

There and Back Again, Abridged

Christian Himpe

MM Arrival 2022–02–09

About

- Position: PostDoc
- Field: Numerical Mathematics
- Specialty: Model Reduction
- Group: AG Ohlberger
- Office: **Orleans-Ring 10** (120.021)

About

Position: PostDoc

Field: Numerical Mathematics

- Specialty: Model Reduction
- Group: AG Ohlberger
- Office: **Orleans-Ring 10** (120.021)

Projects

- Since 2021-11: Westfälische Wilhelms Universität Münster Algorithm Knowledge Graph & Open Interfaces (MaRDI) https://mardi4nfdi.de
- 2016-2021: Max Planck Institute Magdeburg
 Model Order Reduction for Gas and Energy Networks (MathEnergy) https://mathenergy.de
- 2011–2016: Westfälische Wilhelms Universität Münster Combined State and Parameter Reduction (PhD Project) https://gramian.de

Combined State and Parameter Reduction

Input-Output System:

$\dot{x}(t) = f(x(t), u(t), p)$	dim $(x(t)) \gg 1$	1
---------------------------------	--------------------	---

y(t) = g(x(t), u(t), p) $\dim(p) \gg 1$

Input:	u(t)	Parameter:	р
State:	x(t)	Vector Field:	f
Output:	y(t)	Output Function:	g

Reduced Order Model:

 $\dot{x}_r(t) = f_r(x_r(t), u(t), p_r) \qquad \dim(x_r(t)) \ll \dim(x(t))$ $\tilde{y}(t) = g_r(x_r(t), u(t), p_r) \qquad \dim(p_r) \ll \dim(p)$

 $\|y(p)-\widetilde{y}(p_r)\|\ll 1$

Model Order Reduction for Gas and Energy Networks

Gas Pipeline Model (Isothermal Euler Equations) :

$$\frac{1}{\gamma_0 z_0} \partial_t p = -\frac{1}{5} \partial_x q$$
$$\partial_t q = -S \partial_x p - \left(\underbrace{\frac{Sg h_x}{\gamma_0 z_0}}_{\text{Gravity}} p + \underbrace{\frac{\gamma_0 z_0 \lambda_0}{2 d S} \frac{|q| q}{p}}_{\text{Friction}}\right)$$

Pressure:p(x, t)Pipe Diameter:dFriction Factor: λ_0 Mass-Flux:q(x, t)Pipe Cross-Section:SCompressibility: z_0 Pipe Incline: h_x Gravity Acceleration:gGas State: γ_0

Mathematical Research Data Initiative

Furthermore

- Mathematical Software and Reproducibility
- Model Reduction for Hyperbolic Input-Output Systems
- Runge-Kutta Methods for Hyperbolic Systems
- Time-Domain Nonlinear System Identification
- Properties of the Empirical Cross Gramian

Knowledgeable

System Theory

- Model Reduction
 - Parameter Identification
- System Identification
- Numerical Mathematics
 - Scientific Computing
 - Unsupervised Learning
 - Dynamic Mode Decomposition
- Computer Programming
 - MATLAB / Octave
 - Reproducibility
 - Research Software Engineering

Me and Mathematics Münster

Structure:

The algorithm knowledge graph will help structural understanding.

C. Models and Approximation:

My model reduction research fits into this project.

Why I Applied

MaRDI bundles and heads FAIR practices in mathematics.

- New Challenge: Knowledge graphs.
 - Fantastic conditions.

Curious

How do you do your research for algorithms?

How do you interface with other software?

Are you handling high-dimensional dynamic input-output systems?

Cluster Events?

Having a beer with everybody. Maybe in summer?

Extracurricular

- I was a saxophonist in muMPItz, the MPI Magdeburg's jazz combo. I am looking for a new jazz band in Münster ...
- I would consider myself a Scheme enthusiast. Is there a something like a Lisp/Scheme/Clojure user group?

Summary

- MaRDI Mathematical Research Data Initiative
- Replicability, Reproducibility, Reusability, Sustainability
- Model Reduction, System Theory, Scientific Computing

https://himpe.science