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About

Why accelerate gas network simulations?

MathEnergy project

Renewable energy transition

Modernization of control

Modern numerics

It’s a challenge
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Give Me Numbers

Some gas network properties:

> 500, 000km gas pipelines in Germany1 (earth-moon < 400, 000km).

> 240, 000, 000m3 natural gas consumed per day2.

Gas and power become (critically) interlinked due to renewables3.

Weather has effect on consumption and production.

Planning horizon is 24h.

1

https://www.bmwi.de/Redaktion/EN/Artikel/Energy/gas-natural-gas-supply-in-germany.html

2

https://www.eia.gov/international/analysis/country/DEU

3

http://www.bmwi-energiewende.de/EWD/Redaktion/EN/Newsletter/2017/07/Meldung/direkt-account.html
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Modeling I: Pipeline

Friction-dominated isothermal Euler equations for 1D pipes:

1

γ0 z0
∂tp = − 1

S
∂xq

∂tq = −S ∂xp−
( S g ∂xh

γ0 z0
p︸ ︷︷ ︸

Gravity

+
γ0 z0 λ0
2 d S

q |q|
p︸ ︷︷ ︸

Friction

)

Pressure: p(x, t)

Mass-flux: q(x, t)

Height: h(x)

Temperature: T0

Diameter: d

Cross-section: S

Roughness: k

Gas Const.: RS

Gas state: γ0(T0, RS)

Compress.: z0(T0, p)

Friction: λ0(k, d)

Grav. accel.: g
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Modeling II: Network

Graph (N , E) incidence matrix A:

Aij =


−1 Ej connects from Ni,

0 Ej connects not Ni,
1 Ej connects to Ni.

Kirchhoff’s laws:

1. The net mass-flux at every node is zero.

2. The sum of directed pressure drops in every loop is zero.
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Modeling III: Gas Network

Vectorized PDAE gas network model:

Dd ∂tp
∗ = Dq∂xq,

∂tq
∗ = Dp∂xp−

(
Dg p

∗ +Df
q∗ |q∗|
p∗

)
,

A0 q
∗ = Bd dq,

Aᵀ
0 p
∗ = Bs sp,

p∗ is the pressure at a t.b.d. pipe location.

q∗ is the mass-flux at a t.b.d. pipe location.

D∗ are diagonal matrices.

A0 is the incidence matrix without supply node rows.

Bs is the incidence matrix of supply node rows.

Bd is the incidence matrix of demand node columns.

C. Himpe Accelerating Gas Network Simulations 7/27



Simplification I: Index

The choice of p∗ and q∗:

Pipe midpoints:

(P)DAE tractability index bounded τ ≤ 2.
Given some weak topology constraints, PDAE becomes PDE4.
Boundary values affect friction term.

Pipe endpoints:

(P)DAE tractability index bounded τ < 2.
Given some weak topology constraints, PDAE becomes PDE.
Less oscillatory behaviour.

4
S. Grundel, L. Jansen, N. Hornung, T. Clees, C. Tischendorf, P. Benner. Model order reduction of differential algebraic

equations arising from the simulation of gas transport networks. In: Progress in Differential-Algebraic Equations,
Differential-Algebraic Equations Forum: 183–205, 2014. doi:10.1007/978-3-662-44926-4 9
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Simplification II: Model

You were correct to assume:

Only cylindrical pipes.

No temperature or pressure influence on pipe diameter: d const.

No variability or wear on pipe roughness: k const.

No inertia term due to slow (sub-sonic) gas velocity: − γ0
S2

(
q2

p

)
x
≈ 0.

Parametrization of averaged temperature and gas mix: γ0 = (T0 RS).

Averaged compressibility based on steady-state: z(p, T, x, t)→ z0.

Only step function boundary values.
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Simplification III: Compressors

Simplified edge-based compressor models:

Energy-based:
qout = qin

pout = pin

( Pmax

pγ0z0

ν − 1

ν
+ 1
) ν
ν−1

Multiplicative:
qout = qin

pout = pinmc

Affine∗:
qout = qin

pout = pc
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Discretization I: Space

1D First-Order Finite Differences:

Axis-symmetric domain.

Pipelines length exceeds diameter by orders of magnitude.

(Very) turbulent flow, Re > 100, 000.

Stable under CLF condition.
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Discretization II: Space-Time

Time-aware spatial discretization:

Set unit pipeline length based on CLF condition.

Treat too short pipes as unit-length pipe with scaled friction.

Sub-divide too long pipes to set of unit-length pipes.
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Discretization III: Time

If you only have a hammer ...

Adaptive methods (i.e. ode45, ode23s) are problematic.

Implicit Runge-Kutta is problematic due to nonlinearity.

Implicit-Explicit (IMEX) methods are the right tool.

Consider: SSP optimality, stiff accuracy, passivity, efficiency.
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The Input-Output Model

Parametric, Structured, Nonlinear, Non-Normal, Square:(
Ep(θ) 0

0 INq

)(
ṗ
q̇

)
=

(
0 Apq
Aqp 0

)(
p
q

)
+

(
0 Bpd
Bqs 0

)(
sp
dq

)
+

(
0

Fc + fq(p, q, sp, θ)

)
(
sq
dp

)
=

(
0 Csq
Cdp 0

)(
p
q

)
(
p0
q0

)
=

(
p̄(s̄p, d̄q)
q̄(s̄p, d̄q)

)

Input:

Pressure at supply: sp

Mass-Flux at demand: dq

State:

Pressure: p

Mass-Flux: q

Output:

Mass-Flux at supply: sq

Pressure at demand: dp
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Sidebar: Steady-State

Two-step steady state algorithm:

1a. Linear mass-flux steady-state: Apq q̄ = −Bpd d̄q

1b. Linear pressure steady-state: Aqp p̄ = −
(
Bqs s̄p + Fc

)
2. Corrected pressure steady-state: Aqppk+1 = −

(
Bqss̄p+Fc+fq(pk, q̄, s̄p, θ)

)

Note, A and B do not depend on the parameter!

Step 1a and Step 1b via QR-least-norm (in parallel).

Repeat Step 2 until happy (reuse QR of Step 1b).

Repeating Step 2 is a special case of an IMEX solver.

If more accuracy is needed, iterate with 1st order IMEX solver.

Practically, z0 is also computed in Step 2.
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If more accuracy is needed, iterate with 1st order IMEX solver.

Practically, z0 is also computed in Step 2.
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Model Reduction I: State of the Union

Recap:

From: Hyperbolic 2D PDAE

To: Non-normal, coupled, nonlinear, parametric ODE

Shopping list:

Perturbation system → Deviation from steady state

Input-output system → System-theoretic methods

Coupled system → Structure-preserving methods

Nonlinearity and 2D parametrization → Data-driven methods

Large-scale → Low-rank computable methods∗
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Model Reduction II: Tested Methods

The reducing dozen:

Structured POD, via: empirical reachability Gramian

Structured Dominant Subspaces, via: empirical reachability & observability Gramian

empirical cross Gramian

empirical non-symmetric cross Gramian

Structured Balanced POD, via: empirical reachability & observability Gramian

Structured Balanced Truncation, via: empirical reachability & observability Gramian

empirical cross Gramian

empirical non-symmetric cross Gramian

Structured Balanced Gains, via: empirical reachability & observability Gramian

empirical cross Gramian

empirical non-symmetric cross Gramian

Structured DMD Galerkin, via: empirical reachability Gramian
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Spotlight: DMD-Galerkin
Plain Vanilla DMD:

X = [x0 x1 . . . xT ]→

{
X0 := [x0 x1 . . . xT−1]

X1 := [x1 x2 . . . xT ]

}
→ X1

!
≈ AX0 ⇒ A ≈ X1X

+
0

Secret Sauce: Centering5

X → X :=
[
(x0 − x̄) (x1 − x̄) . . . (xT − x̄)

]
Magic Dust: (Almost) DMD-Galerkin6

A tSVD
= U1D1V1

Cherry on top: Exact-DMD-Pseudo-Kernel

WR =

M∑
m

κ(Xm, Xm)

{
κLinear(X,Y ) := X Y ᵀ

κDMD(X,Y ) := X1Y
+
0

→ (Centered) DMD-Galerkin via (Discrete) Empirical Reachability Gramian!

5

S.M. Hirsh, K.D. Harris, J.N. Kutz, B.W. Brunton. Centering Data Improves the Dynamic Mode Decomposition. SIAM
J. Appl. Dyn. Syst., 19(3): 1920–1955, 2020. doi:10.1137/19M1289881

6

A. Alla, J.N. Kutz. Nonlinear model order reduction via dynamic mode decomposition. SIAM J. Sci. Comput.,
39(5):B778–B796, 2017. doi:10.1137/16M1059308
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Model Reduction III: Hyper Reduction

Yes, yes, yes:

First, what is the best reduced order linear subspace?

What hyper reduction should be used (DEIM, DMD, NL, etc.)?

How do model reduction and hyper reduction interact?

How to recycle simulations (efficiently)?

Is hyper reduction avoidable due to repeated scalar nonlinearites?

→ No hyper reduction (yet).
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morgen – Model Order Reduction for Gas and Energy Networks

Major modules:

networks

models

solvers

reductors

tests

Minor modules:

utils

tools
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Workflow
Setup.exe

Short training, long testing

Generic training scenario (constant input)

Disjoint training and test parameters

Tested models: ode mid, ode end

Tested solvers: imex1, imex2

Tested reductors:

pod r
eds ro, eds wx, eds wz
bpod ro,
ebt ro, ebt wx, ebt wz
ebg ro, ebg wx, ebg wz
dmd r,

Heuristic Li∈{1,2,∞} ⊗ Lj∈{1,2,∞} error norm computation

Compare MORscore7

7

C. Himpe. Comparing (empirical-Gramian-based) model order reduction algorithms. arXiv, math.OC: 2002.12226, 2020.
https://arxiv.org/abs/2002.12226
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Experiment I: MORGEN Network

2 Cycles

1 Compressor

2 Supply nodes

4 Demand nodes

Pipe length [20, 60]km

Time resolution 60s

Temperature: [0, 15]◦C

Gas constant: [500, 600] J
kg K

Schifrinson friction factor

AGA88 compressibility factor

900 States

6 Inputs & Outputs

Training horizon: 1h

Test horizon: 24h

Perturbed steady-state training

Standard load profiles testing
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Experiment II: L2 ⊗ L2 Model Reduction Error

ode mid--imex1 ode end--imex1
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Structured Proper Orthogonal Decomposition (WR)

Structured Empirical Dominant Subspaces (WR + WO)

Structured Empirical Dominant Subspaces (WX)

Structured Empirical Dominant Subspaces (WZ)

Structured Empirical Balanced POD (WR + WO)

Structured Empirical Balanced Truncation (WR + WO)

Structured Empirical Balanced Truncation (WX)

Structured Empirical Balanced Truncation (WZ)

Structured Empirical Balanced Gains (WR + WO)

Structured Empirical Balanced Gains (WX)

Structured Empirical Balanced Gains (WZ)

Structured DMD Galerkin (WR)
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Experiment III: Evaluation
ode mid
imex 1

ode end
imex 1

ode mid
imex 2

ode end
imex 2

pod r 0.12 0.12 0.04 0.05

eds ro 0.16 0.16 0.05 0.06
eds wx 0.08 0.08 0.02 0.02
eds wz 0.03 0.07 0.02 0.04

bpod ro 0.07 0.07 0.02 0.02
ebt ro 0.00 0.00 0.03 0.03
ebt wx 0.00 0.00 0.00 0.00
ebt wz 0.00 0.00 0.00 0.00

ebg ro 0.00 0.01 0.02 0.02
ebg wx 0.00 0.00 0.00 0.00
ebg wz 0.00 0.00 0.00 0.00

dmd r 0.14 0.18 0.03 0.04

MORscores µ(150, εmach(16)) in the L2⊗L2 norm for the “MORGEN” network.
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Outlook

Open problems and future work:

Port-Hamiltonian model

Parametric pipe roughness

Intraday switchable valves

Minimal training horizon

Tunable efficiency factor

SciGRID gas network

OGE partDE network
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Summary

How to accelerate gas network simulations:

Prefer the endpoint model.

Prefer the first-order IMEX solver.

Prefer Galerkin model reduction methods.

Check out morgen (Model Order Reduction for Gas and Energy Networks).

https://himpe.science
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