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Dynamic Mode Decomposition (DMD)

Things to know:

Foundations of DMD are old [Koopman’31].

Recently “rediscovered” [Mezic’05].

Practical computation [Schmid,Sesterhenn’10].

DMD is a system identification method,

as well as a model reduction technique,

as well as a hyper reduction method [Alla,Kutz’17].

Meanwhile a myriad of variants sprouted.

This talk is about ioDMD [Benner,H.,Mitchell’18],

and a guide through DMD methodology.
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(Plain) DMD
Autonomous Dynamical System:

ẋ(t) = f(x(t))

Discrete-Time Linear Approximation (xk = x(tk)):

xk+1 = Axk

Given Trajectory Data (i.e. by Runge-Kutta):

X =
[
x0 x1 . . . xK

]
“Plain” DMD [Schmid’10]:

X0 :=
[
x0 x1 . . . xK−1

]
X1 :=

[
x1 x2 . . . xK

]
→ X1 = AX0

→ A = X1X
+
0
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Comments and Computation

Note:
This assumes linear dynamics!
Still applicable to “nonlinear data”.
Outcome depends heavily on quality of data.
DMD is not energy-based, like POD,
but instead based on oscillations.

Computation [Tu et al’14], [Alla,Kutz’17]:

1. X0
tSVD
= U0Σ0V

∗
0

2. Â := U∗0X1V0Σ
−1
0

3. ÂW = ΛW
4. Ψ = X1V0Σ

−1
0 W

5. x(t) ≈ Ψ diag(exp(Λt))Ψ+x0

� Hyper reduction: f(x(t)) ≈ Ψ diag(exp(Λt))Ψ+f(x0)
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Regularized DMD

DMD is a Least-Squares Fit:

Â = arg min
A∈RN×N

‖X1 − AX0‖2F

The optimization problem may be ill-posed.

Regularization can help.

Regularization via TSVD [Hansen’87].

which is equivalent to compressed DMD:

Â = U∗0AU0 = U∗0X1V0Σ
−1
0 U∗0U0 = U∗0X1V0Σ

−1
0
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Koopman Operator

Discrete-Time Dynamical System:

xk+1 = f(xk), xk ∈M, f :M→M

Observable:

yk = g(xk), g :M→ R

Koopman Operator:

K(g(xk)) := g(f(xk)) = g(xk+1)

The Koopman operator is linear,

but infinite-dimensional,

even though f maybe nonlinear.
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Justifying DMD

Koopman Modes:

Kϕi(x) = λiϕi(x)

Koopman Decomposition:

g(x) =
∞∑
j=1

ϕj(x)〈ϕj, g〉

Vector-valued observables by stacking.

Koopman modes describe oscillations,

Koopman eigenvalues their growth / decay.

DMD modes are Koopman modes,

if data is linearly consistent [Tu et al’14].
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Exact DMD

Definition [Tu et al’14]:
Given two data sets X =

[
x0 . . . xK

]
and Y =

[
y0 . . . yK

]
, the

exact DMD operator is given by:

A := Y X+.

Generalizes DMD.

For yk = xk+1, the exact DMD corresponds to the plain DMD.

Koopman theory extend respectively.
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DMD with Control (DMDc)
Controlled Dynamical System:

ẋ(t) = f(x(t), u(t))

Discrete-Time Linear Approximation (uk = u(tk), xk = x(tk)):

xk+1 = Axk +Buk

Additionally, Given Input Data:

U =
[
u0 u1 . . . uK

]
DMDc [Proctor,Brunton,Kutz’16]:

U0 :=
[
u0 u1 . . . uK−1

]
→ X1 = AX0 +BU0

→
[
A B

]
= X1

[
X0

U0

]+
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Koopman with Inputs and Control (KIC)

Koopman Operator with Input u [Proctor,Brunton,Kutz’18]:

K(g(xk, uk)) = g(f(xk, uk), uk+1)

Discrete-Time Linear Approximation (uk = u(tk), xk = x(tk)):

xk+1 = Axk +Buk

Linear Dynamics Assumption:(
xk+1

uk+1

)
=

(
Gxx Gxu

Gux Guu

)(
xk
uk

)
→ DMDc is special case of KIC.
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Input-Output DMD (ioDMD)
Input-Output System:

ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))

Discrete-Time Linear Approximation (uk = u(tk), xk = x(tk), yk = y(tk)):

xk+1 = Axk +Buk,

yk = Cxk +Duk

Additionally Given Output Data:

Y =
[
y0 y1 . . . yK

]
ioDMD [Annoni,Gebraad,Seiler’16], [Annoni,Seiler’17], [Benner,H.,Mitchell’18]:

Y0 :=
[
y0 y1 . . . yK−1

]
→

{
X1 = AX0 +BU0

Y0 = CX0 +DU0

→
[
A B
C D

]
=

[
X1

Y0

] [
X0

U0

]+
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N4SID

Numerical Sub-Space State System Identification:

ioDMD is Direct N4SID [Benner,H.,Mitchell’18]

N4SID invented in [Van Overschee,De Moor’92]

Direct N4SID [Viberg’95]

Reduced Direct N4SID [Lee’00]

Overview in [Katayama’05]

Linear Predictor [Korda,Mezic’18]
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Reduced ioDMD

Large-Scale Problem: [
X1

Y0

]
=

[
A B
C D

] [
X0

U0

]
State Trajectory Data Compression (i.e., via POD):

Q = POD(X, ε), Q∗Q = I

Xr := Q∗X → X ≈ QXr

Reduced ioDMD [Benner,H.,Mitchell’18]:[
Xr,1

Y0

] [
Xr,0

U0

]+
=

[
Ar Br

Cr Dr

]
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Stabilized DMD

Stabilization via Optimization [Amsallem,Farhat’12], [Benner,H.,Mitchell’18]:[
Â B̂

Ĉ D̂

]
= argmin

A,B,C,D

∥∥∥∥∥
[
Xr,1

Y0

]
−
[
A B
C D

] [
Xr,0

U0

] ∥∥∥∥∥
2

F

: λ(A) < (1− τ)

Post-processing step,

feasible due to reduced order;

non-convex, but almost everywhere smooth problem,

solve via BFGS-SQP [Curtis,Mitchell,Overton’17];

software: GRANSO (http://www.timmitchell.com/software/GRANSO)

Note that a D feedthrough matrix appears.

This can be exploited for DC gain matching.
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Recap

DMD Variants:

Plain DMD (= Exact DMD)

Compressed DMD (= Regularized DMD)

DMD with Control (= KIC)

Input-Output DMD (= Direct N4SID)

Stabilized DMD

C. Himpe DMD, System Identification, and MORe 16/33



Linear Advection

One-Dimensional Transport Equation:

∂

∂t
z(x, t) = a

∂

∂x
z(x, t)

z(0, t) = u(t)

z(x, 0) = 0

y(t) = z(1, t)

Linear SISO system,

but purely hyperbolic,

with positive velocity: a > 0.
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(Persistent) Excitation

Critical Issue:

For data-driven system identification,

how to excite the system,

in a scenario-free, generic manner?

Input Choices:

Impulse (Not a good choice)

Chirps

Step

White Noise

Pseudo-Random Binary

Cross Excitation (“Closed Loop”) [Benner,H.,Mitchell’18]
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Numerical Results (Noise vs Step)
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Numerical Results (Stabilized)
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Numerical Results (Excitation)
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MathEnergy

The Gas Network Situation:

Volatile renewable energies.

Fluctuating supply and demand.

Fast response of gas-fired plants.

Day-ahead forecasts.

Many simulations before dispatch.

→ MathEnergy model reduction sub-project.
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Gas Pipeline

Gas Flow in a Pipe:

Modeled by Euler equations,

coupling mass-flow and pressure.
For example:

Boundary values: sp, dq,
Quantites of Interest: sq, dp.

C. Himpe DMD, System Identification, and MORe 23/33



Gas Pipeline Model

(Isothermal) Euler Equations [Benner,Grundel,H.,Huck,Streubel,Tischendorf’18]:

∂

∂t
ρ = − 1

S

∂

∂x
q

∂

∂t
q = −S ∂

∂x
p− Sgρ ∂

∂x
h− λ

2DS

q|q|
ρ

p = RST0zρ

Density: ρ(x, t)

Mass-Flux: q(x, t)

Pressure: p(x, t)

Elevation: h(x)

Constants: S, g, D

Parameters: T0, RS

Friction Factor: λ(q)

Compressibility Factor: z(p, T )

C. Himpe DMD, System Identification, and MORe 24/33



Input-Output System

Spatial Midpoint Discretization [Grundel,Jansen,Hornung,Clees,Tischendorf,Benner’14]:(
Ep 0
0 I

)(
ṗ
q̇

)
=

(
0 Ap

Aq 0

)(
p
q

)
+

(
0 Bp

Bq 0

)(
sp
dq

)
+

(
0

fq(p, q, sp, dq)

)
(
sq
dp

)
=

(
0 Cq

Cp 0

)(
p
q

)
Square system (each boundary node induces an input and output)

two-dimensional (but equilibrated scales)

stiff, non-normal system matrix (due to hyperbolicity)

non-singular mass matrix (needs index reduction for non-tree networks)

system with repeated scalar nonlinearities (friction term)
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DMD-Galerkin

DMD-Galerkin:
The DMD modes span a useful subspace.
Why not use it as a (reduced) basis?
Proposed in [Alla,Kutz’17].

Orthogonalize DMD Modes:

Ψ
SVD
= UΣV ∗

Use U as Galerkin Projection:

xr(t) := U∗x(t)

→ xr(0) := U∗x0

→ ẋr(t) = U∗f(Uxr(t))

On top, one could use DMD for hyper-reduction (DMD-DMD)
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Gas Pipeline

Pipeline Specification:

50km length

1m diameter

Model Reduction:

POD

DMD-Galerkin

Structured Projection

Step Excitation

Workflow:

Training: 1hr virtual time

Test: 24hr virtual time

Parametric Model Reduction:

Temperature: 15◦–25◦C

Spec. Gas Constant: 1510–1550 J
molK

Training Samples: 5 (Sparse Grid)

Test Samples: 10 (Uniformly Random)
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Scenario Simulation
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Model Reduction Results
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Parametric Model Reduction Results
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More Model Reduction Results
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Summary

DMD is data-driven (reduced order) modelling.

Stabilized ioDMD for i/o system identification.

DMD-Galerkin for parametric model reduction.
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