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@@ Dynamic Mode Decomposition (DMD)

Things to know:
m Foundations of DMD are old [koopman'31].
m Recently “rediscovered” [Mezicoos].
m Practical computation [Scuvip,SesterENN10].
m DMD is a system identification method,
m as well as a model reduction technique,
m as well as a hyper reduction method [Ara Kurz'17].
m Meanwhile a myriad of variants sprouted.
m This talk is about ioDMD [Benxer,H. MitcheLL 18],

m and a guide through DMD methodology.
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@ (Plain) DMD

Autonomous Dynamical System:

Discrete-Time Linear Approximation (x; = z(t)):
Tpy1 = Axy
Given Trajectory Data (i.e. by Runge-Kutta):
X = [:vo Ty ... xK]

“Plain” DMD [Scimim’10]:

Xy = [xo rro... xK_l]
X = [:cl To ... :cK]
— X7 = AX,
— A =X X
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@@ Comments and Computation

Note:
m This assumes linear dynamics!
m Still applicable to “nonlinear data”.
m Outcome depends heavily on quality of data.
m DMD is not energy-based, like POD,
m but instead based on oscillations.

Computation [Tu g1 arL’14], [ALLA,KuTZ'17]:

1. Xo P UpSoVy

2. A=UrX V%!

3. AW = AW

4. V=X, Vp5'W

5. x(t) = U diag(exp(At)) ¥t

B Hyper reduction: f(x(t)) ~ ¥ diag(exp(At))¥T f(xg)
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& ® Regularized DMD

DMD is a Least-Squares Fit:

A = argmin | X; — AX,|%

AeRN XN

m The optimization problem may be ill-posed.
m Regularization can help.

m Regularization via TSVD [HaNsEN'87].

m which is equivalent to compressed DMD:

A=U AUy = U X VoS ' UL Uy = U X, Vo Byt
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@@ Koopman Operator

Discrete-Time Dynamical System:
T = flog), €M, f: MM
Observable:
yr = g(x1), g: M —=R
Koopman Operator:

K(g(xx)) == g(f(zx)) = g(x41)

m The Koopman operator is linear,
m but infinite-dimensional,
m even though f maybe nonlinear.
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& ® Justifying DMD

Koopman Modes:

Kpi(r) = Nigi(z)

Koopman Decomposition:
[e.e]
Z )39

Vector-valued observables by stacking.
Koopman modes describe oscillations,

[
]
m Koopman eigenvalues their growth / decay.
m DMD modes are Koopman modes,

]

if data is linearly consistent [Tu ET AL'14].

DMD, System Identification, and MORe



& @® Exact DMD

Definition [Tu eT AL 14]:
Given two data sets X = [z9 ...2x] and Y = [yo ...yx], the
exact DMD operator is given by:

A=YXT.

m Generalizes DMD.
m For y = x4 1, the exact DMD corresponds to the plain DMD.
m Koopman theory extend respectively.
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& @ DMD with Control (DMDc)

Controlled Dynamical System:
#(t) = f(2(t), u(t))
Discrete-Time Linear Approximation (u; = u(ty), xp = x(tx)):

Tr1 = Axy + Bug

Additionally, Given Input Data:

U:[UO uy ... UK]

DMDc [PROCTOR,BRUNTON,KUTZ’16]:

Uo = [UO uy ... UK_1:|
— X7 = AXy+ BUy

—~[A Bl =X [Xor
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@ Koopman with Inputs and Control (KIC)

Koopman Operator with Input u [PROCTOR,BRUNTON,KUTZ’18]:
K(g(zr, uk)) = g(f(wg, u), ug+1)
Discrete-Time Linear Approximation (u; = u(ty), xp = x(tx)):
Tpy1 = Az + Buy
Linear Dynamics Assumption:
($k+1) _ (Gm Gmu) (l‘k)
Uk41 Guz  Guu) \uk

— DMDc is special case of KIC.
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@ Input-Output DMD (ioDMD)

Input-Output System:
&(t) = f(2(t), u(t))
y(t) = g(x(t), u(t))
Discrete-Time Linear Approximation (uy = u(tx), xx = x(tx), yx = y(tx)):
Tpr1 = Ay, + Buy,
yr = Cxg + Duy
Additionally Given Output Data:

Y=1[w v - vkl
ioDMD [ANNONI,GEBRAAD,SEILER’16], [ANNONI,SEILER'17], [BENNER,H., MITCHELL'18]:
YO = [y() yr oo yK—l]

X1 = AX, + BU,
Yy = CX, + DU,

SlA B = e e
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Numerical Sub-Space State System Identification:

m ioDMD is Direct N4SID [BeNNER,H.,MITCHELL' 18]
m N4SID invented in [VAN OVERSCHEE,DE MOOR'92]

m Direct N4SID [ViBERG'95]

Reduced Direct N4SID [Ler’00]

Overview in [KATAYAMA’05]

Linear Predictor [KorpA,MEzIC’18]
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® Reduced ioDMD

Large-Scale Problem:

X;] _[A B][Xo

Yo| |C D] |U
State Trajectory Data Compression (i.e., via POD):

Q =POD(X,s), Q°Q=1
X, = QX — X ~QX,

Reduced ioDMD [BENNER,H.,MITCHELL'18]:

Xr,l Xr,O +_ Ar Br
}/0 UO N Cr Dr
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® Stabilized DMD

Stabilization via Optimization [AvsaLLem, FaruaT 12], [BENNER,H.,MITCHELL 18]
A B el [Xr] _[A B] [Xeo
e Yo | " |c p|| U

O AMA) <(1—7
¢ p| T aemin (4) <(1-7)
m Post-processing step,

F

feasible due to reduced order;
non-convex, but almost everywhere smooth problem,

solve via BFGS-SQP [CuURTIS,MITCHELL,OVERTON’17];

]
]
]
m software: GRANSO (http://www.timmitchell.com/software/GRANSO)

Note that a D feedthrough matrix appears.

This can be exploited for DC gain matching.

DMD, System ldentification, and MORe


http://www.timmitchell.com/software/GRANSO

DMD Variants:
m Plain DMD (= Exact DMD)
m Compressed DMD (= Regularized DMD)
m DMD with Control (= KIC)
m Input-Output DMD (= Direct N4SID)
m Stabilized DMD
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& @ Linear Advection

One-Dimensional Transport Equation:

0 0
az(az,t) = a%z(x,t)
2(0,t) = u(t)
2(z,0) =0
y(t) = =(1,1)

m Linear SISO system,
m but purely hyperbolic,
m with positive velocity: a > 0.
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@’@ (Persistent) Excitation

Critical Issue:
m For data-driven system identification,
m how to excite the system,
® in a scenario-free, generic manner?

Input Choices:
m Impulse (Not a good choice)
m Chirps
m Step
m White Noise
m Pseudo-Random Binary
m Cross Excitation (“Closed Loop") [BENNER,H.,MITCHELL'18]
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@ Numerical Results (Stabilized)
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@ Numerical Results (Excitation)
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@v@ MathEnergy

The Gas Network Situation:
m Volatile renewable energies.
m Fluctuating supply and demand.
m Fast response of gas-fired plants.
m Day-ahead forecasts.
m Many simulations before dispatch.
— MathEnergy model reduction sub-project.
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@@ Gas Pipeline

Gas Flow in a Pipe:

sp dp

sq da

m Modeled by Euler equations,
m coupling mass-flow and pressure.
m For example:

= Boundary values: s, d,,

= Quantites of Interest: s,, d,.
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& @ Gas Pipeline Model

(ISOthermal) Euler Equations [BENNER,GRUNDEL,H.,HUCK,STREUBEL, TISCHENDORF’ 18] -

g, 1o
ot" Sox
J 0 0 A qlq|
ol = P 5 " sps T,
p = RsTozp
m Density: p(x,t) m Constants: S, g, D
m Mass-Flux: ¢(x,t) m Parameters: Tj, Rg
m Pressure: p(x,t) m Friction Factor: A(q)
m Elevation: h(x) m Compressibility Factor: z(p, T
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@ Input-Output System

Spatial Mideint Discretization [GRUNDEL, JANSEN, HORNUNG,CLEES, TISCHENDORF, BENNER'14] ¢
(57 (=G ) ) (5 8) () ()
0 1) \q A, 0 q B, 0 d, fap,q, 8p,dy)
s¢y (0 Cy\ (p
d,)] \C, 0 ) \q

Square system (each boundary node induces an input and output)
two-dimensional (but equilibrated scales)

]

]

m stiff, non-normal system matrix (due to hyperbolicity)

m non-singular mass matrix (needs index reduction for non-tree networks)
]

system with repeated scalar nonlinearities (friction term)
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& @ DMD-Galerkin

DMD-Galerkin:
m The DMD modes span a useful subspace.
m Why not use it as a (reduced) basis?
m Proposed in [ArLA,KuTZz'17].

Orthogonalize DMD Modes:
v P yny
Use U as Galerkin Projection:
x(t) = U*z(t)
— 2,(0) := U"zg
— &y (t) = U" f(U, (1))

m On top, one could use DMD for hyper-reduction (DMD-DMD)
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@@ Gas Pipeline

Pipeline Specification: Workflow:
m 50km length m Training: lhr virtual time
® Im diameter m Test: 24hr virtual time
Model Reduction: Parametric Model Reduction:
= POD m Temperature: 15°-25°C
m DMD-Galerkin m Spec. Gas Constant: 1510—1550m0‘;K
m Structured Projection m Training Samples: 5 (Sparse Grid)
m Step Excitation m Test Samples: 10 (Uniformly Random)

DMD, System ldentification, and MORe



@@ Scenario Simulation
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@ Model Reduction Results

Relative Output Error
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@ Parametric Model Reduction Results

Relative Output Error
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@ More Model Reduction Results

Relative Output Error
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