

Data-Driven Model Reduction for Gas Network Digital Twins

C. Himpe, S. Grundel, P. Benner

Model Reduction and Surrogate Modeling (MORE)

2022-09-21

> Why Gas Networks?

Gas Transport is Complicated:

- Continent-spanning infrastructure
- Daily, reliable and safe delivery
- Cost and resource efficient transmission
- Weather-dependent consumption

Green Energy Transition:

- Volatile production: biogas, hydrogen
- Gas-fired power-plants
- Energy storage

ightarrow Many 24h forecast simulations!

> Why Gas Networks?

Gas Transport is Complicated:

- Continent-spanning infrastructure
- Daily, reliable and safe delivery
- Cost and resource efficient transmission
- Weather-dependent consumption

Green Energy Transition:

- Volatile production: biogas, hydrogen
- Gas-fired power-plants
- Energy storage

Recent Events!

ightarrow Even more 24h forecast simulations!

> Gas Pipeline

Friction-Dominated 1D Isothermal Euler Equations:

 $\begin{array}{c} \displaystyle \frac{1}{T_0\,R_S\,z_0}\,\partial_t p = -\frac{1}{S}\,\partial_x q & \quad \\ \displaystyle \partial_t q = -S\,\partial_x p - \Big(\underbrace{\frac{S\,g\,h_x}{T_0\,R_S\,z_0} p}_{T_0\,R_S\,z_0} + \underbrace{\frac{T_0\,R_S\,z_0\lambda_0}{2\,d\,S}\frac{|q|\,q}{p} \Big) \end{array}$

- **Pressure:** p(x,t)
- Mass-Flux: q(x,t)
- Pipe Incline: h_x
- ▶ Pipe Diameter: *d*
- ▶ Pipe Cross-Section: S

- Friction Factor: λ_0
- Compressibility Factor: z_0
- Free Temperature: $T_0 =: \theta_1$
- Specific Gas Constant: $R_S =: \theta_2$
- ► Gravity Acceleration: g

> Gas Network

Kirchhoff Laws:

1. The sum of mass-flux in- and outflows at every junction is zero:

$$\mathcal{A}\,q(t)=\mathcal{B}_d\,d_q(t)$$

2. The sum of pressure drops in every fundamental loop is zero. \rightarrow Nodal pressures at in-flows equal to boundary function:

$$\mathcal{A}_0^\top \, p(t) + \mathcal{B}_s^\top \, s_p(t) = |\mathcal{A}_0^\top| \, p(t)$$

- Incidence Matrix: A
- Reduced Incidence Matrix: A_0
- Boundary Pressure Map: \mathcal{B}_s
- **b** Boundary Mass-Flux Map: \mathcal{B}_d

- Pressure: p(t)
- Mass-Flux: q(t)
- Pressure Boundary: $s_p(t)$
- Mass-Flux Boundary: $d_q(t)$

> Input-Output System

Index Reduced Endpoint Discretization:

Christian Himpe (https://himpe.science)

> Digital Twin

Data Binding Definition for Digital Twins¹:

- A (virtual) model relating to a real thing: $PT \mapsto DT$
- > Data sets relating to the physical twin: $f_d(DT)$, $f_p(PT)$, $f_p(PT)$, $f_p(PT)$
- Adjustability of the model to data: $f_d^*(DT, \mathbf{I}, \mathbf{I}) = f_p(PT, \mathbf{I})$

Do We Have a Digital Twin? Yes:

- Mathematical model (based on physics)
- Network topology (i.a. of real networks)
- Scenario data (i.e. supply pressure, demand mass-flux, compressor settings)
- Model parameters (i.e. gas composition, temperature, pipe roughness)
- Adjustability (i.e. friction formula, compressibility formula, efficiency factor)

¹L. Wright, S. Davidson: **How to tell the difference between a model and a digital twin;** Advanced Modeling and Simulation in Engineering Science 7: 13, 2020. doi:10.1186/s40323-020-00147-4

Situation:

Quantities of Interest

Solution: System-Theoretic Methods

Model Reduction for Gas Network Digital Twins

Situation:

Structured System

Solution:

Block-Diagonal Projections

Model Reduction for Gas Network Digital Twins

Situation:

- Quantities of Interest
- Structured System
- Parametric System

Model Reduction for Gas Network Digital Twins

Solution:

- System-Theoretic Methods
- Block-Diagonal Projections

- This image is a resource from Flaticon.com
- Accumulated Computation (of system-theoretic operators)

Situation:

- Ouantities of Interest
- Structured System
- Parametric System
- Nonlinear System

Solution:

- System-Theoretic Methods
- **Block-Diagonal Projections**
- This image is a resource from Flaticon.com Accumulated Computation (of system-theoretic operators)
- Data-Driven Computation (of system-theoretic operators)

Model Reduction for Gas Network Digital Twins

Situation:

- Quantities of Interest
- Structured System
- Parametric System
- Nonlinear System
- Hyperbolic System

Solution:

- System-Theoretic Methods
- Block-Diagonal Projections
- Accumulated Computation (of system-theoretic operators)
- Data-Driven Computation (of system-theoretic operators)
- Step instead of Impulse Training

Model Reduction for Gas Network Digital Twins

This image is a resource from Flaticon.com

Situation:

- Quantities of Interest
- Structured System
- Parametric System
- Nonlinear System
- Hyperbolic System

Solution:

- System-Theoretic Methods
- Block-Diagonal Projections
- Accumulated Computation (of system-theoretic operators)
- Data-Driven Computation (of system-theoretic operators)
- Step instead of Impulse Training

Which data-driven system-theoretic method works (best)?

Model Reduction for Gas Network Digital Twins

This image is a resource from Flaticon.com

Situation:

- Quantities of Interest
- Structured System
- Parametric System
- Nonlinear System
- Hyperbolic System

Solution:

- System-Theoretic Methods
- Block-Diagonal Projections
- Accumulated Computation (of system-theoretic operators)
- Data-Driven Computation (of system-theoretic operators)
- Step instead of Impulse Training

Which unsupervised learning method works (best)?

This image is a resource from Flaticon.com

> Projection-Based Model Reduction

Goal:

 $n:=\dim(x_r(t))\ll\dim(x(t))=:N\quad \text{s.t.}\quad \|y(\theta)-\tilde{y}(\theta)\|\ll 1$

Global Structured Reducing and Reconstructing Projections:

$$x_r(t) := \underbrace{\begin{pmatrix} V_p & 0 \\ 0 & V_q \end{pmatrix}}_{V_r \in \mathbb{R}^{n \times N}} x(t) \rightarrow x(t) \approx \underbrace{\begin{pmatrix} U_p & 0 \\ 0 & U_q \end{pmatrix}}_{U_r \in \mathbb{R}^{N \times n}} x_r(t)$$

Projection-Based Reduced Order Model:

$$\begin{split} \left(V_r E(\theta) U_r\right) \dot{x}_r(t) &= \left(V_r A U_r\right) x_r(t) + \left(V_r B\right) u(t) + V_r \, f(U_r x_r(t), u(t), \theta) \\ \tilde{y}(t) &= \left(C U_r\right) x_r(t) \end{split}$$

Christian Himpe (https://himpe.science)

Model Reduction for Gas Network Digital Twins

> Tested Methods

Reductor	Туре
Structured Proper Orthogonal Decomposition (POD)	Orthogonal
Structured Goal-Oriented POD	Orthogonal
Structured Empirical Dominant Subspaces (DSPMR)	Orthogonal
Structured Modified POD	Oblique
Structured Balanced POD	Bi-Orthogonal
Structured Empirical Balanced Truncation	Bi-Orthogonal
Structured Empirical Balanced Gains	Bi-Orthogonal
Structured Dynamic Mode Decomposition Galerkin	Orthogonal

Model Reduction for Gas Network Digital Twins

> Tested Methods

Reductor	Туре
Structured Proper Orthogonal Decomposition (POD)	Orthogonal
Structured Goal-Oriented POD	Orthogonal
Structured Empirical Dominant Subspaces (DSPMR)	Orthogonal
Structured Modified POD	Oblique
Structured Balanced POD	Bi-Orthogonal
Structured Empirical Balanced Truncation	Bi-Orthogonal
Structured Empirical Balanced Gains	Bi-Orthogonal
Structured Empirical Modal Truncation	Orthogonal

Model Reduction for Gas Network Digital Twins

> DSPMR

Linear Time-Invariant System:

$$\begin{split} \dot{x}(t) &= A\,x(t) + B\,u(t) \\ y(t) &= C\,x(t) \end{split}$$

Controllability and Observability:

$$W_C := \int_0^\infty (\mathrm{e}^{At}\,B) (\mathrm{e}^{At}\,B)^\top \,\mathrm{d} t, \qquad W_O := \int_0^\infty (\mathrm{e}^{A^\top t}\,C^\top) (\mathrm{e}^{A^\top t}\,C^\top)^\top \,\mathrm{d} t$$

Dominant Subspace Projection Model Reduction (No Balancing):

$$\begin{split} W_C \stackrel{\operatorname{rrSVD}}{=} U_C D_C U_C^\top, \qquad W_O \stackrel{\operatorname{rrSVD}}{=} U_O D_O U_O^\top \\ \left[(\|W_C\|_F^{-1} U_C D_C) \quad (\|W_O\|_F^{-1} U_O D_O) \right] \stackrel{\operatorname{rrSVD}}{=} U \ D \ T, \quad V := U^\top \end{split}$$

> DSPMR-X

Square Linear Time-Invariant System (M = Q):

$$\begin{split} \dot{x}(t) &= A\,x(t) + B\,u(t) \\ y(t) &= C\,x(t) \end{split}$$

Controllability • **Observability** = **Minimality**:

$$W_X := \int_0^\infty (\mathrm{e}^{At}\,B) (\mathrm{e}^{A^\intercal t}\,C^\intercal)^\intercal \,\mathrm{d} t$$

Dominant Subspace Projection Model Reduction (Cross Gramian):

$$\begin{split} W_X \stackrel{\mathrm{rrSVD}}{=} U_X D_X T_X^\top \\ \begin{bmatrix} U_X & T_X \end{bmatrix} \stackrel{\mathrm{rrSVD}}{=} U \ D \ T, \quad V := U^\top \end{split}$$

> Data-Driven System Gramians

Empirical Gramians:

$$W_{C} = \int_{0}^{\infty} (e^{At} B)(e^{At} B)^{\top} dt \qquad = \int_{0}^{\infty} x(t)x(t)^{\top} dt \qquad \approx \Delta t X X^{\top}$$
$$W_{O} = \int_{0}^{\infty} (e^{A^{\top}t} C^{\top})(e^{A^{\top}t} C^{\top})^{\top} dt \qquad = \int_{0}^{\infty} z(t)z(t)^{\top} dt \qquad \approx \Delta t Z Z^{\top}$$
$$W_{X} = \int_{0}^{\infty} (e^{At} B)(e^{A^{\top}t} C^{\top})^{\top} dt \qquad = \int_{0}^{\infty} x(t)z(t)^{\top} dt \qquad \approx \Delta t X Z^{\top}$$

• Applicable to nonlinear, parametric and unstable systems.

• However, nonlinear variant's complexity scales with state dimension (N).

• Linear variant's complexity scales with port dimensions (M + Q).

• An (approximate) adjoint system (z) is required.

Possible due to local nonlinearity and port-Hamiltonian linearization.

> Lessons Learned

- Short training, long tests
- Choice of solver is fundamental
- Centering of training trajectories is important
- Orthogonal methods preserve stability for linearization
- Gain matching via extra feed-forward (D) of limited use

> Reusable Software

morgen (Model Order Reduction for Gas and Energy Networks)

- **For engineers:** Test model reduction on your networks.
- **For mathematicians:** Test your model reduction on gas nets.
- MATLAB & Octave compatible
- Open source licensed
- Version 1.2 upcoming

https://git.io/morgen

> Numerical Experiments

	Training	Test
Parameter Sampling	Sparse Grid	Uniformly Random
Input Function	Step	Scenario
Time Horizon	1 - 12h	24h
	Ev	valuation
Measure	Ev Relativ	raluation e Output Error
Measure Norm	Ev Relativ	raluation e Output Error $\cdot \parallel_{L_2 \otimes L_2}$

> Yamal-Europe Pipeline $(N \approx 1000)$

MORscores:

DSPMR-X	0.57
DSPMR-Z	0.56
DMDG	0.53
DSPMR	0.51
GOPOD	0.41
POD	0.40
BT-Z	0.15
	0.14
BPOD	0.14
BG-Z	0.11
BT-X	0.10
BT	0.03
BG	0.02

> Chinese Transport Network $(N \approx 11000)$

> Conclusions

Recommended Ensemble:

- Model: **pH** (Port-Hamiltonian Endpoint Discretization)
- Application: **Gas** (Also: Water, District Heating, Power)
- Solver: IMEX (1st Order Implicit Explicit Time Stepper)
- Reductor: DSPMR (Dominant Subspace Projection Model Reduction)
- Software: **MORGEN** (Model Order Reduction for Gas and Energy Networks)

https://doi.org/gndbmv (Paper)
https://git.io/morgen (Code)
https://himpe.science (Slides)

> References

MORGEN:

C. Himpe, S. Grundel, P. Benner: **Model Order Reduction for Gas and Energy Networks**; Journal of Mathematics in Industry 11: 13, 2021.

MORGEN Addons I:

C. Himpe, S. Grundel, P. Benner: **Next-Gen Gas Network Simulation**; Progress in Industrial Mathematics at ECMI 2021: In Press, 2022.

MORGEN Addons II:

C. Himpe, S. Grundel: **System Order Reduction for Gas and Energy Networks**; Proceedings in Applied Mathematics and Mechanics: In Preparation, 2022.

► DSPMR:

P. Benner, C. Himpe: **Cross-Gramian-Based Dominant Subspaces**; Advances in Computational Mathematics, 45(5): 2533–2553, 2019.

MORscore:

C. Himpe: **Comparing (Empirical-Gramian-Based) Model Order Reduction Algorithms;** Model Reduction of Complex Dynamical Systems: 141–164, 2021.

emgr:

C. Himpe: emgr – EMpirical GRamian Framework Version 5.99; arXiv [cs.CE]: 2209.03833, 2022.

> Game Over

Research Software:

- emgr EMpirical GRamian Framework
 https://gramian.de (Contact: Me)
- hapod Hierarchical Approximate Proper Orthogonal Decomposition
 https://git.io/hapod (Contact: Stephan Rave)
- morgen Model Order Reduction for Gas and Energy Networks
 https://git.io/morgen (Contact: Sara Grundel)
- AlgoData Numerical Algorithm Knowledge Graph
 https://algodata.mardi4nfdi.de (MaRDI)

> Game Over

Research Software:

emgr – EMpirical GRamian Framework (10-year anniversary!) https://gramian.de (Contact: Me)

hapod – Hierarchical Approximate Proper Orthogonal Decomposition https://git.io/hapod (Contact: Stephan Rave)

morgen – Model Order Reduction for Gas and Energy Networks https://git.io/morgen (Contact: Sara Grundel)

AlgoData – Numerical Algorithm Knowledge Graph https://algodata.mardi4nfdi.de (MaRDI)