

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

Next-Gen Gas Network Simulation C. Himpe, S. Grundel, P. Benner

ECMI 2021 Mathematica Innovations for Mastering the Energy Transition: a Holistic Perspective

2021-04-13

Supported by:

Fe fo

Federal Ministry for Economic Affair and Energy

Next-Gen Modern numerics Gas Network Big infrastructure Simulation Digital twin

So the second se

The Challenge:

- Renewables / Green energy
- Weather-dependend misery factors
- Natural gas / biogas / hydrogen mixing
- Gas / power coupling
- Volatility / uncertainty
- Daily day-ahead forecasting
- Minimizing consumption
- Virtual power plants

\rightarrow Many, many query setting

Simulation Stack:

- How to model?
- How to solve?
- How to accelerate solving?

🐟 🚥 Gas Pipeline Model

Friction-Dominated Isothermal 1D Euler Equations:

$$\frac{1}{R_S T_0 z_0} \partial_t p = -\frac{1}{S} \partial_x q$$
$$\frac{1}{S} \partial_t q = -\partial_x p - \left(\frac{g \partial_x h}{R_S T_0 z_0} p + \frac{R_S T_0 z_0 \lambda_0}{2 d S^2} \frac{|q| q}{p}\right)$$

- p(x,t) Pressure q(x,t) Mass-flux h(x) Pipe elevation d Pipe diameter S Pipe cross section
- g Global gravity acceleration
- T_0 Global mean temperature
- R_S Global mean specific gas constant
 - z_0 Global mean compressibility factor
- λ_0 Local friction factor

💿 Gas Network Model

Conserved Quantities:

- 1. Kirchhoff \rightarrow net mass-flux at every node is zero
- 2. Kirchhoff \rightarrow sum of directed pressure drops in every loop is zero

Spatial Discretization:

- First order upwind finite differences
- Stable under CLF condition

Index Reduction:

- 1. Midpoint discretization
- 2. Endpoint discretization

🐼 🚥 Gas Transport Model

Compressors:

- 1. Multiplicative
- 2. Additive

Scales:

- Multi-scale due to coupling
- Change units from Pascal to Bar

Parameters:

- 1. Temperature
- 2. Specific gas constant

💿 Input-Output System

Parametric, Structured, Nonlinear, Non-Normal, Square:

$$\underbrace{\begin{pmatrix}E\\p(\theta) & 0\\0 & E_q\end{pmatrix}}^{E} \begin{pmatrix}\dot{p}\\\dot{q}\end{pmatrix} = \underbrace{\begin{pmatrix}A\\0 & A_{pq}\\A_{qp} & 0\end{pmatrix}}^{A} \begin{pmatrix}p\\q\end{pmatrix} + \underbrace{\begin{pmatrix}0\\B_{qs} & 0\end{pmatrix}}^{B} \begin{pmatrix}s_p\\d_q\end{pmatrix} + \underbrace{\begin{pmatrix}0\\f_c\end{pmatrix} + \begin{pmatrix}0\\f_q(p, q, \theta)\end{pmatrix}}^{f} \begin{pmatrix}f\\f_q(p, q, \theta)\end{pmatrix}} \begin{pmatrix}g\\d_p\end{pmatrix} = \underbrace{\begin{pmatrix}0 & C_{sq}\\C_{dp} & 0\end{pmatrix}}^{C} \begin{pmatrix}p\\q\end{pmatrix}$$

C. Himpe

Input-State-Output Port-Hamiltonian System:

$$E \dot{x}(t) = \underbrace{\overrightarrow{(J-R)} Q}_{C} x(t) + \underbrace{\overrightarrow{(G-P)}}_{W} u(t),$$
$$y(t) = \underbrace{(G+P)^{\mathsf{T}}Q}_{C} x(t),$$

• Mass Matrix:
$$E = E^{\intercal} > 0$$

- Energy Flux: $J = -J^{\intercal}$
- Energy Dissipation: $R = R^{T} > 0$
- Energy Storage: $Q = Q^{\intercal} > 0$
- Resistive Ports: P
 - \blacksquare Control Ports: G

So Port-Hamiltonian Duality

• Nonlinearity (friction) concentrates in dissipation R

- $\blacksquare \ R \to R(x), \ \mathrm{im}(R(x))$ diagonal matrix, preserving sign
- Compressors disturb skew-symmetry of J

(Approximate) Adjoint Port-Hamiltonian System:

$$E \dot{x}(t) = \overbrace{Q(-J-R)}^{A^{\mathsf{T}}} x(t) + \overbrace{Q(G+P)}^{C^{\mathsf{T}}} u(t),$$
$$y(t) = \underbrace{(G-P)^{\mathsf{T}}}_{B^{\mathsf{T}}} x(t).$$

Wishlist:

- Stiff linear part → Implicit solver!
- Nonlinear part → Explicit solver!
- External input → Fixed step solver!

\rightarrow Implicit-Explicit Solver

Questions:

■ Higher order → Passive methods?

Two-step steady state algorithm:

- 1a. Linear mass-flux steady-state: $A_{pq} \bar{q} = -B_{pd} \bar{d}_q$
- 1b. Linear pressure steady-state: $A_{qp} \bar{p} = -\left(B_{qs} \bar{s}_p + F_c\right)$
- 2. Corrected pressure steady-state: $A_{qp}p_{k+1} = -(B_{qs}\bar{s}_p + F_c + f_q(p_k, \bar{q}, \theta))$
 - Note, A and B do not depend on the parameter!
 - Step 1a and Step 1b via QR-least-norm (in parallel).
 - Repeat Step 2 until happy (reuse QR of Step 1b).
 - Repeating Step 2 is a special case of an IMEX solver.
 - If more accuracy is needed, iterate with 1st order IMEX solver.
 - Practically, z_0 is also computed in Step 2.

So CSC Model Order Reduction

Wishlist:

- Input-output focus → System-theoretic methods!
- Handle nonlinearity → Data-driven methods!
- Handle hyperbolicity → Custom (but generic) training!
- Handle parametricity → Averaging trajectories!
- Preserve structure → Block-diagonal projectors!

\rightarrow (Structured) Empirical System Gramians

Questions:

- Square system → Cross Gramian?
- Preserve pH structure → Galerkin projector?
- Exploit pH structure → Observability as dual reachability?

Solution Methods

Tested Methods (implemented variants):

- 1 Structured Proper Orthogonal Decomposition
- 6 Structured Empirical Dominant Subspaces
- 2 Structured Balanced Proper Orthogonal Decomposition
- 6 Structured Empirical Balanced Truncation
- 1 Structured Goal-Oriented Proper Orthogonal Decomposition
- 6 Structured Empirical Balanced Gains
- 1 Structured Dynamic Mode Decomposition Galerkin

\rightarrow Short training, long testing

csc) Yamal-Europe Pipeline

(CC-BY-SA Samuel Bailey https://en.wikipedia.org/wiki/Yamal%E2%80%93Europe_pipeline)

Nonlinear midpoint discretization vs Linear endpoint discretization.

(CC-BY GasLib http://gaslib.zib.de)

Nonlinear midpoint discretization vs Linear endpoint discretization.

	ode_mid imex_1	ode_end imex_1	ode_end imex_1*
pod_r	0.14	0.14	
eds_ro	0.04	0.07	0.16
eds_wx	0.07	0.07	0.13
eds_wz	0.09	0.09	0.12
bpod_ro	0.05	0.07	0.00
ebt_ro	0.05	0.05	0.00
ebt_wx	0.00	0.00	0.00
ebt_wz	0.00	0.00	0.00
gopod_r	0.09	0.10	
ebg_ro	0.01	0.02	0.00
ebg_wx	0.00	0.00	0.00
ebg_wz	0.00	0.00	0.00
dmd_r	0.20	0.20	

¹C. Himpe. **Comparing (empirical-Gramian-based) model order reduction algorithms**. In Model Reduction of Complex Dynamical Systems. Springer, 2021. https://arxiv.org/abs/2002.12226

Model Order Reduction for Gas and Energy Networks:

- Open-source (BSD-2-Clause)
- High-Level (MATLAB and OCTAVE)
- Efficient (Decomposition caching)
- Modular (Six modules)
- Configurable (Multi-level configuration)
- Extensible (Contributions welcome)

Modules (currently included):

- 2 Models >20 Networks
- 4 Solvers >20 Tests
- 23 Reductors 6 Tools

Some State Seene Gas Network Simulation

Model: Port-Hamiltonian (i.e. endpoint discretization) Solver: Implicit-Explicit (i.e. 1st order IMEX) Reductor: Structured Galerkin (i.e. dominant subspaces, DMD-Galerkin)

C. Himpe, S. Grundel, P. Benner. Model Order Reduction for Gas and Energy Networks. arXiv, 2021. https://arxiv.org/abs/2011.12099

C. Himpe, S. Grundel. morgen - Model Order Reduction for Gas and Energy Networks. github, 2021. https://git.io/morgen

Acknowledgment:

Supported by the German Federal Ministry for Economic Affairs and Energy, in the joint project: "**MathEnergy** – Mathematical Key Technologies for Evolving Energy Grids", sub-project: Model Order Reduction (Grant number: 0324019**B**).