

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

Compressed Gas Network Digital Twins C. Himpe, S. Grundel, P. Benner

Computational Methods in Systems and Control Theory Group Max Planck Institute Magdeburg

KLAIM – Kaiserslautern Applied and Industrial Mathematics Days Track: Multiscale Methods and Model Order Reduction 2021–10–13

0. About

- 1. Digital Twins
- 2. Gas Networks
- 3. Compression

4. Example

∞ csc The Gas Network Challenge

- \blacksquare More renewable energy \rightarrow More volatility
- \blacksquare Gas-fired power plants $~\rightarrow~$ Fast reacting energy conversion
- Biogas and hydrogen \rightarrow Convertible green energy
- Gas networks \rightarrow Transport and store energy
- International infrastructure \rightarrow Large-scale network
- Intraday interactions \rightarrow Dynamic simulations
- Uncertainties \rightarrow Many day-ahead simulations, every day

Applied math to the rescue!¹

¹T. Clees, A. Baldin, P. Benner, S. Grundel, C. Himpe, B. Klaassen, F. Küsters, N. Marheineke, L. Nikitina, I. Nikitin, J. Pade, N. Stahl, C. Strohm, C. Tischendorf, A. Wirsen: MathEnergy – Mathematical Key Technologies for Evolving Energy Grids; in: Mathematical Modeling, Simulation and Optimization for Power Engineering and Management, Mathematics in Industry (34): 233–262, 2021. doi:10.1007/978-3-030-62732-4.11

- 1. Digital twin (DT) \Rightarrow Physical twin (PT)
- 2. Digital \Rightarrow Machine-readable encoding
- 3. Twin \Rightarrow Data-driven coupling

By Data Flow?²

By Data Binding?³

• A (virtual) model relating to a real thing: $PT \mapsto DT$

- Data sets relating to the physical twin: $f_d(DT, f_{III}) \approx f_p(PT, f_{III})$
- Adjustability of the model to data: $f_d^*([DT], \square, \square) = f_p([PT], \square)$

²W. Kritzinger, M. Karner, G. Traar, J. Henjes, W. Sihn: Digital Twin in manufacturing: A categorical literature review and classification; IFAC PapersOnLine 51–11: 1016–1022, 2018. doi:10.1016/j.ifacol.2018.08.474

³L. Wright, S. Davidson: How to tell the difference between a model and a digital twin; Advanced Modeling and Simulation in Engineering Science 7: 13, 2020. doi:10.1186/s40323-020-00147-4

Sc Gas Network Simulation

Type:

- Steady-state or dynamic simulation?
- Transport or distribution network?

\rightarrow Transient gas transport network simulations.

Effect:

- Complexity due to nonlinearity!
- Large-scale due to hyperbolicity!

Isothermal Euler Equations in a Long Pipe:

$$\frac{1}{\gamma_0 z_0} \partial_t p = -\frac{1}{S} \partial_x q$$
$$\partial_t q = -S \partial_x p - \Big(\underbrace{\frac{S g h_x}{\gamma_0 z_0}}_{\text{Gravity}} p + \underbrace{\frac{\gamma_0 z_0 \lambda_0}{2 d S}}_{\text{Friction}} \frac{|q| q}{p}\Big)$$

- $\ \ \, \blacksquare \ \ \, {\rm Pressure} \ \, p(x,t)$
- Mass-Flux q(x,t)
- Pipe Incline h_x

- Pipe Diameter d
- Pipe Cross-Section S
- Gravity Acceleration g
- **Friction Factor** λ_0
- Compressibility Factor z₀
- Gas State $\gamma_0 = T_0 R_S$

💿 Gas Network Model

Spatial Discretization and Index Reduction (Endpoint Discretization):

$$(\mathcal{A}_{0,R}D_p^{-1}d_0 \,\mathcal{A}_{0,R}^{\mathsf{T}}) \,\dot{p} = -\mathcal{A}_0 \,q^L + \mathcal{B}_d \,d_q D_q^{-1} \dot{q}^L = \mathcal{A}_0^{\mathsf{T}} \,p + \mathcal{B}_s^{\mathsf{T}} s_p - \left(D_g d_0 \,\mathcal{A}_{0,R}^{\mathsf{T}} \,p + D_q^{-1} D_f \frac{|q^L| \,q^L}{d_0 \mathcal{A}_{0,R}^{\mathsf{T}} \,p} \right)$$

- Incidence Matrix \mathcal{A}_0
- Outflow Incidence Matrix A_{0,R}
- Pressure Boundary Operator \mathcal{B}_s
- Mass-Flux Boundary Operator \mathcal{B}_d

- Inflow Mass-Flux $q^L(t)$
- Outflow Pressure p(t)
- Boundary Pressure $s_p(t)$
- Boundary Mass-flux $d_q(t)$

🐼 🚥 Input-Output System

Quantities of Interest, Parametrization and Additive Compressors:

$$\underbrace{\begin{pmatrix} E_{p}(\theta) & 0\\ 0 & E_{q} \end{pmatrix}}_{y} \underbrace{\begin{pmatrix} \dot{p}\\ \dot{q} \end{pmatrix}}_{y} = \underbrace{\begin{pmatrix} 0 & A_{pq}\\ \hat{A}_{qp} & 0 \end{pmatrix}}_{C} \underbrace{\begin{pmatrix} p\\ q \end{pmatrix}}_{q} + \underbrace{\begin{pmatrix} 0 & B_{pd}\\ B_{qs} & 0 \end{pmatrix}}_{(B_{qs} & 0)} \underbrace{\begin{pmatrix} s_{p}\\ d_{q} \end{pmatrix}}_{(d_{q})} + \underbrace{\begin{pmatrix} 0\\ F_{c} + f_{q}(p, q, \theta) \end{pmatrix}}_{(F_{c} + f_{q}(p, q, \theta))} \underbrace{\begin{pmatrix} s_{q}\\ d_{p} \end{pmatrix}}_{y} = \underbrace{\begin{pmatrix} 0 & C_{sq}\\ C_{dp} & 0 \end{pmatrix}}_{C} \underbrace{\begin{pmatrix} p\\ q \end{pmatrix}}_{C}$$

- Mass matrix E
- System matrix A
- Input matrix B
- Output matrix C
- Nonlinearity f

- Evolution \dot{x}
- State x
- Input u
- Output y
- Parameter θ

Input-Output System:

$$\begin{aligned} E\dot{x}(t) &= Ax(t) + Bu(t) + f(x(t)) \\ y(t) &= Cx(t) \end{aligned}$$

Conditions:

 $E = E^{\mathsf{T}} \ge 0$ A = (J - R)Q $J = -J^{\mathsf{T}}$ $R = R^{\mathsf{T}} \ge 0$ $Q = Q^{\mathsf{T}} > 0$ B = (G - P) $C = (G + P)^{\mathsf{T}}Q$ f ?

Components:

- J Energy Flux
- R Energy Dissipation
- Q Energy Storage
- G Resistive Ports
- P Control Ports

Sc Input-State-Output Port-Hamiltonian System

Input-Output System:

$$E\dot{x}(t) = (Ax(t) + f(x(t)) + Bu(t))$$
$$y(t) = Cx(t)$$

Conditions:

 $E = E^{\mathsf{T}} \ge 0$ A = JQ $J = -J^{\mathsf{T}}$ $Q = Q^{\mathsf{T}} > 0$ f(x(t)) = -R(x(t))Qx(t) $R(x(t)) = R(x(t))^{\mathsf{T}} \ge 0$ B = (G - P) $C = (G + P)^{\mathsf{T}}Q$

Components:

- *J* Energy Flux
- R Energy Dissipation
- Q Energy Storage
- G Resistive Ports
- P Control Ports

Input-Output System:

$$\begin{aligned} E\dot{x}(t) &= (J - R(x(t))Qx(t) + (G - P)u(t) \\ y(t) &= (G + P)^{\mathsf{T}}Qx(t) \end{aligned}$$

Conditions:

 $\begin{array}{l} E = E^{\mathsf{T}} \geq 0 \\ \bullet \ A = JQ \\ \bullet \ J = -J^{\mathsf{T}} \\ \bullet \ Q = Q^{\mathsf{T}} > 0 \\ \bullet \ f(x(t)) = -R(x(t))Qx(t) \\ \bullet \ R(x(t)) = R(x(t))^{\mathsf{T}} \geq 0 \\ \bullet \ B = (G-P) \\ \bullet \ C = (G+P)^{\mathsf{T}}Q \end{array}$

Components:

- *J* Energy Flux
- R Energy Dissipation
- Q Energy Storage
- G Resistive Ports
- P Control Ports

Gas Network Digital Twin

Do we have a digital twin?

- Mathematical model (based on physics)
- Network topology (i.a. of real networks)
- Scenario data (i.e. supply pressure, demand mass-flux, compressor settings)
- Model parameters (i.e. gas composition, temperature, pipe roughness)
- Adjustability (i.e. friction formula, compressibility formula, efficiency factor)

$$ightarrow$$
 Yes!⁴

⁴Using the *data binding* definition.

Sc Compression: Model Reduction

Goals:

- Faster simulations,
- via smaller state-space $(\dim(x_r) \ll \dim(x))$,
- but preserving input-output behavior $(\|\tilde{y} y\| \ll 1)$.

Means:

- \blacksquare Input-output system $~\rightarrow~$ System-theoretic model reduction
- \blacksquare Parametric system \rightarrow Robust model reduction
- \blacksquare Nonlinear system \rightarrow Data-driven model reduction
- \blacksquare Coupled system $~\rightarrow~$ Structured model reduction
- Large-scale system \rightarrow "Port-Hamiltonian model reduction"
- Hyperbolic system \rightarrow Dominant subspace model reduction^{5,6}?

⁵P. Benner, C. Himpe: Cross-Gramian-Based Dominant Subspaces; Advances in Computational Mathematics 45(5): 2533–2553, 2019. doi:10.1007/s10444-019-09724-7

⁶S. Grundel, C. Himpe, J. Saak: **On Empirical System Gramians**; Proceedings in Applied Mathematics and Mechanics 19: e201900006, 2019. doi:10.1002/pamm.201900006

Sc CSC Projection-Based Model Reduction

Petrov-Galerkin Projection:

$$U \in \mathbb{R}^{N \times n}, V \in \mathbb{R}^{n \times N}, VU = I_n$$

Idea:

$$\dot{x} = f(x) \quad \stackrel{x_r := Vx}{\xrightarrow{\longrightarrow}} \quad U\dot{x}_r = f(Ux_r) \quad \stackrel{VU = I_n}{\xrightarrow{\longrightarrow}} \quad \dot{x}_r = Vf(Ux_r)$$

Reduced Order Model (ROM):

$$VE(U\dot{x}_r(t)) = VA(Ux_r(t)) + VBu(t) + Vf(Ux_r(t))$$
$$\tilde{y}(t) = C(Ux_r(t))$$

Structured Projection \rightarrow Structured ROM:

$$U = \begin{pmatrix} U_1 & 0\\ 0 & U_2 \end{pmatrix}, V = \begin{pmatrix} V_1 & 0\\ 0 & V_2 \end{pmatrix}$$

Sc CSC Projection-Based Model Reduction

Petrov-Galerkin Projection:

$$U \in \mathbb{R}^{N \times n}, V \in \mathbb{R}^{n \times N}, VU = I_n$$

Idea:

$$\dot{x} = f(x) \quad \stackrel{x_r := Vx}{\xrightarrow{\longrightarrow}} \quad U\dot{x}_r = f(Ux_r) \quad \stackrel{VU = I_n}{\xrightarrow{\longrightarrow}} \quad \dot{x}_r = Vf(Ux_r)$$

Reduced Order Model (ROM):

$$(VEU)\dot{x}_r(t) = (VAU)x_r(t) + (VB)u(t) + Vf(Ux_r(t))$$
$$\tilde{y}(t) = (CU)x_r(t)$$

Structured Projection \rightarrow Structured ROM:

$$U = \begin{pmatrix} U_1 & 0\\ 0 & U_2 \end{pmatrix}, V = \begin{pmatrix} V_1 & 0\\ 0 & V_2 \end{pmatrix}$$

Sc CSC Projection-Based Model Reduction

Petrov-Galerkin Projection:

$$U \in \mathbb{R}^{N \times n}, V \in \mathbb{R}^{n \times N}, VU = I_n$$

Idea:

$$\dot{x} = f(x) \quad \stackrel{x_r := Vx}{\longrightarrow} \quad U\dot{x}_r = f(Ux_r) \quad \stackrel{VU = I_n}{\rightarrow} \quad \dot{x}_r = Vf(Ux_r)$$

Reduced Order Model (ROM):

$$E_r \dot{x}_r(t) = A_r x_r(t) + B_r u(t) + V f(U x_r(t))$$
$$\tilde{y}(t) = C_r x_r(t)$$

Structured Projection \rightarrow Structured ROM:

$$U = \begin{pmatrix} U_1 & 0\\ 0 & U_2 \end{pmatrix}, V = \begin{pmatrix} V_1 & 0\\ 0 & V_2 \end{pmatrix}$$

Data-Driven Reachability:

$$W_R := \sum_{k=1}^K \sum_{m=1}^{N_s+N_d} \int_0^T X_m(t;\theta_k) \ X_m(t;\theta_k)^{\mathsf{T}} \, \mathrm{d}t$$

Data-Driven Observability (for nonlinear systems):

$$W_O := \sum_{k=1}^K \int_0^T Y_{[1:N]}(t;\theta_k)^{\mathsf{T}} Y_{[1:N]}(t;\theta_k) \,\mathrm{d}t$$

 \rightarrow SVD of W_R (and W_O or W_R^*) then defines projectors.

Data-Driven Reachability:

$$W_R := \sum_{k=1}^K \sum_{m=1}^{N_s+N_d} \int_0^T X_m(t;\theta_k) \ X_m(t;\theta_k)^{\mathsf{T}} \, \mathrm{d}t$$

Data-Driven Adjoint Reachability (= observability for port-Hamiltonian systems):

$$W_R^* := \sum_{k=1}^K \sum_{m=1}^{N_s + N_d} \int_0^T Z_m(t;\theta_k) \ Z_m(t;\theta_k)^{\mathsf{T}} \, \mathrm{d}t$$

 \rightarrow SVD of W_R (and W_O or W_R^*) then defines projectors.

So CSC Tested Reductors

Reductor	Variants
Proper Orthogonal Decomposition (POD)	Reachability
Empirical Dominant Subspaces	Reachability & Observability
Empirical Dominant Subspaces	Minimality
Empirical Dominant Subspaces	Averaged Minimality
Balanced POD	Reachability & Observability
Empirical Balanced Truncation	Reachability & Observability
Empirical Balanced Truncation	Minimality
Empirical Balanced Truncation	Averaged Minimality
Goal-Oriented POD	Reachability
Empirical Balanced Gains	Reachability & Observability
Empirical Balanced Gains	Minimality
Empirical Balanced Gains	Averaged Minimality
Dynamic Mode Decomposition Galerkin	Reachability

- Quality of the dynamic solution determines data-driven ROM quality.
- The initial condition for the dynamic problem is steady state solution.
- Steady-state problem is solved by iterated QR-based least-norm solver.
- Nonlinear system \rightarrow explicit solver *vs*. Stiff system \rightarrow implicit solver.

Tested Solvers	Туре
ode23s	Adaptive 2nd Order Rosenbrock
IMEX1	1st Order Implicit-Explicit
IMEX2	2nd Order Implicit-Explicit Runge-Kutta
RK4	4th Order "Classic" Explicit Runge-Kutta
RK52	5-Stage, 2nd Order Hyperbolic Runge-Kutta
RK64	6-Stage, 4th Order Hyperbolic Runge-Kutta

So Many-to-Many Benchmarking

How to compare ... ?

- 2 Models 13 Reductors
- 6 Solvers > 30 Networks

MORscore!⁷

- Lowest attained error?
- Fastest error decay?
- Non-monotonic error decay?
- Sortable measure?
- \rightarrow MORscore: Area above error graph.

⁷C. Himpe: Comparing (Empirical-Gramian-Based) Model Order Reduction Algorithms; in: Model Reduction of Complex Dynamical Systems: 141–164, 2021. doi:10.1007/978-3-030-72983-7_7

Some set the set of th

- Supply nodes: 1
- Demand nodes: 5
- Compressors: 1
- Solver: IMEX1
- Reductors: 6 (Galerkin-only)

- Boundary ports: 6
- State space: 1205
- Time horizon: 24h
- Training*: Step inputs
- Scenario: Random demands

🐼 🚥 Numerical Results

Reductor	MORscore
Proper Orthogonal Decomposition	0.17
Empirical Dominant Subspaces (RO)	0.25
Empirical Dominant Subspaces (WX)	0.05
Empirical Dominant Subspaces (WZ)	0.01
Goal-Oriented POD	0.13
Dynamic Mode Decomposition Galerkin	0.16

Struct. Proper Orthogonal Decomposition
Struct. Empirical Dominant Subspaces (RO)
Struct. Empirical Dominant Subspaces (WX)
 Struct. Empirical Dominant Subspaces (WZ)
Struct. Goal-Oriented POD
Struct. Dynamic Mode Decomposition Galerkin

After numerous tests with various networks we recommend:

Model: Port-Hamiltonian Endpoint Discretization

- Solver: 1st Order Implicit-Explicit Time Stepper
- Reductor: Empirical Dominant Subspaces (Reachability-Observability)

C. Himpe, S. Grundel, P. Benner: **Model Order Reduction for Gas and Energy Networks**; Journal of Mathematics in Industry 11: 13, 2021. doi:10.1186/s13362-021-00109-4