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About

When we (should) compare MOR algorithms:

New Methods (qualitative)

MORwiki (quantitative)

Software updates (regressions)

Reviews (verification)

Collaborations (recommendations)

But: What means better?
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A Recent Example [Grundel,H.,Saak’19]
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Setting

How should we compare MOR algorithms?
→ It is a multi-objective problem.

Can we assign a performance index to a method?
→ Like in computer benchmarking.

Can we come up with a readable (ordered) score?
→ Humans should be able to easily comprehend.
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Preprocessing

1. Select maximum reduced order: nmax := 100

2. Normalize orders: 1, 2, . . . , 100→ 1
100 ,

2
100 , . . . ,

100
100

3. Normalize errors (via log10): 100, 10−1, . . . , 10−16 → 1, 1516 , . . . ,
1
16

Now we have:

normalized orders ni ∈ (0, 1] ⊂ Q, and

normalized errors εi ∈ [0, 1] ⊂ R.
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Normalized Example Plot
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Error Map and Error Graph

Normalized Error Mapping:

εMOR : (0, 1] ⊂ Q→ [0, 1] ⊂ R

Normalized Error Graph:

(ni, εi)

Maps a normalized reduced order to a normalized relative log-error.

Typically gathered through empirical testing.

Alternatively error bounds or indicators could be used.
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An Observation
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Errors start near one,

decay with some speed,

and then flatten out.

Like a sigmoid function!
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A Sigmoid Hope

Sigmoid (Logistic Function):

s(x) = 1− L

1 + e−k(x−x0)

Parameters:

L Minimum (higher means better)

k Steepness (higher means better)

x0 Midpoint (higher means better)

Score is least-squares fit to error graph.
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Comments:

How to compare two scores? In a norm?

How should a norm be weighted?

Is it useful?

C. Himpe MORscore – Comparability of Model Reduction Algorithms 9/16



Sigmoid Family Portraits
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The Monomial Strikes Back

Monomial:

m(x) = 1− (xd + c)

Parameters:

d > 0 Degree (lower means better)

c Shift (lower means better)

Score is least-squares fit to error graph.
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Comments:

How to compare two scores?

What means a different shift?

Is it useful?
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Monomial Family Portraits
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Return of the Trapezoid Knights

Trapezoid Rule:

A = 1−
N∑
k=1

∆x

2
yk−1 + yk

Candidate:

A = Area above curve

Comments:

One score!

Cheap computation.

See also: [Curtis,Mitchell,Overton’17]
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Comparison (nmax = 500)
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Sigmoid Monomial Trapezoid
(L, k, x0) (d, c)

POD (0.48, 20.85, 0.14) (0.15, − 0.45) 0.42
BT (0.74, 11.30, 0.20) (0.33, − 0.16) 0.59
DSPMR (0.49, 30.32, 0.08) (0.11, − 0.45) 0.45
Empirical POD (0.63, 13.83, 0.16) (0.22, − 0.30) 0.53
Empirical BT (0.88, 10.70, 0.23) (0.45, − 0.01) 0.68
Empirical DSPMR (0.62, 29.40, 0.10) (0.16, − 0.31) 0.56
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Comparison (nmax = 250)
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Sigmoid Monomial Trapezoid
(L, k, x0) (d, c)

POD (0.48, 10.40, 0.27) (0.24, − 0.46) 0.35
BT (0.75, 5.53, 0.40) (0.47, − 0.24) 0.44
DSPMR (0.49, 15.15, 0.16) (0.18, − 0.44) 0.41
Empirical POD (0.64, 6.51, 0.32) (0.34, − 0.32) 0.43
Empirical BT (1.05, 4.18, 0.55) (0.92, − 0.03) 0.49
Empirical DSPMR (0.62, 14.46, 0.20) (0.27, − 0.29) 0.50
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Summary

MORscore := The area fraction of the normalized log-error graph.

Questions:

How to select maximum reduced order?

Would this be useful to you?

Should it be used in the MORwiki?

How to handle unstable ROMs?

Do you have other ideas for scores?
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