

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

How (Not) to Compare Model Order Reduction Algorithms Christian Himpe Computational Methods in Systems and Control Theory Group Max Planck Institute Magdeburg

Virtual CSC Retreat 2020–06–02

Supported by:

*

or Economic Affair and Energy

Alternative titles:

- Model Reduction Worst Practices
- How to Obfuscate your Model Reduction Results
- Why I Don't Believe Your Model Reduction Numerics
- X Ways to Fool the MOR Community
- X Dubious Ways of Testing Model Reduction Algorithms

Before writing the code:

- (Don't) compare to standard methods,
- (Don't) use [additionally] common benchmarks,
- (Don't) describe free parameter choices,
- (Don't) describe training or test data,
- (Don't) avoid model reduction crime [cf. inverse crime].

While writing the code:

- (Don't) use state-of-the art implementations,
- (Don't) avoid pessimizing competing methods,
- (Don't) justify selected reduced orders,
- (Don't) use adequate error quantification,
- (Don't) explain or justify comparison.

When running the code:

- (Dis)regard CPU time vs wall time,
- (Dis)regard implicit / explicit parallelization,
- (Dis)regard efficient memory access [i.e. NUMA architecture],
- (Dis)regard overhead [in relation to compute-time],
- (Dis)regard statistics [i.e. means of repeated runs].

If in doubt:

- (Don't) read up on anything you did not understand,
- (Don't) be mindful of your compute environment,
- (Don't) aim to be fair,
- (Don't) aim to be FAIR,
- (Don't) focus on A[vailability].

Do use **MORscore**¹:

C. Himpe. **Comparing (Empirical-Gramian-Based) Model Order Reduction Algorithms**. ModRed Proceedings, Accepted, 2020. arXiv:2002.12226

¹Remember last year's CSC retreat? "MORscore – Comparability of Model Reduction Algorithms"