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The Gas Network Challenge

More renewable energy → More volatility

Gas-fired power plants → Fast reacting energy conversion

Biogas and hydrogen → Convertible green energy

Gas networks → Transport and store energy

International infrastructure → Large-scale network

Intraday interactions → Dynamic simulations

Uncertainties → Many day-ahead simulations, every day︸ ︷︷ ︸
Applied math to the rescue!1

1
T. Clees, A. Baldin, P. Benner, S. Grundel, C. Himpe, B. Klaassen, F. Küsters, N. Marheineke, L. Nikitina, I. Nikitin,

J. Pade, N. Stahl, C. Strohm, C. Tischendorf, A. Wirsen: MathEnergy – Mathematical Key Technologies for Evolving Energy
Grids; in: Mathematical Modeling, Simulation and Optimization for Power Engineering and Management, Mathematics in
Industry (34): 233–262, 2021. doi:10.1007/978-3-030-62732-4 11
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Digital. Twin.

1. Digital twin (DT) ⇒ Physical twin (PT)

2. Digital ⇒ Machine-readable encoding

3. Twin ⇒ Data-driven coupling
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Classification

By Data Flow?2

Digital Model: PT
manual−−−−−−→←−−−−−−
manual

DT

Digital Shadow: PT
automatic−−−−−−→←−−−−−−
manual

DT

Digital Twin: PT
automatic−−−−−−→←−−−−−−
automatic

DT

By Data Binding?3

A (virtual) model relating to a real thing: PT 7→ DT

Data sets relating to the physical twin: fd( DT , ) ≈ fp( PT , )

Adjustability of the model to data: f ∗d ( DT , , ) = fp( PT , )
2
W. Kritzinger, M. Karner, G. Traar, J. Henjes, W. Sihn: Digital Twin in manufacturing: A categorical literature review

and classification; IFAC PapersOnLine 51–11: 1016–1022, 2018. doi:10.1016/j.ifacol.2018.08.474
3
L. Wright, S. Davidson: How to tell the difference between a model and a digital twin; Advanced Modeling and

Simulation in Engineering Science 7: 13, 2020. doi:10.1186/s40323-020-00147-4
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Gas Network Simulation

Type:

Steady-state or dynamic simulation?

Transport or distribution network?

→ Transient gas transport network simulations.

Effect:

Complexity due to nonlinearity!

Large-scale due to hyperbolicity!
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Gas Pipeline Model

Isothermal Euler Equations in a Long Pipe:

1

γ0 z0
∂tp = −

1

S
∂xq

∂tq = −S ∂xp−
( S g hx
γ0 z0

p︸ ︷︷ ︸
Gravity

+
γ0 z0λ0
2 d S

|q| q
p︸ ︷︷ ︸

Friction

)

Pressure p(x, t)

Mass-Flux q(x, t)

Pipe Incline hx

Pipe Diameter d

Pipe Cross-Section S

Gravity Acceleration g

Friction Factor λ0

Compressibility Factor z0

Gas State γ0 = T0RS
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Gas Network Model

Spatial Discretization and Index Reduction (Endpoint Discretization):

(A0,RD
−1
p d0Aᵀ

0,R) ṗ = −A0 q
L+ Bd dq

D−1q q̇L = Aᵀ
0 p+ B

ᵀ
ssp −

(
Dgd0Aᵀ

0,R p+D−1q Df
|qL| qL

d0Aᵀ
0,R p

)

Incidence Matrix A0

Outflow Incidence Matrix A0,R

Pressure Boundary Operator Bs
Mass-Flux Boundary Operator Bd

Inflow Mass-Flux qL(t)

Outflow Pressure p(t)

Boundary Pressure sp(t)

Boundary Mass-flux dq(t)
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Input-Output System

Quantities of Interest, Parametrization and Additive Compressors:

E︷ ︸︸ ︷(
Ep(θ) 0
0 Eq

) ẋ︷︸︸︷(
ṗ
q̇

)
=

A︷ ︸︸ ︷(
0 Apq

Âqp 0

) x︷︸︸︷(
p
q

)
+

B︷ ︸︸ ︷(
0 Bpd

Bqs 0

) u︷ ︸︸ ︷(
sp
dq

)
+

f︷ ︸︸ ︷(
0

Fc+fq(p, q, θ)

)
(
sq
dp

)
︸ ︷︷ ︸

y

=

(
0 Csq

Cdp 0

)
︸ ︷︷ ︸

C

(
p
q

)

Mass matrix E

System matrix A

Input matrix B

Output matrix C

Nonlinearity f

Evolution ẋ

State x

Input u

Output y

Parameter θ
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Input-State-Output Port-Hamiltonian System

Input-Output System:

Eẋ(t) = Ax(t) +Bu(t) + f(x(t))

y(t) = Cx(t)

Conditions:

E = Eᵀ ≥ 0

A = (J −R)Q
J = −Jᵀ

R = Rᵀ ≥ 0
Q = Qᵀ > 0

B = (G− P )
C = (G+ P )ᵀQ

f ?

Components:

J Energy Flux

R Energy Dissipation

Q Energy Storage

G Resistive Ports

P Control Ports
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Gas Network Digital Twin

Do we have a digital twin?

Mathematical model (based on physics)

Network topology (i.a. of real networks)

Scenario data (i.e. supply pressure, demand mass-flux, compressor settings)

Model parameters (i.e. gas composition, temperature, pipe roughness)

Adjustability (i.e. friction formula, compressibility formula, efficiency factor)

→ Yes!4

4Using the data binding definition.
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Compression: Model Reduction

Goals:

Faster simulations,

via smaller state-space (dim(xr)� dim(x)),

but preserving input-output behavior (‖ỹ − y‖ � 1).

Means:

Input-output system → System-theoretic model reduction

Parametric system → Robust model reduction

Nonlinear system → Data-driven model reduction

Coupled system → Structured model reduction

Large-scale system → “Port-Hamiltonian model reduction”

Hyperbolic system → Dominant subspace model reduction5,6?

5
P. Benner, C. Himpe: Cross-Gramian-Based Dominant Subspaces; Advances in Computational Mathematics 45(5):

2533–2553, 2019. doi:10.1007/s10444-019-09724-7
6
S. Grundel, C. Himpe, J. Saak: On Empirical System Gramians; Proceedings in Applied Mathematics and Mechanics 19:

e201900006, 2019. doi:10.1002/pamm.201900006
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Projection-Based Model Reduction

Petrov-Galerkin Projection:

U ∈ RN×n, V ∈ Rn×N , V U = In

Idea:

ẋ = f(x)
xr:=V x→
x≈Uxr

Uẋr = f(Uxr)
V U=In→ ẋr = V f(Uxr)

Reduced Order Model (ROM):

V E(Uẋr(t)) = V A(Uxr(t)) + V Bu(t) + V f(Uxr(t))

ỹ(t) = C(Uxr(t))

Structured Projection → Structured ROM:

U =

(
U1 0
0 U2

)
, V =

(
V1 0
0 V2

)
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Projector Computation

Data-Driven Reachability:

WR :=

K∑
k=1

Ns+Nd∑
m=1

∫ T

0
Xm(t; θk) Xm(t; θk)

ᵀ dt

Data-Driven Observability (for nonlinear systems):

WO :=

K∑
k=1

∫ T

0
Y[1:N ](t; θk)

ᵀ Y[1:N ](t; θk) dt

→ SVD of WR (and WO or W ∗
R) then defines projectors.
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Tested Reductors

Reductor Variants
Proper Orthogonal Decomposition (POD) Reachability
Empirical Dominant Subspaces Reachability & Observability
Empirical Dominant Subspaces Minimality
Empirical Dominant Subspaces Averaged Minimality
Balanced POD Reachability & Observability
Empirical Balanced Truncation Reachability & Observability
Empirical Balanced Truncation Minimality
Empirical Balanced Truncation Averaged Minimality
Goal-Oriented POD Reachability
Empirical Balanced Gains Reachability & Observability
Empirical Balanced Gains Minimality
Empirical Balanced Gains Averaged Minimality
Dynamic Mode Decomposition Galerkin Reachability
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Some Notes on Solvers

Quality of the dynamic solution determines data-driven ROM quality.

The initial condition for the dynamic problem is steady state solution.

Steady-state problem is solved by iterated QR-based least-norm solver.

Nonlinear system → explicit solver vs. Stiff system → implicit solver.

Tested Solvers Type
ode23s Adaptive 2nd Order Rosenbrock
IMEX1 1st Order Implicit-Explicit
IMEX2 2nd Order Implicit-Explicit Runge-Kutta

RK4 4th Order “Classic” Explicit Runge-Kutta
RK52 5-Stage, 2nd Order Hyperbolic Runge-Kutta
RK64 6-Stage, 4th Order Hyperbolic Runge-Kutta
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Many-to-Many Benchmarking

How to compare ... ?

2 Models

6 Solvers

13 Reductors

> 30 Networks

MORscore!7

Lowest attained error?

Fastest error decay?

Non-monotonic error decay?

Sortable measure?

→ MORscore: Area above error graph.

20 40 60 80 100 120 140

Reduced Dimension

10
-6

10
-4

10
-2

10
0

R
e
la

ti
v
e
 L

2
-E

rr
o
r

7
C. Himpe: Comparing (Empirical-Gramian-Based) Model Order Reduction Algorithms; in: Model Reduction of Complex

Dynamical Systems: 141–164, 2021. doi:10.1007/978-3-030-72983-7 7
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Example: KLAIM Network

Supply nodes: 1

Demand nodes: 5

Compressors: 1

Solver: IMEX1

Reductors: 6 (Galerkin-only)

Boundary ports: 6

State space: 1205

Time horizon: 24h

Training∗: Step inputs

Scenario: Random demands
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Numerical Results

Reductor MORscore
Proper Orthogonal Decomposition 0.17
Empirical Dominant Subspaces (RO) 0.25
Empirical Dominant Subspaces (WX) 0.05
Empirical Dominant Subspaces (WZ) 0.01
Goal-Oriented POD 0.13
Dynamic Mode Decomposition Galerkin 0.16
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Struct. Proper Orthogonal Decomposition
Struct. Empirical Dominant Subspaces (RO)
Struct. Empirical Dominant Subspaces (WX)
Struct. Empirical Dominant Subspaces (WZ)
Struct. Goal-Oriented POD
Struct. Dynamic Mode Decomposition Galerkin
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Summary
After numerous tests with various networks we recommend:

Model: Port-Hamiltonian Endpoint Discretization

Solver: 1st Order Implicit-Explicit Time Stepper

Reductor: Empirical Dominant Subspaces (Reachability-Observability)

morgen – Model Order Reduction for Gas and Energy Networks
https://git.io/morgen

C. Himpe, S. Grundel, P. Benner: Model Order Reduction for Gas and Energy
Networks; Journal of Mathematics in Industry 11: 13, 2021.
doi:10.1186/s13362-021-00109-4
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