

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

Empirical Dominant Subspaces P. Benner, C. Himpe

Computational Methods in Systems and Control Theory Group Max Planck Institute Magdeburg

4th Workshop on Model Reduction of Complex Dynamical Systems (ModRed) 2019–08–30

Supported by:

r Economic Affairs nd Energy

- 1. We revisit the DSPMR method.
- 2. We adapt the empirical cross Gramian.
- 3. We discuss efficient computation.
- 4. We derive an a-priori error indicator.
- 5. We assess numerical examples.

Generalized Linear Input-Output System:

$$\begin{aligned} E\dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= Cx(t), \end{aligned}$$

- Input: $u : \mathbb{R} \to \mathbb{R}^M$,
- **State**: $x : \mathbb{R} \to \mathbb{R}^N$,
- Output: $y : \mathbb{R} \to \mathbb{R}^Q$,

Pencil (A, E) asymptotically stable $(det(E) \neq 0)$.

Reduced Order Model:

$$E_r \dot{x}_r(t) = A_r x_r(t) + B_r u(t),$$

$$\tilde{y}(t) = C_r x_r(t),$$

Projection-Based Model Reduction:

$$(V_1 \ E \ U_1) \ \dot{x}_r(t) = (V_1 \ A \ U_1) \ x_r(t) + (V_1 \ B) \ u(t),$$
$$\tilde{y}(t) = (C \ U_1) \ x_r(t),$$

(Petrov-)Galerkin Projection:

$$U_1 : \mathbb{R}^N \to \mathbb{R}^n, V_1 : \mathbb{R}^n \to \mathbb{R}^N, V_1 U_1 = I_n$$

Generalized Controllability Gramian:

$$W_C := \int_0^\infty \left(e^{E^{-1}At} E^{-1}B \right) \left(e^{E^{-1}At} E^{-1}B \right)^* dt$$

Generalized Observability Gramian:

$$W_O := \int_0^\infty \left(C e^{E^{-1}At} E^{-1} \right)^* \left(C e^{E^{-1}At} E^{-1} \right) dt$$

Generalized Cross "Gramian":

$$W_X := \int_0^\infty \left(e^{E^{-1}At} E^{-1}B \right) \left(C e^{E^{-1}At} E^{-1} \right) dt$$

R.E. Kalman. Contributions to the Theory of Optimal Control. Boletin Sociedad Matematica Mexicana 5: 102–119, 1960.
K.V. Fernando, H. Nicholson. On the Structure of Balanced and Other Principal Representations of SISO Systems. IEEE Transactions on Automatic Control, 28(2): 228–231, 1983.

So and a set of the se

Dominant Subspace Projection Model Reduction (DSPMR):

$$W_C \stackrel{\mathsf{Chol}}{=} L_C L_C^{\mathsf{T}}$$
$$W_O \stackrel{\mathsf{Chol}}{=} L_O L_O^{\mathsf{T}}$$
$$[L_C \ L_O] \stackrel{\mathsf{SVD}}{=} U D V^{\mathsf{T}}$$
$$U_1 := U$$
$$V_1 := U^{\mathsf{T}}$$

Refined DSPMR:

$$\begin{bmatrix} (\|L_C\|_F^{-1}L_C) \ (\|L_O\|_F^{-1}L_O) \end{bmatrix} \stackrel{\text{SVD}}{=} UDV^{\intercal}$$
$$U_1 := U$$
$$V_1 := U^{\intercal}$$

T. Penzl. Algorithms for Model Reduction of Large-Scale Systems. Linear Algebra and its Application, 2–3: 322–343, 2006. (Reprint of 1999 Technical Report)

1. Gramian Computation and Decomposition:

$$W_X \stackrel{\mathsf{tSVD}}{=} U_X D_X V_X^{\mathsf{T}}$$

2. Subspace Concatenation and Orthogonalization:

$$\left[\left(U_X D_X \right) \ \left(V_X D_X \right) \right] \stackrel{\text{rrSVD}}{=} U D V^{\mathsf{T}}$$

3. Galerkin Projection:

$$U_1 := U$$
$$V_1 := U^{\mathsf{T}}$$

C.H., P. Benner. Cross-Gramian-Based Dominant Subspaces. arXiv, math.OC: 1809.08066, 2019.

Variants of	Gramian	Subspace
DSPMR	Decomposition	Orthogonalization
[Penzl'06]	Cholesky	rr-SVD
[Li & White'99]	SVD	rr-QR
[Benner & H.'19]	tSVD	rr-SVD

J.-R. Li, J. White. Efficient Model Reduction of Interconnect via Approximate System Gramians. 1999 IEEE/ACM International Conference on Computer-Aided Design: 380–383, 1999.

Wait a second ...

- 1. I compute an SVD,
- 2. of the direct sum of (scaled) singular vectors,
- 3. I care only about the resulting left singular vectors.

C.H., T. Leibner, S. Rave. Hierarchical Approximate Proper Orthogonal Decomposition. SIAM Journal on Scientific Computing 40(5): A3267–A3297, 2018.
C.H., T. Leibner, S. Rave, J. Saak. Fast Low-Rank Empirical Cross Gramians. Proceedings in Applied Mathematics and Mechanics 17: 841–842, 2017.

Wait a second ...

- 1. I compute an SVD,
- 2. of the direct sum of (scaled) singular vectors,
- 3. I care only about the resulting left singular vectors.

\rightarrow POD of PODs: **HAPOD**!

C.H., T. Leibner, S. Rave. Hierarchical Approximate Proper Orthogonal Decomposition. SIAM Journal on Scientific Computing 40(5): A3267–A3297, 2018.
C.H., T. Leibner, S. Rave, J. Saak. Fast Low-Rank Empirical Cross Gramians. Proceedings in Applied Mathematics and Mechanics 17: 841–842, 2017.

Wait a second ...

- 1. I compute an SVD,
- 2. of the direct sum of (scaled) singular vectors,
- 3. I care only about the resulting left singular vectors.

\rightarrow POD of PODs: **HAPOD**!

- I do not want to compute a full cross Gramian.
- The empirical cross Gramian can be computed column-wise.
- The HAPOD works column-wise partitioned data.

C.H., T. Leibner, S. Rave. Hierarchical Approximate Proper Orthogonal Decomposition. SIAM Journal on Scientific Computing 40(5): A3267–A3297, 2018.

C.H., T. Leibner, S. Rave, J. Saak. Fast Low-Rank Empirical Cross Gramians. Proceedings in Applied Mathematics and Mechanics 17: 841–842, 2017.

Empirical Cross Gramian Matrix:

$$\widehat{W}_X := \frac{1}{M} \sum_{m=1}^M \int_0^\infty \Psi^m(t) \, \mathrm{d}t \in \mathbb{R}^{N \times N}$$
$$\Psi^m_{ij}(t) = (x^m_i(t) - \bar{x}^m_i)(y^j_m(t) - \bar{y}^j_m) \in \mathbb{R}$$

Column-Wise Computation:

$$W_X = \begin{pmatrix} w_{X,1} & w_{X,2} & \dots & w_{X,N} \end{pmatrix} \in \mathbb{R}^{N \times N}$$
$$w_{X,j} = \frac{1}{M} \sum_{m=1}^M \int_0^\infty \psi^{jm}(t) \, \mathrm{d}t \in \mathbb{R}^N$$
$$\psi_i^{jm}(t) = (x_i^m(t) - \bar{x}_i^m)(y_m^j(t) - \bar{y}_m^j) \in \mathbb{R}$$

This can be done only with the empirical cross Gramian!

A-Priori Error Indicator:

$$||y - \tilde{y}||_{L_2} \lesssim \sqrt{||B||_2 ||C||_2 \sqrt{\sum_{k=n+1}^N \sigma_k^2(W_X)}}$$

Derivation:

- 1. H_2 error of (SISO) error system: $\|y \tilde{y}\|_{H_2}^2 = \operatorname{tr}(\int_0^\infty (C_e e^{A_e} B_e)^2)$
- 2. Matrix exponential Approximation: $e^{AUU^{\intercal}}, e^{UU^{\intercal}A} \approx e^{A}$
- 3. VON-NEUMANN trace bound: $tr(AB) \leq \sum_k \sigma_k(A)\sigma_k(B)$

Features:

- Projection error: $\frac{1}{N} \sum_{k} \| (I UU^{\intercal}) W_{X,*k} \|^2 = \sum_{k=n+1}^{N} \sigma_k^2(W_X) \le \varepsilon^2$
- \blacksquare Only a-priori quantites: B , C , ε
- Time- and frequency-domain relevance

Empirical-Cross-Gramian-Based Dominant Subspace Projection Model Reduction

- 1. Compute low-rank empirical cross Gramian W_X .
- 2. Predict reduction error via projection error of W_X .
- 3. Compute HAPOD of left and right subspaces.

🐟 🚥 Oberwolfach Benchmark

Convective Thermal Flow Benchmark:

$$\frac{\partial T}{\partial t} = \kappa \nabla^2 T - v \nabla T + \dot{q}$$
$$y = \mathcal{C}T$$

- Temperature T
- Fluid speed $v = \{0, \frac{1}{2}\}$
- Thermal conductivity κ (fixed)
- Heat generation rate \dot{q} (fixed)
- Spatial finite element discretization (SIMO, N=9669):

$$\begin{aligned} E\dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= Cx(t), \end{aligned}$$

The MORwiki Community. **Convection**. MORwiki – Model Order Reduction Wiki. https://modelreduction.org/index.php/Convection

csc) Projection Error vs Output Error (v=0)

Solution Error vs Output Error $(v = \frac{1}{2})$

Reduced Order vs Output Error (v = 0)

CSC)

CSC Reduced Order vs Output Error $(v = \frac{1}{2})$

One Dimensional Linear Transport:

$$\begin{aligned} \frac{\partial z}{\partial t} &= -a \frac{\partial z}{\partial x} \\ z(0,t) &= u(t) \\ y(t) &= z(1,t), \end{aligned}$$

- Pure hyperbolic PDE
- Velocity a (fixed)
- Spatial finite difference (upwind) discretization (SISO, N=1000):

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t),$$

Seduced Order vs Output Error

S. Grundel, C.H., J. Saak. On Empirical System Gramians. Proceedings in Applied Mathematics and Mechanics 19: Accepted, 2019.

Isothermal Euler Equations for Gas Flow in a Pipe:

$$\begin{aligned} \frac{\partial}{\partial t}\rho &= -\frac{1}{S}\frac{\partial}{\partial x}q\\ \frac{\partial}{\partial t}q &= -S\frac{\partial}{\partial x}(R_STz\rho) - Sg\rho\frac{\partial}{\partial x}h - \frac{\lambda}{2DS}\frac{q|q|}{\rho}\\ p &= R_ST_0z\rho \end{aligned}$$

Semi-Discrete Gas Network Model (Square MIMO):

$$\begin{pmatrix} \dot{p} \\ \dot{q} \end{pmatrix} = \begin{pmatrix} 0 & A_{pq} \\ A_{qp} & 0 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} + \begin{pmatrix} 0 & B_d \\ B_s & 0 \end{pmatrix} \begin{pmatrix} p_s \\ q_d \end{pmatrix} + \begin{pmatrix} 0 \\ f_q(p, q, p_s, q_d, \theta) \end{pmatrix}$$
$$\begin{pmatrix} p_d \\ q_s \end{pmatrix} = \begin{pmatrix} C_d & 0 \\ 0 & C_s \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix}$$

P. Benner, S. Grundel, C.H., C. Huck, T. Streubel, C. Tischendorf. Gas Network Benchmark Models. In: Differential-Algebraic Equation Forum: 171–197, 2018.

Cyclic graph

- Boundary nodes: 1 supply, 3 demand
- System dimensions: 4 inputs, 900 states, 4 outputs
- Separate projections for pressure and mass-flux variables
- Generic training inputs

Sharpen error indicator?

- Parameteric Systems (parametric error indicator?).
- Nonlinear Systems (Gas networks simulations)!

Empirical Dominant Subspaces:

- Concatenate controllability and observability subspace,
- obtained from the (empirical) cross Gramian,
- with an a-priori error indicator.

https://himpe.science

Acknowledgment:

Supported by the German Federal Ministry for Economic Affairs and Energy, in the joint project: "**MathEnergy** – Mathematical Key Technologies for Evolving Energy Grids", sub-project: Model Order Reduction (Grant number: 0324019**B**).

🚫 CSC) emgr — EMpirical GRamian Framework (Version: 5.7)

Empirical Gramians:

- Empirical Reachability Gramian
- Empirical Observability Gramian
- Empirical Linear Cross Gramian
- Empirical Cross Gramian
- Empirical Sensitivity Gramian
- Empirical Identifiability Gramian
- Empirical Joint Gramian

Features:

- Open-source OCTAVE and MATLAB toolbox, PYTHON support.
- Interfaces for: Solver, inner product kernels & low-rank computation.
- Configurable, vectorized and parallelizable.

More info: https://gramian.de

C.H. emgr - The Empirical Gramian Framework. Algorithms 11(7): 91, 2018. doi:c9hj

Solution Continue Time (No Hyperreduction)

