
AlgoData – Algorithm Knowledge Graph

René Fritze, Christian Himpe, Hendrik Kleikamp, Mario Ohlberger, Stephan Rave

2022–01–18

MaRDI

N
at

io
nale Forschu

n
g

sD
aten Infrastr

uk
tu

r
M

at

hematical Rese
a
rch Data Initi

at
iv

e

C
o
m

pu
ter Algeb

ra
 Sc

ie
n
tifi

c Com

pu
ting

M
a
ch

ine Learn
in

g

In
te

rd
isc

iplinary
 R

esearch

WWU AMM AGO MPI DCTS CSC

G
ov

ernance

D
at

a Culture a
n
d Commun

it
yM

aR
DI Portal

Kno
w

le
dge G

ra
ph Op

e
n

Interfa
ces

B
en

chmark Framewor
k

C
S

E
 W

orkflo
w

s

C
o
n

s
o
rt

ia
Ta

s
k
 A

re
a
s

M
e
a
s
u

re
s

MaRDI TA2 M1 2

Motivation
▶ Some question are not answerable by full-text search.
▶ Not: Here is a reference potentially answering,
▶ rather: Here is an answer based on this reference.
▶ Externalization of learned knowledge and research results.
▶ Faster onboarding of researchers from other fields or fresh PhDs.

→ Knowledge needs machine readable and human queryable encoding.

Outline
1. Data-store
2. Back-end
3. Front-end

MaRDI TA2 M1 3

Knowledge Graph Database

▶ What is knowledge? A set of facts.

▶ How to represent knowledge? As a list of statements.

▶ What is a statement? A sentence comprised of subject-predicate-object.

Relational Database Knowledge Graph
Structure Schema Ontology

Data Items Rows Statements
Uniqueness Keys URIs

Query SQL SPARQL

MaRDI TA2 M1 4

Encoding Subject-Predicate-Object Triplets
▶ Syntax: RDF - Resource Description Framework

▶ W3C Specification (Version 1.1, 2014)
▶ Industry Standard (no relevant alternatives)
▶ Directed graph of triple statements.

▶ Serialization: Turtle - Terse RDF Triple Language
▶ W3C Recommendation (Version 1.1, 2014)
▶ Human-Readable (and actually readable)
▶ URI-based and similar to SPARQL syntax.

Closely Related W3C Semantic Web Standards:

RDF + Turtle︸ ︷︷ ︸
Database

+ RDFS + OWL︸ ︷︷ ︸
Ontology

+ SPARQL︸ ︷︷ ︸
Query

MaRDI TA2 M1 5

It’s Turtles All the Way Down
Ontology = Controlled Vocabulary + Grammar
▶ What are admissible classes (= {subjects ∪ objects}) ?
▶ What are admissible properties (= predicates) ?

▶ What classes may be subjects for what properties?
▶ What classes may be objects for what properties?

Comparable to a defintion of a mapping:

predicate : subjects ⊂ classes︸ ︷︷ ︸
Domain

→ object ⊂ classes︸ ︷︷ ︸
Range

The ontology itself is a knowledge graph!
▶ (see: RDFS - RDF-Schema, and: OWL - Web Ontology Language)

MaRDI TA2 M1 6

AlgoData Ontology
▶ :algorithm a owl:Class .
▶ :problem a owl:Class .
▶ :software a owl:Class .
▶ :publication a owl:Class .
▶ :benchmark a owl:Class .

▶ :solves a owl:ObjectProperty ; rdfs:domain :algorithm ; rdfs:range :problem .
▶ :variant-of a owl:ObjectProperty ; rdfs:domain :algorithm ; rdfs:range :algorithm .
▶ :modification-of a owl:ObjectProperty ; rdfs:domain :algorithm ; rdfs:range :algorithm .
▶ :extension-of a owl:ObjectProperty ; rdfs:domain :algorithm ; rdfs:range :algorithm .
▶ :defined-in a owl:ObjectProperty ; rdfs:domain :algorithm ; rdfs:range :publication .
▶ :analyzed-in a owl:ObjectProperty ; rdfs:domain :algorithm ; rdfs:range :publication .
▶ :studied-in a owl:ObjectProperty ; rdfs:domain :algorithm ; rdfs:range :publication .
▶ :used-in a owl:ObjectProperty ; rdfs:domain :algorithm ; rdfs:range :publication .
▶ :reviewed-in a owl:ObjectProperty ; rdfs:domain :algorithm ; rdfs:range :publication .
▶ :specializes a owl:ObjectProperty ; rdfs:domain :problem ; rdfs:range :problem .
▶ :implements a owl:ObjectProperty ; rdfs:domain :software ; rdfs:range :algorithm .
▶ :tests a owl:ObjectProperty ; rdfs:domain :software ; rdfs:range :benchmark .
▶ :documented-in a owl:ObjectProperty ; rdfs:domain :software ; rdfs:range :publication .
▶ :instance-of a owl:ObjectProperty ; rdfs:domain :benchmark ; rdfs:range :problem .
▶ dc:hasIdentifier a owl:ObjectProperty ; rdfs:domain :publication , :benchmark , :software .

MaRDI TA2 M1 7

Server Back-End
SPARQL Protocal And RDF Query Language
▶ Uses namespaces (same as knowledge graph)
▶ Uses triplets (same as knowledge graph)
▶ Very powerful

SPARQL endpoint
▶ Allow query and update
▶ Provides SOH (SPARQL-Over-HTTP)
▶ Serves also JSON (Javascript Object Notation)

SPARQL server
▶ Triplet storage
▶ SPARQL endpoint
▶ i.e. Apache Jena Fuseki

MaRDI TA2 M1 8

Asking (the Back-End) in Chinese

▶ Statement: Alonzo Church︸ ︷︷ ︸
subject⊂humans

is a︸ ︷︷ ︸
predicate

mathematician︸ ︷︷ ︸
object⊂types

.

▶ English Question:

▶ Chinese Question:

In a sense, the front-end has to translate english to and fro chinese grammar.

MaRDI TA2 M1 9

Asking (the Back-End) in Chinese

▶ Statement: Alonzo Church︸ ︷︷ ︸
subject⊂humans

is a︸ ︷︷ ︸
predicate

mathematician︸ ︷︷ ︸
object⊂types

.

▶ English Question: What︸ ︷︷ ︸
question word

(formerly object)

is︸︷︷︸
predicate

Alonzo Church︸ ︷︷ ︸
object

(formerly subject)

? A mathematician.

▶ Chinese Question: 阿隆佐·邱奇︸ ︷︷ ︸
subject

是︸︷︷︸
predicate

什么︸︷︷︸
question word

object

？ 他 是 数学家。

In a sense, the front-end has to translate english to and fro chinese grammar.

MaRDI TA2 M1 9

Asking (the Back-End) in Chinese

▶ Statement: Alonzo Church︸ ︷︷ ︸
subject⊂humans

is a︸ ︷︷ ︸
predicate

mathematician︸ ︷︷ ︸
object⊂types

.

▶ English Question: What︸ ︷︷ ︸
question word

(formerly object)

is︸︷︷︸
predicate

Alonzo Church︸ ︷︷ ︸
object

(formerly subject)

? A mathematician.

▶ Chinese Question: Alonzo Church︸ ︷︷ ︸
subject

is︸︷︷︸
predicate

what︸ ︷︷ ︸
question word

object

? He is mathematician.

In a sense, the front-end has to translate english to and fro chinese grammar.

MaRDI TA2 M1 9

Asking (the Back-End) in Chinese

▶ Statement: Alonzo Church︸ ︷︷ ︸
subject⊂humans

is a︸ ︷︷ ︸
predicate

mathematician︸ ︷︷ ︸
object⊂types

.

▶ English Question: What︸ ︷︷ ︸
question word

(formerly object)

is︸︷︷︸
predicate

Alonzo Church︸ ︷︷ ︸
object

(formerly subject)

? A mathematician.

▶ Chinese Question: Alonzo Church︸ ︷︷ ︸
subject

is︸︷︷︸
predicate

what︸ ︷︷ ︸
question word

object

? He is mathematician.

In a sense, the front-end has to translate english to and fro chinese grammar.

MaRDI TA2 M1 9

Web Query Front-End
User Interface:
▶ Formulated as an english-language question.
▶ Automatically limit predicates and objects.
▶ Return URI as clickable link.
▶ Return human-readable name.
▶ As simple as possible.

Technically:
▶ JavaScript’s built-in Fetch API for client-side asynchronuous loading.
▶ Fuseki server response in JSON (JavaScript Object Notation).
▶ Overall: Fetch queries via SOH receiving JSON.

MaRDI TA2 M1 10

AlgoData Query Demo

MaRDI TA2 M1 11

AlgoData Query Demo

MaRDI TA2 M1 11

AlgoData Query Demo

MaRDI TA2 M1 11

AlgoData Query Demo

MaRDI TA2 M1 11

AlgoData Query Demo

MaRDI TA2 M1 11

AlgoData Query Demo

MaRDI TA2 M1 11

One Query to Rule Them All
The query front-end dispatches five SPARQL queries:
1. onChange topic: fetch all classes.
2. onChange class: fetch all subject-class predicates.
3. onChange class: fetch all object-class predicates.
4. onChange predicate: fetch all matching subjects or objects respectively.
5. onChange object: fetch answer.

All queries have the same structure:

SELECT DISTINCT ?answer ?label ?id
WHERE { subj pred ?answer .

{ ?answer rdfs:label ?label . }
OPTIONAL { ?answer dc:hasIdentifier ?id . } }

MaRDI TA2 M1 12

One Query to Rule Them All
The query front-end dispatches five SPARQL queries:
1. onChange topic: fetch all classes.
2. onChange class: fetch all subject-class predicates.
3. onChange class: fetch all object-class predicates.
4. onChange predicate: fetch all matching subjects or objects respectively.
5. onChange object: fetch answer.

All queries have the same structure:

SELECT DISTINCT ?answer ?label ?id
WHERE { ?answer pred obj .

{ ?answer rdfs:label ?label . }
OPTIONAL { ?answer dc:hasIdentifier ?id . } }

MaRDI TA2 M1 12

Propose & Curate

Plan:
▶ Users can propose statements (i.e. for new publications),

▶ which will be held in a staging graph.

▶ Editors from a topic get assigned round robin.

▶ If three editors vote yes, the statement is included in the topical graph.

▶ Editor (and if needed user) management will also be graphs.

MaRDI TA2 M1 13

State of Measure 1
Topics:
▶ Model Order Reduction (Ongoing)
▶ Numerical Linear Algebra (Started)
▶ Runge-Kutta Methods (Planning)
▶ Dynamic Mode Decomposition? (Possibly)
▶ Decentralized Control? (Possibly)

Outlook:
▶ Assess predicates (and extend if necessary)
▶ Optional second-level deducing in queries
▶ Proposal and curation interfaces
▶ Outreach to communities
▶ Super graph

MaRDI TA2 M1 14

Summary

▶ Structure: Prototype Ontology (RDFS/OWL)

▶ Database: Algorithm Knowledge Graph (RDF/Turtle)

▶ Backend: Open-Source Fuseki Server (SPARQL/Fuseki)

▶ Frontend: Query Web Interface (JS/JSON)

https://himpe.science

MaRDI TA2 M1 15

https://en.wikipedia.org/wiki/RDF_Schema
https://en.wikipedia.org/wiki/Web_Ontology_Language
https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/Turtle_(syntax)
https://en.wikipedia.org/wiki/SPARQL
https://en.wikipedia.org/wiki/Apache_Jena#Fuseki
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/JSON
https://himpe.science

