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Motivation
▶ Some question are not answerable by full-text search.
▶ Not: Here is a reference potentially answering,
▶ rather: Here is an answer based on this reference.
▶ Externalization of learned knowledge and research results.
▶ Faster onboarding of researchers from other fields or fresh PhDs.

→ Knowledge needs machine readable and human queryable encoding.

Outline
1. Data-store
2. Back-end
3. Front-end
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Knowledge Graph Database

▶ What is knowledge? A set of facts.

▶ How to represent knowledge? As a list of statements.

▶ What is a statement? A sentence comprised of subject-predicate-object.

Relational Database Knowledge Graph
Structure Schema Ontology

Data Items Rows Statements
Uniqueness Keys URIs

Query SQL SPARQL
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Encoding Subject-Predicate-Object Triplets
▶ Syntax: RDF - Resource Description Framework

▶ W3C Specification (Version 1.1, 2014)
▶ Industry Standard (no relevant alternatives)
▶ Directed graph of triple statements.

▶ Serialization: Turtle - Terse RDF Triple Language
▶ W3C Recommendation (Version 1.1, 2014)
▶ Human-Readable (and actually readable)
▶ URI-based and similar to SPARQL syntax.

Closely Related W3C Semantic Web Standards:

RDF + Turtle︸ ︷︷ ︸
Database

+ RDFS + OWL︸ ︷︷ ︸
Ontology

+ SPARQL︸ ︷︷ ︸
Query
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It’s Turtles All the Way Down
Ontology = Controlled Vocabulary + Grammar
▶ What are admissible classes (= {subjects ∪ objects}) ?
▶ What are admissible properties (= predicates) ?

▶ What classes may be subjects for what properties?
▶ What classes may be objects for what properties?

Comparable to a defintion of a mapping:

predicate : subjects ⊂ classes︸ ︷︷ ︸
Domain

→ object ⊂ classes︸ ︷︷ ︸
Range

The ontology itself is a knowledge graph!
▶ (see: RDFS - RDF-Schema, and: OWL - Web Ontology Language)
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AlgoData Ontology
▶ :algorithm a owl:Class .
▶ :problem a owl:Class .
▶ :software a owl:Class .
▶ :publication a owl:Class .
▶ :benchmark a owl:Class .

▶ :solves a owl:ObjectProperty ; rdfs:domain :algorithm ; rdfs:range :problem .
▶ :variant-of a owl:ObjectProperty ; rdfs:domain :algorithm ; rdfs:range :algorithm .
▶ :modification-of a owl:ObjectProperty ; rdfs:domain :algorithm ; rdfs:range :algorithm .
▶ :extension-of a owl:ObjectProperty ; rdfs:domain :algorithm ; rdfs:range :algorithm .
▶ :defined-in a owl:ObjectProperty ; rdfs:domain :algorithm ; rdfs:range :publication .
▶ :analyzed-in a owl:ObjectProperty ; rdfs:domain :algorithm ; rdfs:range :publication .
▶ :studied-in a owl:ObjectProperty ; rdfs:domain :algorithm ; rdfs:range :publication .
▶ :used-in a owl:ObjectProperty ; rdfs:domain :algorithm ; rdfs:range :publication .
▶ :reviewed-in a owl:ObjectProperty ; rdfs:domain :algorithm ; rdfs:range :publication .
▶ :specializes a owl:ObjectProperty ; rdfs:domain :problem ; rdfs:range :problem .
▶ :implements a owl:ObjectProperty ; rdfs:domain :software ; rdfs:range :algorithm .
▶ :tests a owl:ObjectProperty ; rdfs:domain :software ; rdfs:range :benchmark .
▶ :documented-in a owl:ObjectProperty ; rdfs:domain :software ; rdfs:range :publication .
▶ :instance-of a owl:ObjectProperty ; rdfs:domain :benchmark ; rdfs:range :problem .
▶ dc:hasIdentifier a owl:ObjectProperty ; rdfs:domain :publication , :benchmark , :software .
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Server Back-End
SPARQL Protocal And RDF Query Language
▶ Uses namespaces (same as knowledge graph)
▶ Uses triplets (same as knowledge graph)
▶ Very powerful

SPARQL endpoint
▶ Allow query and update
▶ Provides SOH (SPARQL-Over-HTTP)
▶ Serves also JSON (Javascript Object Notation)

SPARQL server
▶ Triplet storage
▶ SPARQL endpoint
▶ i.e. Apache Jena Fuseki
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Asking (the Back-End) in Chinese

▶ Statement: Alonzo Church︸ ︷︷ ︸
subject⊂humans

is a︸ ︷︷ ︸
predicate

mathematician︸ ︷︷ ︸
object⊂types

.

▶ English Question:

▶ Chinese Question:

In a sense, the front-end has to translate english to and fro chinese grammar.
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Web Query Front-End
User Interface:
▶ Formulated as an english-language question.
▶ Automatically limit predicates and objects.
▶ Return URI as clickable link.
▶ Return human-readable name.
▶ As simple as possible.

Technically:
▶ JavaScript’s built-in Fetch API for client-side asynchronuous loading.
▶ Fuseki server response in JSON (JavaScript Object Notation).
▶ Overall: Fetch queries via SOH receiving JSON.

MaRDI TA2 M1 10



AlgoData Query Demo
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One Query to Rule Them All
The query front-end dispatches five SPARQL queries:
1. onChange topic: fetch all classes.
2. onChange class: fetch all subject-class predicates.
3. onChange class: fetch all object-class predicates.
4. onChange predicate: fetch all matching subjects or objects respectively.
5. onChange object: fetch answer.

All queries have the same structure:

SELECT DISTINCT ?answer ?label ?id
WHERE { subj pred ?answer .

{ ?answer rdfs:label ?label . }
OPTIONAL { ?answer dc:hasIdentifier ?id . } }
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One Query to Rule Them All
The query front-end dispatches five SPARQL queries:
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Propose & Curate

Plan:
▶ Users can propose statements (i.e. for new publications),

▶ which will be held in a staging graph.

▶ Editors from a topic get assigned round robin.

▶ If three editors vote yes, the statement is included in the topical graph.

▶ Editor (and if needed user) management will also be graphs.
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State of Measure 1
Topics:
▶ Model Order Reduction (Ongoing)
▶ Numerical Linear Algebra (Started)
▶ Runge-Kutta Methods (Planning)
▶ Dynamic Mode Decomposition? (Possibly)
▶ Decentralized Control? (Possibly)

Outlook:
▶ Assess predicates (and extend if necessary)
▶ Optional second-level deducing in queries
▶ Proposal and curation interfaces
▶ Outreach to communities
▶ Super graph
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Summary

▶ Structure: Prototype Ontology (RDFS/OWL)

▶ Database: Algorithm Knowledge Graph (RDF/Turtle)

▶ Backend: Open-Source Fuseki Server (SPARQL/Fuseki)

▶ Frontend: Query Web Interface (JS/JSON)

https://himpe.science
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