

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG



COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY 20 YEARS

Structured Cross-Covariance-Based Model **Reduction Applied to Gas Network Models** P. Benner, S. Grundel, C. Himpe Computational Methods in Systems and Control **MPI** Magdeburg **IUTAM Symposium on** Model Order Reduction for COupled Systems (MORCOS) 2018-05-22

Supported by:



for Economic Affairs and Energy

# **∞ csc** The Gas Network Challenge

### **Practically:**

- Volatile Renewables.
- Natural Gas as Buffer.
- Fast Response.





### Numerically:

- Coupled.
- Nonlinear.
- Hyperbolic.





### Mathematical Key Technologies for Evolving Energy Grids

http://mathenergy.de

Project Partners:

- Fraunhofer SCAI
- 🗾 Fraunhofer ITWM
- 🤼 Humboldt Universität zu Berlin
- Max Planck Institute Magdeburg (Model Reduction)
- 🔊 Technische Universität Berlin
- tu Technische Universität Dortmund
- PSI AG
- Universtät Trier

Funding:

I German Federal Ministry for Economic Affairs and Energy (BMWi)



Model Order Reduction:

- Large-Scale Networks
- Many-Query Setting

**CO**upled **S**ystems:

- Pressure-Mass-Flux Coupling
- Interconnected System of Pipes



## The Model

C. Himpe

Structured Cross-Covariance-Based Model Reduction Applied to Gas Network Models



Isothermal Euler Equations (**ISO-2**) for gas flow in a pipe<sup>1</sup>:

$$\begin{split} &\frac{\partial}{\partial t}\rho = -\frac{1}{S}\frac{\partial}{\partial x}q\\ &\frac{\partial}{\partial t}q = -S\frac{\partial}{\partial x}(R_STz\rho) - Sg\rho\frac{\partial}{\partial x}h - \frac{\lambda}{2DS}\frac{q|q|}{\rho}\\ &p = R_ST_0z\rho \end{split}$$

- **Density**:  $\rho(x,t)$ Constants: S, q, DMass-Flux: q(x, t)
- Pressure: p(x,t)

Elevation: h(x)

- Parameters:  $T_0$ ,  $R_s$
- Friction Factor:  $\lambda(q)$
- Compressibility Factor: z(p,T)

<sup>&</sup>lt;sup>1</sup>P. Benner, S. Grundel, C.H., C. Huck, T. Streubel, C. Tischendorf. Gas Network Benchmark Models. TRR154 Preprint, 2017.

# 💿 Network Model

- Network as graph  $(\mathcal{N}, \mathcal{E})$ :
  - **Node set**  $\mathcal{N}$  (Junctions)
  - Edge set *E* (Pipes)

Node types:

- Internal nodes  $\mathcal{N}_0$
- $\blacksquare Supply nodes \mathcal{N}_s$
- Demand nodes  $\mathcal{N}_d$

Kirchhoff Rules<sup>2</sup>:

1.  $p_i = p_s, \quad p_i \in \mathcal{N}_s$ 

2. 
$$\sum_{j \in \mathcal{E}_{-}} q_j - \sum_{k \in \mathcal{E}_{+}} q_k = q_d, \quad q_d \in \mathcal{N}_d$$

### $\rightarrow$ Partial Differential Algebraic Equation (PDAE)

<sup>2</sup> T.P. Azevedo-Perdicoúlis and G. Jank. **Modelling Aspects of Describing a Gas Network through a DAE System**. 3rd IFAC Symposium on System Structure and Control 40(20): 40–45, 2007.

C. Himpe



### Spatial Discretization (PDAE $\rightarrow$ DAE):

- 1D Finite Difference
- Adaptive Refinement

## Index Reduction (DAE $\rightarrow$ ODE):

- 1. Analytical<sup>3</sup>
- 2. Numerical<sup>4</sup>

<sup>&</sup>lt;sup>3</sup>S. Grundel, L. Jansen, N. Hornung, T. Clees, C. Tischendorf, P. Benner. Model Order Reduction of Differential Algebraic Equations Arising from the Simulation of Gas Transport Networks. In: Progress in Differential-Algebraic Equations, Differential-Algebraic Equations Forum: 183–205, 2014.

<sup>&</sup>lt;sup>4</sup>See: N. Banagaaya, S. Grundel, P. Benner. Index-Aware MOR for Gas Transport Networks. Friday: Session 12.



### Boundaries (Inputs)

- $\blacksquare$  Pressure at supply nodes:  $p_s$
- Mass-flux at demand nodes:  $q_d$

Quantities of Interest (Outputs)

- **Pressure at demand nodes:**  $p_d$
- Mass-flux at supply nodes:  $q_s$

# 🐟 🚥 Input-Output System

Semi-Discrete Gas Network Model:

$$\begin{pmatrix} \dot{p} \\ \dot{q} \end{pmatrix} = \begin{pmatrix} 0 & A_{pq} \\ A_{qp} & 0 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} + \begin{pmatrix} 0 & B_d \\ B_s & 0 \end{pmatrix} \begin{pmatrix} p_s \\ q_d \end{pmatrix} + \begin{pmatrix} 0 \\ f_q(p, q, p_s, q_d, \theta) \end{pmatrix}$$

$$\begin{pmatrix} p_d \\ q_s \end{pmatrix} = \begin{pmatrix} C_d & 0 \\ 0 & C_s \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix}$$

- Structured pressure and mass-flux components.
- Parameters:  $\theta := \begin{pmatrix} T_0 & R_S \end{pmatrix}$ .
- Parameter dependencies and compressibilities are lumped in  $f_q$ .
- Stiff linear part.
- Peculiar nonlinear part.





C. Himpe

Structured Cross-Covariance-Based Model Reduction Applied to Gas Network Models

11/23

# 🞯 🚥 Input-Output System (Revisited)

Coupled, Nonlinear, Hyperbolic, Parametric Model:

$$\begin{pmatrix} \dot{p} \\ \dot{q} \end{pmatrix} = \begin{pmatrix} 0 & A_{pq} \\ A_{qp} & 0 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} + \begin{pmatrix} 0 & B_d \\ B_s & 0 \end{pmatrix} \begin{pmatrix} p_s \\ q_d \end{pmatrix} + \begin{pmatrix} 0 \\ f_q(p, q, p_s, q_d, \theta) \end{pmatrix}$$
$$\begin{pmatrix} p_d \\ q_s \end{pmatrix} = \begin{pmatrix} C_d & 0 \\ 0 & C_s \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix}$$

- Square system (same number of inputs and outputs).
- Somewhat symmetric (linearization is Port-Hamiltonian<sup>5</sup>).
- (Non-Affine) parametrization.
- Distinct linear and nonlinear parts.
- "Unfortunately", we may not linearize.

<sup>&</sup>lt;sup>5</sup>B. Liljegren-Sailer, N. Marheineke. A Structure-Preserving Model Order Reduction Approach for Space-Discrete Gas Networks with Active Elements. In: Progress in Industrial Mathematics at ECMI 2016: 439–446, 2018.

# 🚥 Reduced Quantities

### Structured Projection-Based Reduced Order Model:

$$\begin{pmatrix} \dot{p}_r \\ \dot{q}_r \end{pmatrix} = \begin{pmatrix} 0 & A_{pq,r} \\ A_{qp,r} & 0 \end{pmatrix} \begin{pmatrix} p_r \\ q_r \end{pmatrix} + \begin{pmatrix} 0 & B_{d,r} \\ B_{s,r} & 0 \end{pmatrix} \begin{pmatrix} p_s \\ q_d \end{pmatrix} + \begin{pmatrix} 0 \\ f_{q,r}(p_r, q_r, p_s, q_d, \theta) \end{pmatrix}$$

$$\begin{pmatrix} p_d \\ q_s \end{pmatrix} = \begin{pmatrix} C_{d,r} & 0 \\ 0 & C_{s,r} \end{pmatrix} \begin{pmatrix} p_r \\ q_r \end{pmatrix}$$

- Reducing truncated projections V<sub>p</sub>, V<sub>q</sub>.
- Reconstructing truncated projection:  $U_p$ ,  $U_q$ .
- Reduced states:  $p_r = V_p p$ ,  $q_r = V_q q$ .
- Reduced system matrices:  $A_{pq,r} = V_p A_{pq} U_q$ ,  $A_{qp,r} = V_q A_{qp} U_p$ .
- Reduced input matrices:  $B_{d,r} = V_p B_d$ ,  $B_{s,r} = V_q B_s$ .
- Reduced output matrices:  $C_{d,r} = C_d U_p$ ,  $C_{s,r} = C_p U_q$ .
- Reduced vector field:  $f_{q,r}(p_r, q_r, p_s, q_d, \theta) = V_q f_q(U_p p_r, U_q q_r, p_s, q_d, \theta).$



Schematic Input-Output System:

 $\rightarrow$  System Theoretic Approach: Balancing



System Cross-Covariance:

$$X := \int_{0}^{T} F(t)G^{*}(t) dt$$
  
=  $\int_{0}^{T} \underbrace{x(t;\tilde{u})}_{F} \underbrace{[y^{*}(t;\tilde{x}_{0,1}), \dots, y^{*}(t;\tilde{x}_{0,N})]}_{G^{*}} dt$ 

- Assume SISO; for MIMO: Sum over SISOs<sup>6</sup>.
- State-trajectory with perturbed steady-state input  $x(t; \tilde{u})$ .
- Output-trajectory with perturbed steady-state  $y(t; \tilde{x}_{0,i})$ .
- Purely data-driven computation using IMEX<sup>7</sup>.
- Eigen-decomposition yields balancing transformation.

<sup>&</sup>lt;sup>6</sup>C.H. and M. Ohlberger. **A note on the cross Gramian for non-symmetric systems**. System Science and Control Engineering 4(1): 199–208, 2016.

<sup>&</sup>lt;sup>7</sup> S. Grundel, L. Jansen. Efficient Simulation of Transient Gas Networks Using IMEX Integration Schemes and MOR Methods. IEEE 54th Annual Conference on Decision and Control: 4579–4584, 2015.

# Structured Cross-Covariance

Structured Cross-Covariance:

$$X_p = \int_0^T p(t; \tilde{u}) \left[ y^*(t; \tilde{p}_{0,1}), \dots, y^*(t; \tilde{p}_{0,N_p}) \right] dt$$
$$X_q = \int_0^T q(t; \tilde{u}) \left[ y^*(t; \tilde{q}_{0,1}), \dots, y^*(t; \tilde{q}_{0,N_q}) \right] dt$$

- Two individual cross-covariances for pressure and mass-flux.
- Both use all inputs  $u = \begin{pmatrix} p_s & q_d \end{pmatrix}$  and outputs  $y = \begin{pmatrix} p_d & q_s \end{pmatrix}$ .
- This is a combination of:
  - 1. The empirical cross Gramian<sup>8</sup>,
  - 2. with model reduction for interconnected systems<sup>9</sup>.

<sup>&</sup>lt;sup>8</sup>C.H. and M. Ohlberger. Cross-Gramian-Based Combined State and Parameter Reduction for Large-Scale Control Systems. Mathematical Problems in Engineering, 2014: 1–13, 2014.

 $<sup>^{9}</sup>$ H. Sandberg and R.M. Murray. Model reduction of interconnected linear systems. Optimal Control Applications and Methods, 30(3): 225–245, 2009.



# Experiments

C. Himpe

Structured Cross-Covariance-Based Model Reduction Applied to Gas Network Models





Pipe Network:

- 29 Junctions
- 32 Edges
- 3 Cycles
- 1 Supply node
- 2 Demand nodes

Input-Output System:

- 3 Inputs
- 637 States
- 3 Outputs

# Scenario & Test Scenario



Offline Training  $(17^{\circ}-27^{\circ}C)$ :

- Steady-state scenario
- Perturbations in  $p_s$ ,  $q_d$ ,  $p_0$ ,  $q_0$
- 1h horizon, 1min resolution
- No data-driven reduction crime!



- Demands: Single home & bakery
- **24h** horizon, 1min resolution
- on a Tuesday

<sup>&</sup>lt;sup>10</sup>M. Hellwig. Entwicklung und Anwendung parametrisierter Standard-Lastprofile. PhD Thesis, TU München, 2003.

# $\bigotimes$ (sc) Relative $L_2$ Model Reduction Error









morgen - Model Order Reduction for Gas and Energy Networks

- Performs: Discretization, simulation, interfacing.
- Modular: Models, solvers, decouplers, reductors.
- In development<sup>11</sup>.

### emgr - $\mathbf{Em} \mathsf{pirical}~\mathbf{Gr}\mathsf{amian}~\mathsf{Framework}^{12}$

- Computes: Empirical cross covariances and empirical Gramians.
- Configurable: Inner product, solver and variants.
- Reductor backend to morgen using passed solver.

 $<sup>^{11}{}</sup>_{\text{by}}$  Simulation of Energy Systems (SES) team: S. Grundel, N. Banagaaya, Y. Qiu, C.H.

<sup>&</sup>lt;sup>12</sup>C.H. emgr - Empirical Gramian Framework (Version 5.4), 2018. http://gramian.de



Ingredients:

- Balancing controllability and observability.
- Empirical structured cross-covariance.
- Fast offline phase due to short training horizons.

Outlook:

- Error indicator is WIP.
- Compressors, valves and friends.
- Structured Gramian assembly.

#### Acknowledgment:

Supported by the German Federal Ministry for Economic Affairs and Energy, in the joint project: "**MathEnergy** – Mathematical Key Technologies for Evolving Energy Grids", sub-project: Model Order Reduction (Grant number: 0324019**B**).

