

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

Accelerating Gas Network Simulations C. Himpe, S. Grundel, P. Benner

CSC Seminar

2020-10-27

Supported by:

Federal Ministry for Economic Alfa and Energy

Modeling

- Modeling
- Model simplification

- Modeling
- Model simplification
- Model discretization

- Modeling
- Model simplification
- Model discretization
- Model reduction

- Modeling
- Model simplification
- Model discretization
- Model reduction
- Simulation experiments

MathEnergy project

- MathEnergy project
- Renewable energy transition

- MathEnergy project
- Renewable energy transition
- Modernization of control

- MathEnergy project
- Renewable energy transition
- Modernization of control
- Modern numerics

- MathEnergy project
- Renewable energy transition
- Modernization of control
- Modern numerics
- It's a challenge

1 2

3

> 500,000 km gas pipelines in Germany¹ (earth-moon < 400,000 km).

¹https://www.bmwi.de/Redaktion/EN/Artikel/Energy/gas-natural-gas-supply-in-germany.html
2

³

- > 500,000 km gas pipelines in Germany¹ (earth-moon < 400,000 km).
- > 240,000,000m³ natural gas consumed per day².

¹https://www.bmwi.de/Redaktion/EN/Artikel/Energy/gas-natural-gas-supply-in-germany.html
²https://www.eia.gov/international/analysis/country/DEU
3

- > 500,000 km gas pipelines in Germany¹ (earth-moon < 400,000 km).
- > 240,000,000m³ natural gas consumed per day².
- Gas and power become (critically) interlinked due to renewables³.

¹ https://www.bmwi.de/Redaktion/EN/Artikel/Energy/gas-natural-gas-supply-in-germany.html 2

²https://www.eia.gov/international/analysis/country/DEU

³http://www.bmwi-energiewende.de/EWD/Redaktion/EN/Newsletter/2017/07/Meldung/direkt-account.html

- > 500,000 km gas pipelines in Germany¹ (earth-moon < 400,000 km).
- > 240,000,000m³ natural gas consumed per day².
- Gas and power become (critically) interlinked due to renewables³.
- Weather has effect on consumption and production.

https://www.bmwi.de/Redaktion/EN/Artikel/Energy/gas-natural-gas-supply-in-germany.html

²https://www.eia.gov/international/analysis/country/DEU

[}] http://www.bmwi-energiewende.de/EWD/Redaktion/EN/Newsletter/2017/07/Meldung/direkt-account.html

- > 500,000 km gas pipelines in Germany¹ (earth-moon < 400,000 km).
- > 240,000,000m³ natural gas consumed per day².
- Gas and power become (critically) interlinked due to renewables³.
- Weather has effect on consumption and production.
- Planning horizon is 24h.

https://www.bmwi.de/Redaktion/EN/Artikel/Energy/gas-natural-gas-supply-in-germany.html

²https://www.eia.gov/international/analysis/country/DEU

[}] http://www.bmwi-energiewende.de/EWD/Redaktion/EN/Newsletter/2017/07/Meldung/direkt-account.html

🚥 Modeling I: Pipeline

Friction-dominated isothermal Euler equations for 1D pipes:

$$\frac{1}{\gamma_0 z_0} \partial_t p = -\frac{1}{S} \partial_x q$$
$$\partial_t q = -S \partial_x p - \Big(\underbrace{\frac{S g \partial_x h}{\gamma_0 z_0}}_{\text{Gravity}} p + \underbrace{\frac{\gamma_0 z_0 \lambda_0}{2 d S} \frac{q |q|}{p}}_{\text{Friction}}\Big)$$

- Pressure: p(x,t)
- Mass-flux: q(x,t)
- Height: h(x)
- Temperature: *T*₀

- Diameter: d
- Cross-section: S
- **Roughness**: k
- Gas Const.: R_S

- Gas state: $\gamma_0(T_0, R_S)$
- Compress.: $z_0(T_0, p)$
- Friction: $\lambda_0(k, d)$
- Grav. accel.: g

🐼 🚥 Modeling II: Network

Graph $(\mathcal{N}, \mathcal{E})$ incidence matrix \mathcal{A} :

$$\mathcal{A}_{ij} = \begin{cases} -1 & \mathcal{E}_j \text{ connects from } \mathcal{N}_i, \\ 0 & \mathcal{E}_j \text{ connects not } \mathcal{N}_i, \\ 1 & \mathcal{E}_j \text{ connects to } \mathcal{N}_i. \end{cases}$$

🐼 🚥 Modeling II: Network

Graph $(\mathcal{N}, \mathcal{E})$ incidence matrix \mathcal{A} :

$$\mathcal{A}_{ij} = \begin{cases} -1 & \mathcal{E}_j \text{ connects from } \mathcal{N}_i, \\ 0 & \mathcal{E}_j \text{ connects not } \mathcal{N}_i, \\ 1 & \mathcal{E}_j \text{ connects to } \mathcal{N}_i. \end{cases}$$

Kirchhoff's laws:

1. The net mass-flux at every node is zero.

2. The sum of directed pressure drops in every loop is zero.

🐼 🚥 Modeling III: Gas Network

Vectorized PDAE gas network model:

$$D_d \partial_t p^* = D_q \partial_x q,$$

$$\partial_t q^* = D_p \partial_x p - \left(D_g p^* + D_f \frac{q^* |q^*|}{p^*} \right),$$

$$\mathcal{A}_0 q^* = \mathcal{B}_d d_q,$$

$$\mathcal{A}_0^{\mathsf{T}} p^* = \mathcal{B}_s s_p,$$

- p^* is the pressure at a t.b.d. pipe location.
- q^* is the mass-flux at a t.b.d. pipe location.
- *D*_{*} are diagonal matrices.
- \mathcal{A}_0 is the incidence matrix without supply node rows.
- \blacksquare \mathcal{B}_s is the incidence matrix of supply node rows.
- **\mathbf{B}_d** is the incidence matrix of demand node columns.

The choice of p^* and q^* :

⁴S. Grundel, L. Jansen, N. Hornung, T. Clees, C. Tischendorf, P. Benner. Model order reduction of differential algebraic equations arising from the simulation of gas transport networks. In: Progress in Differential-Algebraic Equations, Differential-Algebraic Equations Forum: 183–205, 2014. doi:10.1007/978-3-662-44926-4_9

The choice of p^* and q^* :

- Pipe midpoints:
 - (P)DAE tractability index bounded $\tau \leq 2$.
 - Given some weak topology constraints, PDAE becomes PDE⁴.
 - Boundary values affect friction term.

⁴S. Grundel, L. Jansen, N. Hornung, T. Clees, C. Tischendorf, P. Benner. Model order reduction of differential algebraic equations arising from the simulation of gas transport networks. In: Progress in Differential-Algebraic Equations, Differential-Algebraic Equations Forum: 183–205, 2014. doi:10.1007/978-3-662-44926-4.9

The choice of p^{\ast} and $q^{\ast}\text{:}$

Pipe midpoints:

- (P)DAE tractability index bounded $\tau \leq 2$.
- Given some weak topology constraints, PDAE becomes PDE⁴.
- Boundary values affect friction term.
- Pipe endpoints:
 - (P)DAE tractability index bounded $\tau < 2$.
 - Given some weak topology constraints, PDAE becomes PDE.
 - Less oscillatory behaviour.

⁴ S. Grundel, L. Jansen, N. Hornung, T. Clees, C. Tischendorf, P. Benner. Model order reduction of differential algebraic equations arising from the simulation of gas transport networks. In: Progress in Differential-Algebraic Equations, Differential-Algebraic Equations Forum: 183–205, 2014. doi:10.1007/978-3-662-44926-4.9

Only cylindrical pipes.

- Only cylindrical pipes.
- No temperature or pressure influence on pipe diameter: *d* const.

- Only cylindrical pipes.
- No temperature or pressure influence on pipe diameter: d const.
- No variability or wear on pipe roughness: k const.

- Only cylindrical pipes.
- No temperature or pressure influence on pipe diameter: d const.
- No variability or wear on pipe roughness: k const.
- No inertia term due to slow (sub-sonic) gas velocity: $-\frac{\gamma_0}{S^2} \left(\frac{q^2}{p}\right)_{\pi} \approx 0.$

Simplification II: Model

- Only cylindrical pipes.
- No temperature or pressure influence on pipe diameter: *d* const.
- No variability or wear on pipe roughness: k const.
- No inertia term due to slow (sub-sonic) gas velocity: $-\frac{\gamma_0}{S^2} \left(\frac{q^2}{p}\right)_{-} \approx 0.$
- Parametrization of averaged temperature and gas mix: $\gamma_0 = (T_0 \ R_S)$.

Simplification II: Model

- Only cylindrical pipes.
- No temperature or pressure influence on pipe diameter: d const.
- No variability or wear on pipe roughness: k const.
- No inertia term due to slow (sub-sonic) gas velocity: $-\frac{\gamma_0}{S^2} \left(\frac{q^2}{p}\right) \approx 0.$
- Parametrization of averaged temperature and gas mix: $\gamma_0 = (T_0 \ R_S)$.
- Averaged compressibility based on steady-state: $z(p, T, x, t) \rightarrow z_0$.

Simplification II: Model

- Only cylindrical pipes.
- No temperature or pressure influence on pipe diameter: d const.
- No variability or wear on pipe roughness: k const.
- No inertia term due to slow (sub-sonic) gas velocity: $-\frac{\gamma_0}{S^2} \left(\frac{q^2}{p}\right)_{\mu} \approx 0.$
- Parametrization of averaged temperature and gas mix: $\gamma_0 = (T_0 \ R_S)$.
- Averaged compressibility based on steady-state: $z(p, T, x, t) \rightarrow z_0$.
- Only step function boundary values.

Simplified edge-based compressor models:

Simplification III: Compressors

Simplified edge-based compressor models:

• Energy-based: $\begin{aligned} q_{\text{out}} &= q_{\text{in}} \\ p_{\text{out}} &= p_{\text{in}} \Big(\frac{P_{\max}}{p \gamma_0 z_0} \frac{\nu - 1}{\nu} + 1 \Big)^{\frac{\nu}{\nu - 1}} \end{aligned}$
Simplification III: Compressors

Simplified edge-based compressor models:

ergy-based:

$$\begin{split} q_{\text{out}} &= q_{\text{in}} \\ p_{\text{out}} &= p_{\text{in}} \Big(\frac{P_{\max}}{p \gamma_0 z_0} \frac{\nu - 1}{\nu} + 1 \Big)^{\frac{\nu}{\nu - 1}} \end{split}$$

Multiplicative:

En

 $q_{\text{out}} = q_{\text{in}}$ $p_{\text{out}} = p_{\text{in}} m_c$

Simplification III: Compressors

Simplified edge-based compressor models:

• Energy-based:

$$\begin{aligned} q_{\text{out}} &= q_{\text{in}} \\ p_{\text{out}} &= p_{\text{in}} \Big(\frac{P_{\text{max}}}{p \gamma_0 z_0} \frac{\nu - 1}{\nu} + 1 \Big)^{\frac{\nu}{\nu - 1}} \end{aligned}$$

$$q_{\text{out}} = q_{\text{in}}$$
$$p_{\text{out}} = p_{\text{in}} m_c$$

Affine*:

$$\begin{aligned} q_{\text{out}} &= q_{\text{in}} \\ p_{\text{out}} &= p_c \end{aligned}$$

Axis-symmetric domain.

- Axis-symmetric domain.
- Pipelines length exceeds diameter by orders of magnitude.

- Axis-symmetric domain.
- Pipelines length exceeds diameter by orders of magnitude.
- (Very) turbulent flow, Re > 100,000.

- Axis-symmetric domain.
- Pipelines length exceeds diameter by orders of magnitude.
- (Very) turbulent flow, $\operatorname{Re} > 100,000$.
- Stable under CLF condition.

Set unit pipeline length based on CLF condition.

- Set unit pipeline length based on CLF condition.
- Treat too short pipes as short-cuts (instant and friction-free).

- Set unit pipeline length based on CLF condition.
- Treat too short pipes as short-cuts (instant and friction-free).
- Treat too short pipes as unit-length pipe with scaled friction.

- Set unit pipeline length based on CLF condition.
- Treat too short pipes as short-cuts (instant and friction-free).
- Treat too short pipes as unit-length pipe with scaled friction.
- Sub-divide too long pipes to set of unit-length pipes.

Adaptive methods (i.e. ode45, ode23s) are problematic.

- Adaptive methods (i.e. ode45, ode23s) are problematic.
- Implicit Runge-Kutta is problematic due to nonlinearity.

- Adaptive methods (i.e. ode45, ode23s) are problematic.
- Implicit Runge-Kutta is problematic due to nonlinearity.
- Implicit-Explicit (IMEX) methods are the right tool.

- Adaptive methods (i.e. ode45, ode23s) are problematic.
- Implicit Runge-Kutta is problematic due to nonlinearity.
- Implicit-Explicit (IMEX) methods are the right tool.
- Consider: SSP optimality, stiff accuracy, passivity, efficiency.

💿 The Input-Output Model

Parametric, Structured, Nonlinear, Non-Normal, Square:

$$\begin{pmatrix} E_p(\theta) & 0\\ 0 & I_{N_q} \end{pmatrix} \begin{pmatrix} \dot{p}\\ \dot{q} \end{pmatrix} = \begin{pmatrix} 0 & A_{pq}\\ A_{qp} & 0 \end{pmatrix} \begin{pmatrix} p\\ q \end{pmatrix} + \begin{pmatrix} 0 & B_{pd}\\ B_{qs} & 0 \end{pmatrix} \begin{pmatrix} s_p\\ d_q \end{pmatrix} + \begin{pmatrix} 0 & 0\\ F_c + f_q(p, q, s_p, \theta) \end{pmatrix}$$
$$\begin{pmatrix} s_q\\ d_p \end{pmatrix} = \begin{pmatrix} 0 & C_{sq}\\ C_{dp} & 0 \end{pmatrix} \begin{pmatrix} p\\ q \end{pmatrix}$$
$$\begin{pmatrix} p_0\\ q_0 \end{pmatrix} = \begin{pmatrix} \bar{p}(\bar{s}_p, \bar{d}_q)\\ \bar{q}(\bar{s}_p, \bar{d}_q) \end{pmatrix}$$

Input:State:Output:Pressure at supply: s_p Pressure: pMass-Flux at supply: s_q Mass-Flux at demand: d_q Mass-Flux: qPressure at demand: d_p

- 1a. Linear mass-flux steady-state: $A_{pq} \bar{q} = -B_{pd} \bar{d}_q$
- 1b. Linear pressure steady-state: $A_{qp} \bar{p} = \left(B_{qs} \bar{s}_p + F_c \right)$
- 2. Corrected pressure steady-state: $A_{qp}p_{k+1} = -(B_{qs}\bar{s}_p + F_c + f_q(p_k, \bar{q}, \bar{s}_p, \theta))$

- 1a. Linear mass-flux steady-state: $A_{pq} \bar{q} = -B_{pd} \bar{d}_q$
- 1b. Linear pressure steady-state: $A_{qp} \bar{p} = -\left(B_{qs} \bar{s}_p + F_c\right)$
- 2. Corrected pressure steady-state: $A_{qp}p_{k+1} = -(B_{qs}\bar{s}_p + F_c + f_q(p_k, \bar{q}, \bar{s}_p, \theta))$
 - Note, A and B do not depend on the parameter!

- 1a. Linear mass-flux steady-state: $A_{pq} \, \bar{q} = -B_{pd} \, \bar{d}_q$
- 1b. Linear pressure steady-state: $A_{qp} \bar{p} = -\left(B_{qs} \bar{s}_p + F_c\right)$
- 2. Corrected pressure steady-state: $A_{qp}p_{k+1} = -(B_{qs}\bar{s}_p + F_c + f_q(p_k, \bar{q}, \bar{s}_p, \theta))$
 - Note, A and B do not depend on the parameter!
 Step 1a and Step 1b via QR-least-norm (in parallel).

- 1a. Linear mass-flux steady-state: $A_{pq} \, \bar{q} = -B_{pd} \, \bar{d}_q$
- 1b. Linear pressure steady-state: $A_{qp} \bar{p} = -\left(B_{qs} \bar{s}_p + F_c\right)$
- 2. Corrected pressure steady-state: $A_{qp}p_{k+1} = -\left(B_{qs}\bar{s}_p + F_c + f_q(p_k, \bar{q}, \bar{s}_p, \theta)\right)$
 - Note, A and B do not depend on the parameter!
 - Step 1a and Step 1b via QR-least-norm (in parallel).
 - Repeat Step 2 until happy (reuse QR of Step 1b).

- 1a. Linear mass-flux steady-state: $A_{pq} \bar{q} = -B_{pd} \bar{d}_q$
- 1b. Linear pressure steady-state: $A_{qp} \bar{p} = -\left(B_{qs} \bar{s}_p + F_c\right)$
- 2. Corrected pressure steady-state: $A_{qp}p_{k+1} = -(B_{qs}\bar{s}_p + F_c + f_q(p_k, \bar{q}, \bar{s}_p, \theta))$
 - Note, A and B do not depend on the parameter!
 - Step 1a and Step 1b via QR-least-norm (in parallel).
 - Repeat Step 2 until happy (reuse QR of Step 1b).
 - Repeating Step 2 is a special case of an IMEX solver.

- 1a. Linear mass-flux steady-state: $A_{pq} \, \bar{q} = -B_{pd} \, \bar{d}_q$
- 1b. Linear pressure steady-state: $A_{qp} \bar{p} = -\left(B_{qs} \bar{s}_p + F_c\right)$
- 2. Corrected pressure steady-state: $A_{qp}p_{k+1} = -(B_{qs}\bar{s}_p + F_c + f_q(p_k, \bar{q}, \bar{s}_p, \theta))$
 - Note, A and B do not depend on the parameter!
 - Step 1a and Step 1b via QR-least-norm (in parallel).
 - Repeat Step 2 until happy (reuse QR of Step 1b).
 - Repeating Step 2 is a special case of an IMEX solver.
 - If more accuracy is needed, iterate with 1st order IMEX solver.

- 1a. Linear mass-flux steady-state: $A_{pq} \, \bar{q} = -B_{pd} \, \bar{d}_q$
- 1b. Linear pressure steady-state: $A_{qp} \bar{p} = -\left(B_{qs} \bar{s}_p + F_c\right)$
- 2. Corrected pressure steady-state: $A_{qp}p_{k+1} = -(B_{qs}\bar{s}_p + F_c + f_q(p_k, \bar{q}, \bar{s}_p, \theta))$
 - Note, A and B do not depend on the parameter!
 - Step 1a and Step 1b via QR-least-norm (in parallel).
 - Repeat Step 2 until happy (reuse QR of Step 1b).
 - Repeating Step 2 is a special case of an IMEX solver.
 - If more accuracy is needed, iterate with 1st order IMEX solver.
 - Practically, z_0 is also computed in Step 2.

- From: Hyperbolic 2D PDAE
 - To: Non-normal, coupled, nonlinear, parametric ODE

- From: Hyperbolic 2D PDAE
 - To: Non-normal, coupled, nonlinear, parametric ODE

Shopping list:

 \blacksquare Perturbation system \rightarrow Deviation from steady state

- From: Hyperbolic 2D PDAE
 - To: Non-normal, coupled, nonlinear, parametric ODE

- \blacksquare Perturbation system \rightarrow Deviation from steady state
- Input-output system \rightarrow System-theoretic methods

- From: Hyperbolic 2D PDAE
 - To: Non-normal, coupled, nonlinear, parametric ODE

- \blacksquare Perturbation system \rightarrow Deviation from steady state
- Input-output system \rightarrow System-theoretic methods
- Coupled system \rightarrow Structure-preserving methods

Sc CSC Model Reduction I: State of the Union

Recap:

- From: Hyperbolic 2D PDAE
 - To: Non-normal, coupled, nonlinear, parametric ODE

- \blacksquare Perturbation system \rightarrow Deviation from steady state
- Input-output system \rightarrow System-theoretic methods
- Coupled system \rightarrow Structure-preserving methods
- \blacksquare Nonlinearity and 2D parametrization \rightarrow Data-driven methods

Score Contended State of the Union State of the Union

Recap:

- From: Hyperbolic 2D PDAE
 - To: Non-normal, coupled, nonlinear, parametric ODE

- \blacksquare Perturbation system \rightarrow Deviation from steady state
- Input-output system \rightarrow System-theoretic methods
- Coupled system \rightarrow Structure-preserving methods
- \blacksquare Nonlinearity and 2D parametrization \rightarrow Data-driven methods
- Large-scale \rightarrow Low-rank computable methods*

The reducing dozen:

Structured POD, via: empirical reachability Gramian

Sc CSC Model Reduction II: Tested Methods

Structured POD, via:	empirical reachability Gramian
Structured Dominant Subspaces, via:	empirical reachability & observability Gramian
	empirical cross Gramian
	empirical non-symmetric cross Gramian

Sc CSC Model Reduction II: Tested Methods

Structured Balanced POD, via:	empirical reachability & observability Gramian
	empirical non-symmetric cross Gramian
	empirical cross Gramian
Structured Dominant Subspaces, via:	empirical reachability & observability Gramian
Structured POD, via:	empirical reachability Gramian

🐟 💿 Model Reduction II: Tested Methods

Structured POD, via:	empirical reachability Gramian
Structured Dominant Subspaces, via:	empirical reachability & observability Gramian
	empirical cross Gramian
	empirical non-symmetric cross Gramian
Structured Balanced POD, via:	empirical reachability & observability Gramian
Structured Balanced POD, via: Structured Balanced Truncation, via:	empirical reachability & observability Gramian empirical reachability & observability Gramian
Structured Balanced POD, via: Structured Balanced Truncation, via:	empirical reachability & observability Gramian empirical reachability & observability Gramian empirical cross Gramian
🐟 💿 Model Reduction II: Tested Methods

The reducing dozen:

Structured POD, via:	empirical reachability Gramian		
Structured Dominant Subspaces, via:	empirical reachability & observability Gramian		
	empirical cross Gramian		
	empirical non-symmetric cross Gramian		
Structured Balanced POD, via:	empirical reachability & observability Gramian		
Structured Balanced Truncation, via:	empirical reachability & observability Gramian		
	empirical cross Gramian		
	empirical non-symmetric cross Gramian		
Structured Balanced Gains, via:	empirical reachability & observability Gramian		
	empirical cross Gramian		
	empirical non-symmetric cross Gramian		

🐟 💿 Model Reduction II: Tested Methods

The reducing dozen:

Structured POD, via:	empirical reachability Gramian		
Structured Dominant Subspaces, via:	empirical reachability & observability Gramian		
	empirical cross Gramian		
	empirical non-symmetric cross Gramian		
Structured Balanced POD, via:	empirical reachability & observability Gramian		
Structured Balanced Truncation, via:	empirical reachability & observability Gramian		
	empirical cross Gramian		
	empirical non-symmetric cross Gramian		
Structured Balanced Gains, via:	empirical reachability & observability Gramian		
	empirical cross Gramian		
	empirical non-symmetric cross Gramian		
Structured DMD Galerkin, via:	empirical reachability Gramian		

Plain Vanilla DMD:

$$X = \begin{bmatrix} x_0 & x_1 & \dots & x_T \end{bmatrix} \rightarrow \begin{cases} X_0 := \begin{bmatrix} x_0 & x_1 & \dots & x_{T-1} \end{bmatrix} \\ X_1 := \begin{bmatrix} x_1 & x_2 & \dots & x_T \end{bmatrix} \end{cases} \rightarrow X_1 \stackrel{!}{\approx} \mathcal{A}X_0 \Rightarrow \mathcal{A} \approx X_1 X_0^+$$

5

6

Plain Vanilla DMD:

$$X = \begin{bmatrix} x_0 & x_1 & \dots & x_T \end{bmatrix} \rightarrow \begin{cases} X_0 := \begin{bmatrix} x_0 & x_1 & \dots & x_{T-1} \end{bmatrix} \\ X_1 := \begin{bmatrix} x_1 & x_2 & \dots & x_T \end{bmatrix} \end{cases} \rightarrow X_1 \stackrel{!}{\approx} \mathcal{A}X_0 \Rightarrow \mathcal{A} \approx X_1 X_0^+$$

Secret Sauce: Centering⁵

$$X \to \overline{X} := \begin{bmatrix} (x_0 - \overline{x}) & (x_1 - \overline{x}) & \dots & (x_T - \overline{x}) \end{bmatrix}$$

 $^{^5}$ S.M. Hirsh, K.D. Harris, J.N. Kutz, B.W. Brunton. Centering Data Improves the Dynamic Mode Decomposition. SIAM J. Appl. Dyn. Syst., 19(3): 1920–1955, 2020. doi:10.1137/19M1289881

Plain Vanilla DMD:

$$X = \begin{bmatrix} x_0 & x_1 & \dots & x_T \end{bmatrix} \rightarrow \begin{cases} X_0 := \begin{bmatrix} x_0 & x_1 & \dots & x_{T-1} \end{bmatrix} \\ X_1 := \begin{bmatrix} x_1 & x_2 & \dots & x_T \end{bmatrix} \end{cases} \rightarrow X_1 \stackrel{!}{\approx} \mathcal{A}X_0 \Rightarrow \mathcal{A} \approx X_1 X_0^+$$

Secret Sauce: Centering⁵

$$X \to \overline{X} := \begin{bmatrix} (x_0 - \overline{x}) & (x_1 - \overline{x}) & \dots & (x_T - \overline{x}) \end{bmatrix}$$

Magic Dust: (Almost) DMD-Galerkin⁶ $\mathcal{A} \stackrel{\text{tSVD}}{=} U_1 D_1 V_1$

⁰A. Alla, J.N. Kutz. Nonlinear model order reduction via dynamic mode decomposition. SIAM J. Sci. Comput., 39(5):B778–B796, 2017. doi:10.1137/16M1059308

⁵S.M. Hirsh, K.D. Harris, J.N. Kutz, B.W. Brunton. Centering Data Improves the Dynamic Mode Decomposition. SIAM J. Appl. Dyn. Syst., 19(3): 1920–1955, 2020. doi:10.1137/19M1289881

Plain Vanilla DMD:

$$X = \begin{bmatrix} x_0 & x_1 & \dots & x_T \end{bmatrix} \rightarrow \begin{cases} X_0 := \begin{bmatrix} x_0 & x_1 & \dots & x_{T-1} \end{bmatrix} \\ X_1 := \begin{bmatrix} x_1 & x_2 & \dots & x_T \end{bmatrix} \end{cases} \rightarrow X_1 \stackrel{!}{\approx} \mathcal{A}X_0 \Rightarrow \mathcal{A} \approx X_1 X_0^+$$

Secret Sauce: Centering⁵

$$X \to \overline{X} := \begin{bmatrix} (x_0 - \overline{x}) & (x_1 - \overline{x}) & \dots & (x_T - \overline{x}) \end{bmatrix}$$

Magic Dust: (Almost) DMD-Galerkin⁶

 $\mathcal{A} \stackrel{\mathrm{tSVD}}{=} U_1 D_1 V_1$

Cherry on top: Exact-DMD-Pseudo-Kernel

$$W_R = \sum_m^M \kappa(\overline{X}_m, \overline{X}_m) \quad \begin{cases} \kappa_{\text{Linear}}(X, Y) := X Y^{\mathsf{T}} \\ \kappa_{\text{DMD}}(X, Y) := X_1 Y_0^+ \end{cases}$$

⁰ A. Alla, J.N. Kutz. Nonlinear model order reduction via dynamic mode decomposition. SIAM J. Sci. Comput., 39(5):B778–B796, 2017. doi:10.1137/16M1059308

⁵S.M. Hirsh, K.D. Harris, J.N. Kutz, B.W. Brunton. Centering Data Improves the Dynamic Mode Decomposition. SIAM J. Appl. Dyn. Syst., 19(3): 1920–1955, 2020. doi:10.1137/19M1289881

Plain Vanilla DMD:

$$X = \begin{bmatrix} x_0 & x_1 & \dots & x_T \end{bmatrix} \rightarrow \begin{cases} X_0 := \begin{bmatrix} x_0 & x_1 & \dots & x_{T-1} \end{bmatrix} \\ X_1 := \begin{bmatrix} x_1 & x_2 & \dots & x_T \end{bmatrix} \end{cases} \rightarrow X_1 \stackrel{!}{\approx} \mathcal{A}X_0 \Rightarrow \mathcal{A} \approx X_1 X_0^+$$

Secret Sauce: Centering⁵

$$X \to \overline{X} := \begin{bmatrix} (x_0 - \overline{x}) & (x_1 - \overline{x}) & \dots & (x_T - \overline{x}) \end{bmatrix}$$

Magic Dust: (Almost) DMD-Galerkin⁶

 $\mathcal{A} \stackrel{\mathrm{tSVD}}{=} U_1 D_1 V_1$

Cherry on top: Exact-DMD-Pseudo-Kernel

$$W_R = \sum_m^M \kappa(\overline{X}_m, \overline{X}_m) \quad \begin{cases} \kappa_{\text{Linear}}(X, Y) := X Y^{\mathsf{T}} \\ \kappa_{\text{DMD}}(X, Y) := X_1 Y_0^+ \end{cases}$$

\rightarrow (Centered) DMD-Galerkin via (Discrete) Empirical Reachability Gramian!

⁵S.M. Hirsh, K.D. Harris, J.N. Kutz, B.W. Brunton. Centering Data Improves the Dynamic Mode Decomposition. SIAM J. Appl. Dyn. Syst., 19(3): 1920–1955, 2020. doi:10.1137/19M1289881

⁰ A. Alla, J.N. Kutz. Nonlinear model order reduction via dynamic mode decomposition. SIAM J. Sci. Comput., 39(5):B778–B796, 2017. doi:10.1137/16M1059308

First, what is the best reduced order linear subspace?

- First, what is the best reduced order linear subspace?
- What hyper reduction should be used (DEIM, DMD, NL, etc.)?

- First, what is the best reduced order linear subspace?
- What hyper reduction should be used (DEIM, DMD, NL, etc.)?
- How do model reduction and hyper reduction interact?

- First, what is the best reduced order linear subspace?
- What hyper reduction should be used (DEIM, DMD, NL, etc.)?
- How do model reduction and hyper reduction interact?
- How to recycle simulations (efficiently)?

- First, what is the best reduced order linear subspace?
- What hyper reduction should be used (DEIM, DMD, NL, etc.)?
- How do model reduction and hyper reduction interact?
- How to recycle simulations (efficiently)?
- Is hyper reduction avoidable due to repeated scalar nonlinearites?

- First, what is the best reduced order linear subspace?
- What hyper reduction should be used (DEIM, DMD, NL, etc.)?
- How do model reduction and hyper reduction interact?
- How to recycle simulations (efficiently)?
- Is hyper reduction avoidable due to repeated scalar nonlinearites?
- \rightarrow No hyper reduction (yet).

morgen - Model Order Reduction for Gas and Energy Networks

CSC

Short training, long testing

- Short training, long testing
- Generic training scenario (constant input)

- Short training, long testing
- Generic training scenario (constant input)
- Disjoint training and test parameters

- Short training, long testing
- Generic training scenario (constant input)
- Disjoint training and test parameters
- Tested models: ode_mid, ode_end

- Short training, long testing
- Generic training scenario (constant input)
- Disjoint training and test parameters
- Tested models: ode_mid, ode_end
- Tested solvers: imex1, imex2

- Short training, long testing
- Generic training scenario (constant input)
- Disjoint training and test parameters
- Tested models: ode_mid, ode_end
- Tested solvers: imex1, imex2

Tested reductors:

- pod_r
 des_ro, eds_wx, eds_wz
- ∎ bpod_ro,
- ebt_ro, ebt_wx, ebt_wz
- ebg_ro, ebg_wx, ebg_wz
- ∎ dmd_r,

7

- Short training, long testing
- Generic training scenario (constant input)
- Disjoint training and test parameters
- Tested models: ode_mid, ode_end
- Tested solvers: imex1, imex2

Tested reductors:

- pod_r
- eds_ro, eds_wx, eds_wzbpod_ro,
- ebt_ro, ebt_wx, ebt_wz
- ebg_ro, ebg_wx, ebg_wz
- ∎ dmd_r,

• Heuristic $L_{i \in \{1,2,\infty\}} \otimes L_{j \in \{1,2,\infty\}}$ error norm computation

7

- Short training, long testing
- Generic training scenario (constant input)
- Disjoint training and test parameters
- Tested models: ode_mid, ode_end
- Tested solvers: imex1, imex2

Tested reductors:

- pod_r
 des_ro, eds_wx, eds_wz
- ∎ bpod_ro,
 - ebt_ro, ebt_wx, ebt_wz
 - ebg_ro, ebg_wx, ebg_wz
 - ∎ dmd_r,

Heuristic L_{i∈{1,2,∞}} ⊗ L_{j∈{1,2,∞}} error norm computation Compare MORSCORE⁷

⁷C. Himpe. Comparing (empirical-Gramian-based) model order reduction algorithms. arXiv, math.OC: 2002.12226, 2020. https://arxiv.org/abs/2002.12226

CSC Experiment I: MORGEN Network

- 2 Cycles
- 1 Compressor
- 2 Supply nodes
- 4 Demand nodes
- Pipe length [20, 60]km
- Time resolution 60s
- **Temperature**: $[0, 15]^{\circ}C$
- Gas constant: [500, 600] J/kg K

- Schifrinson friction factor
- AGA88 compressibility factor
- 900 States
- 6 Inputs & Outputs
- Training horizon: 1h
- Test horizon: 24h
- Perturbed steady-state training
- Standard load profiles testing

Experiment II: $L_2 \otimes L_2$ Model Reduction Error

ode end--imex1

ode_mid--imex1

CSC

Accelerating Gas Network Simulations

CSC Experiment III: Evaluation

	ode_mid imex_1	ode_end imex_1	ode_mid imex_2	ode_end imex_2
pod_r	0.12	0.12	0.04	0.05
eds_ro	0.16	0.16	0.05	0.06
eds_wx	0.08	0.08	0.02	0.02
eds_wz	0.03	0.07	0.02	0.04
bpod_ro	0.07	0.07	0.02	0.02
ebt_ro	0.00	0.00	0.03	0.03
ebt_wx	0.00	0.00	0.00	0.00
ebt_wz	0.00	0.00	0.00	0.00
ebg_ro	0.00	0.01	0.02	0.02
ebg_wx	0.00	0.00	0.00	0.00
ebg_wz	0.00	0.00	0.00	0.00
dmd_r	0.14	0.18	0.03	0.04

MORSCORES $\mu(150, \epsilon_{mach(16)})$ in the $L_2 \otimes L_2$ norm for the "MORGEN" network.

Open problems and future work:

- Port-Hamiltonian model
- Parametric pipe roughness
- Intraday switchable valves
- Minimal training horizon
- Tunable efficiency factor
- SciGRID_gas network
- OGE partDE network

How to accelerate gas network simulations:

- Prefer the endpoint model.
- Prefer the first-order IMEX solver.
- Prefer Galerkin model reduction methods.
- Check out morgen (Model Order Reduction for Gas and Energy Networks).

https://himpe.science

Acknowledgment:

Supported by the German Federal Ministry for Economic Affairs and Energy, in the joint project: "**MathEnergy** – Mathematical Key Technologies for Evolving Energy Grids", sub-project: Model Order Reduction (Grant number: 0324019**B**).

- Z. Vostrý, J. Záworka. Simulation and control of gas transport and distribution by large-scale pipeline networks. In: Mutual Impact of Computing Power and Control Theory: 65–75, 1993. doi:10.1007/978-1-4615-2968-2.4
- T.P. Azevedo-Perdicoúlis, G. Jank. Modelling aspects of describing gas networks through a DAE system. IFAC Proceedings Volume (3rd IFAC Symposium on Structure and Control), 40(20): 40–45, 2007. doi:10.3182/20071017-3-BR-2923.00007
- S. Grundel, L. Jansen, N. Hornung, T. Clees, C. Tischendorf, P. Benner. Model order reduction of differential algebraic equations arising from the simulation of gas transport networks. In: Progress in Differential-Algebraic Equations, Differential-Algebraic Equations Forum: 183–205, 2014. doi:10.1007/978-3-662-44926-4_9
- A. Alla, J.N. Kutz. Nonlinear model order reduction via dynamic mode decomposition. SIAM J. Sci. Comput., 39(5): B778–B796, 2017. doi:10.1137/16M1059308