np

Reducing mass-flux projection: Vq ∈ RNq×nq

Reconstructing pressure projection: Up ∈ RNp×np

Reconstructing mass-flux projection: Uq ∈ RNq×nq

Bi-Orthogonality: V ᵀ
p Up = 1np , V ᵀ

q Uq = 1nq

11
H. Sandberg and R.M. Murray. Model reduction of interconnected linear systems. Optimal Control Applications and

Methods, 30(3): 225–245, 2009.
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Test Network

Network Properties:

Nodes: 22

Edges: 22

Supplies: 2

Demands: 4

System Dimensions:

Pressure states: 518

Mass-flux states: 520

Inputs: 6

Outputs: 6
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Model Reduction Workflow

Offline:

1. Design input and parameter samples.

2. Compute assciated trajectories,

3. for short time horizons (< 1 h).

4. Compute projections from trajectories.

Online:

1. Design scenarios.

2. Simulate scenarios,

3. for long time horizons (24 h).
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Model Reduction Error
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Online Time
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Next Steps

Before to Hyper Reduction:

Comparison: Benchmarks12

Preprocessing: A-Priori Error Indicator (WIP)

Parallelization: HAPOD13

Postprocessing: Stabilization14

ROM Efficiency: Memory vs Compute (WIP)

12
U. Baur, P. Benner, B. Haasdonk, C.H., I. Martini and M. Ohlberger. Comparison of Methods for Parametric Model

Order Reduction of Time-Dependent Problems. In: Model Reduction and Approximation: Theory and Algorithms, SIAM:
377–407, 2017.

13
C.H. and T. Leibner and S. Rave. Hierarchical Approximate Proper Orthogonal Decomposition. SIAM Journal on

Scientific Computing: Accepted, 2018.
14

P. Benner, C.H., T. Mitchell. On Reduced Input-Output Dynamic Mode Decomposition. Advances in Computational
Mathematics: 1–18, 2018.
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Summary

Take-home message:

Nonlinear information for linear subspace.

Quality of linear subspace.

Online time may vary.

http://himpe.science
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