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Gas Networks, Brain Networks, and Model Reduction

> Outline

▶ Common Theme:
Projection-Based Model Reduction

▶ Gas Networks:
Parametric Model Order Reduction

▶ Brain Networks:
Combined State and Parameter Reduction

▶ Common Approach:
Data-Driven Assembly of System-Theoretic Operators
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Gas Networks, Brain Networks, and Model Reduction

> Overarching Model
Parametric Nonlinear Input-Output System:

𝐸(𝜃) ̇𝑥(𝑡) = 𝐴 𝑥(𝑡) + 𝐵 𝑢(𝑡) + 𝑓(𝑥(𝑡), 𝜃)
𝑦(𝑡) = 𝐶 𝑥(𝑡)

▶ State: 𝑥 ∶ ℝ → ℝ𝑁

▶ Input: 𝑢 ∶ ℝ → ℝ𝑀

▶ Output: 𝑦 ∶ ℝ → ℝ𝑄

▶ Parameter: 𝜃 ∈ ℝ𝑃

▶ Dimension: 𝑁 ≫ 1

▶ System Matrix: 𝐴 ∈ ℝ𝑁×𝑁

▶ Input Matrix: 𝐵 ∈ ℝ𝑁×𝑀

▶ Output Matrix: 𝐶 ∈ ℝ𝑄×𝑁

▶ Mass Matrix Map: 𝐸 ∶ ℝ𝑃 → ℝ𝑁×𝑁

▶ Nonlinearity: 𝑓 ∶ ℝ𝑁 × ℝ𝑃 → ℝ𝑁
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Gas Networks, Brain Networks, and Model Reduction

> Gas Networks
Joint work with: P. Benner & S. Grundel

C. Himpe, S. Grundel, P. Benner: Model Order Reduction for Gas and Energy Networks;
Journal of Mathematics in Industry 11: 13, 2021. doi:10.1186/s13362-021-00109-4

C. Himpe: Comparing (Empirical-Gramian-Based) Model Order Reduction Algorithms;
Model Reduction of Complex Dynamical Systems: 141–164, 2021. 978-3-030-72983-7_7
P. Benner, C. Himpe: Cross-Gramian-Based Dominant Subspaces;
Advances in Computational Mathematics, 45(5): 2533–2553, 2019. doi:10.1007/s10444-019-09724-7
P. Benner, S. Grundel, C. Himpe, C. Huck, T. Streubel, C. Tischendorf: Gas Network Benchmark Models;
Applications of Differential-Algebraic Equations: Examples and Benchmarks: 171–197, 2018. doi:10.1007/11221_2018_5
C. Himpe, S. Grundel, P. Benner: Next-Gen Gas Network Simulation;
Progress in Industrial Mathematics: In Press, 2022. arxiv:2108.02651
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Gas Networks, Brain Networks, and Model Reduction

> Motivation
Gas Transport is Complicated:

▶ Continent-spanning infrastructure
▶ Daily, reliable and safe delivery
▶ Cost and resource efficient transmission
▶ Weather-dependent consumption

Green Energy Transition:
▶ Volatile production: biogas, hydrogen
▶ Gas mixture tracking (!!!)
▶ Gas-fired power-plants
▶ Energy storage
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Gas Networks, Brain Networks, and Model Reduction

> Gas Pipeline
Friction-Dominated 1D Isothermal Euler Equations in a Long Pipe:

1
𝑇0 𝑅𝑆 𝑧0

𝜕𝑡𝑝 = − 1
𝑆 𝜕𝑥𝑞

𝜕𝑡𝑞 = −𝑆 𝜕𝑥𝑝 − ( 𝑆 𝑔 ℎ𝑥
𝑇0 𝑅𝑆 𝑧0

𝑝
⏟⏟⏟⏟⏟

Gravity

+ 𝑇0 𝑅𝑆 𝑧0𝜆0
2 𝑑 𝑆

|𝑞| 𝑞
𝑝⏟⏟⏟⏟⏟⏟⏟

Friction

)

▶ Pressure: 𝑝(𝑥, 𝑡)
▶ Mass-Flux: 𝑞(𝑥, 𝑡)
▶ Pipe Incline: ℎ𝑥
▶ Pipe Diameter: 𝑑
▶ Pipe Cross-Section: 𝑆

▶ Friction Factor: 𝜆0
▶ Compressibility Factor: 𝑧0
▶ Temperature: 𝑇0 =∶ 𝜃1
▶ Specific Gas Constant: 𝑅𝑆 =∶ 𝜃2
▶ Gravity Acceleration: 𝑔
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Gas Networks, Brain Networks, and Model Reduction

> Gas Network
Kirchhoff Laws:
1. The sum of mass-flux in- and outflows at every junction is zero:

𝒜 𝑞(𝑡) = ℬ𝑑 𝑑𝑞(𝑡)
2. The sum of pressure drops in every fundamental loop is zero.

→ Nodal pressures at in-flows equal to boundary function:

𝒜⊺
0 𝑝(𝑡) + ℬ⊺

𝑠 𝑠𝑝(𝑡) = |𝒜⊺
0 | 𝑝(𝑡)

▶ Incidence Matrix: 𝒜
▶ Reduced Incidence Matrix: 𝒜0

▶ Boundary Pressure Map: ℬ𝑠

▶ Boundary Mass-Flux Map: ℬ𝑑

▶ Pressure: 𝑝(𝑡)
▶ Mass-Flux: 𝑞(𝑡)
▶ Pressure Boundary: 𝑠𝑝(𝑡)
▶ Mass-Flux Boundary: 𝑑𝑞(𝑡)
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Gas Networks, Brain Networks, and Model Reduction

> Input-State-Output System
Port-Hamiltonian (pH) Endpoint Discretization:

𝐸
⏞⏞⏞⏞⏞
(𝐸𝑝(𝜃) 0

0 𝐸𝑞
)

�̇�
⏞
( ̇𝑝

̇𝑞
) =

𝐴
⏞⏞⏞⏞⏞
( 0 𝐴𝑝𝑞

̂𝐴𝑞𝑝 0
)

𝑥
⏞
(𝑝

𝑞
)+

𝐵
⏞⏞⏞⏞⏞
( 0 𝐵𝑝𝑑

𝐵𝑞𝑠 0
)

𝑢
⏞
(𝑠𝑝

𝑑𝑞
)+

𝑓
⏞⏞⏞⏞⏞⏞⏞
( 0

𝑓𝑞(𝑝, 𝑞, 𝜃)
)

(𝑠𝑞
𝑑𝑝

)
⏟

𝑦

=( 0 𝐶𝑠𝑞
𝐶𝑑𝑝 0

)
⏟⏟⏟⏟⏟

𝐶

(𝑝
𝑞
)

⏟
𝑥

Input:
▶ Pressure @ supply: 𝑠𝑝

▶ Mass-flux @ demand: 𝑑𝑞

State:
▶ Pressure: 𝑝
▶ Mass-flux: 𝑞

Output:
▶ Mass-flux @ supply: 𝑠𝑞

▶ Pressure @ demand: 𝑑𝑝
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Gas Networks, Brain Networks, and Model Reduction

> Parametric Model Order Reduction
Goal:

dim(𝑥𝑟(𝑡)) ≪ dim(𝑥(𝑡)) s.t. ‖𝑦(𝜃) − ̃𝑦(𝜃)‖ ≪ 1

Reducing and Reconstructing Projections:

𝑥𝑟(𝑡) ∶= 𝑉𝑟 𝑥(𝑡) → 𝑥(𝑡) ≈ 𝑈𝑟 𝑥𝑟(𝑡)

Reduced Order Model:

(𝑉𝑟𝐸(𝜃)𝑈𝑟) ̇𝑥𝑟(𝑡) = (𝑉𝑟𝐴𝑈𝑟) 𝑥𝑟(𝑡) + (𝑉𝑟𝐵) 𝑢(𝑡) + 𝑉𝑟 𝑓(𝑈𝑟𝑥𝑟(𝑡), 𝑢(𝑡), 𝜃)
̃𝑦(𝑡) = (𝐶𝑈𝑟) 𝑥𝑟(𝑡)

Note: Projection-based model reduction for a hyperbolic system!
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Gas Networks, Brain Networks, and Model Reduction

> System-Theoretic Idea (DSPMR)
Linear Time-Invariant System:

̇𝑥(𝑡) = 𝐴 𝑥(𝑡) + 𝐵 𝑢(𝑡)
𝑦(𝑡) = 𝐶 𝑥(𝑡)

Controllability and Observability:

𝑊𝐶 ∶= ∫
∞

0
(e𝐴𝑡 𝐵)(e𝐴𝑡 𝐵)⊺ d𝑡, 𝑊𝑂 ∶= ∫

∞

0
(e𝐴⊺𝑡 𝐶⊺)(e𝐴⊺𝑡 𝐶⊺)⊺ d𝑡

Dominant Subspace Projection Model Reduction (No Balancing):

𝑊𝐶
rrSVD= 𝑈𝐶𝐷𝐶𝑈⊺

𝐶 , 𝑊𝑂
rrSVD= 𝑈𝑂𝐷𝑂𝑈⊺

𝑂

[(𝑈𝐶𝐷𝐶) (𝑈𝑂𝐷𝑂)] rrSVD= 𝑈 𝐷 𝑇 , 𝑉 ∶= 𝑈⊺
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Gas Networks, Brain Networks, and Model Reduction

> System-Theoretic Idea (DSPMR)
Linear Time-Invariant System:

̇𝑥(𝑡) = 𝐴 𝑥(𝑡) + 𝐵 𝑢(𝑡)
𝑦(𝑡) = 𝐶 𝑥(𝑡)

Controllability and Observability:

𝑊𝐶 ∶= ∫
∞

0
(e𝐴𝑡 𝐵)(e𝐴𝑡 𝐵)⊺ d𝑡, 𝑊𝑂 ∶= ∫

∞

0
(e𝐴⊺𝑡 𝐶⊺)(e𝐴⊺𝑡 𝐶⊺)⊺ d𝑡

Dominant Subspace Projection Model Reduction (Refined):

𝑊𝐶
rrSVD= 𝑈𝐶𝐷𝐶𝑈⊺

𝐶 , 𝑊𝑂
rrSVD= 𝑈𝑂𝐷𝑂𝑈⊺

𝑂

[(‖𝑊𝐶‖−1
𝐹 𝑈𝐶𝐷𝐶) (‖𝑊𝑂‖−1

𝐹 𝑈𝑂𝐷𝑂)] rrSVD= 𝑈 𝐷 𝑇 , 𝑉 ∶= 𝑈⊺
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Gas Networks, Brain Networks, and Model Reduction

> System-Theoretic Idea (DSPMR-X)
Square Linear Time-Invariant System (𝑀 = 𝑄):

̇𝑥(𝑡) = 𝐴 𝑥(𝑡) + 𝐵 𝑢(𝑡)
𝑦(𝑡) = 𝐶 𝑥(𝑡)

Controllability • Observability = Minimality:

𝑊𝑋 ∶=∫
∞

0
(e𝐴𝑡 𝐵)(e𝐴⊺𝑡 𝐶⊺)⊺ d𝑡

Dominant Subspace Projection Model Reduction (Cross Gramian):

𝑊𝑋
rrSVD= 𝑈𝑋𝐷𝑋𝑇 ⊺

𝑋

[𝑈𝑋 𝑇𝑋] rrSVD= 𝑈 𝐷 𝑇 , 𝑉 ∶= 𝑈⊺
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Gas Networks, Brain Networks, and Model Reduction

> Data-Driven Computation
Empirical Gramians:

𝑊𝐶 = ∫
∞

0
(e𝐴𝑡 𝐵)(e𝐴𝑡 𝐵)⊺ d𝑡 = ∫

∞

0
𝑥(𝑡)𝑥(𝑡)⊺ d𝑡 ≈ Δ𝑡𝑋𝑋⊺

𝑊𝑂 = ∫
∞

0
(e𝐴⊺𝑡 𝐶⊺)(e𝐴⊺𝑡 𝐶⊺)⊺ d𝑡 = ∫

∞

0
𝑧(𝑡)𝑧(𝑡)⊺ d𝑡 ≈ Δ𝑡𝑍𝑍⊺

𝑊𝑋 = ∫
∞

0
(e𝐴𝑡 𝐵)(e𝐴⊺𝑡 𝐶⊺)⊺ d𝑡 = ∫

∞

0
𝑥(𝑡)𝑧(𝑡)⊺ d𝑡 ≈ Δ𝑡𝑋𝑍⊺

▶ Applicable to nonlinear, parametric and unstable systems.
▶ However, nonlinear variant’s complexity scales with state dimension (𝑁 ).
▶ Linear variant’s complexity scales with port dimensions (𝑀 + 𝑄).
▶ An (approximate) adjoint system (𝑧) is required.
▶ Possible due to the pH system’s local (repeated scalar) nonlinarity.
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Gas Networks, Brain Networks, and Model Reduction

> Some Remarks
▶ Choice of solver is fundamental for efficiency and reducibility!
▶ Step functions as generic training input due to hyperbolicity!
▶ Fast training (1ℎ training for 24ℎ tests)!
▶ Dynamics only relative to steady-state!
▶ Structured reduction ( 𝑝 and 𝑞 separately) is essential!
▶ Centering of training trajectories is important!
▶ Galerkin methods preserve stability for this pH model class!
▶ DSPMR(-X) is a (input-output) Galerkin method!
▶ Dimension reduction by SVDs of covariances of simulations ...

→ Unsupervised Learning of System Properties via Synthetic Data
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Gas Networks, Brain Networks, and Model Reduction

> Tested Methods
Reductor Properties
Structured Proper Orthogonal Decomposition (POD) Reachability
Structured Empirical Dominant Subspaces (DSPMR) Reachability & Observability
Structured Empirical Dominant Subspaces (DSPMR-X) Minimality
Structured Empirical Dominant Subspaces (DSPMR-Z) Average Minimality
Structured Balanced POD (BPOD) Reachability & Observability
Structured Empirical Balanced Truncation (BT) Reachability & Observability
Structured Empirical Balanced Truncation (BT-X) Minimality
Structured Empirical Balanced Truncation (BT-Z) Average Minimality
Structured Goal-Oriented POD (GOPOD) Reachability
Structured Empirical Balanced Gains (BG) Reachability & Observability
Structured Empirical Balanced Gains (BG-X) Minimality
Structured Empirical Balanced Gains (BG-Z) Average Minimality
Structured Dynamic Mode Decomposition Galerkin (DMDG) Reachability
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Gas Networks, Brain Networks, and Model Reduction

> Test Problems
Training Test

Input Function Step Scenario
Parameter Sampling Sparse Grid Uniformly Random

Time Horizon 1ℎ 24ℎ

Evaluation
Measure Relative Output Error

Norm ‖ ⋅ ‖𝐿2⊗𝐿2

Ranking MORscore
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Gas Networks, Brain Networks, and Model Reduction

> Numerical Illustration (Yamal-Europe Pipeline)

20 40 60 80 100 120 140

10
-10

10
-5

10
0 MORscores:

POD 0.40
DSPMR 0.51

DSPMR-X 0.57
DSPMR-Z 0.56

BPOD 0.14
BT 0.03

BT-X 0.10
BT-Z 0.15

GOPOD 0.41
BG 0.02

BG-X 0.14
BG-Z 0.11
DMDG 0.53
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Gas Networks, Brain Networks, and Model Reduction

> More Results

MORGEN

50 100 150 200

10 -5

10 0

50 100 150 200
10 -5

10 0

GasLib134

LotH67c

50 100 150 200

10 -5

10 0

50 100 150 200

10 -5

10 0

LotH67d
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Gas Networks, Brain Networks, and Model Reduction

> Conclusions
▶ Due to parametricity, hyperbolicity and nonlinearity:

Balancing methods do not work well (unstable ROMs)
▶ Recommended ensemble:

pH model, IMEX-1 solver, DSPMR reductor
▶ DMD-Galerkin works unreasonably well:

This underestimated method needs more investigation
▶ Extends to:

Water networks, district heating networks, and power networks
▶ Open-source MATLAB implementation:

morgen – Model Order Reduction for Gas and Energy Networks: https://git.io/morgen
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Gas Networks, Brain Networks, and Model Reduction

> MORe Challenges
▶ Realistic compressors:

→ Non-smooth nonlinearites
▶ Gas mixture:

→ Additional transport equation for composition tracking
▶ Valves:

→ Switched systems
▶ Many ports:

→ Port reduction?
▶ Hyper reduction:

→ Heuristic combinatorial comparison necessary
▶ Pipeline attrition:

→ Large-scale parameter-space ... ...
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Gas Networks, Brain Networks, and Model Reduction

> Brain Networks
Joint work with: M. Ohlberger

C. Himpe: Combined State and Parameter Reduction for Nonlinear Systems with an Application in Neuroscience;
Sierke Verlag Göttingen, 2017. doi:10.14626/9783868448818
C. Himpe, M. Ohlberger: A Note on the Cross Gramian for Non-Symmetric Systems;
System Science and Control Engineering: 199–208, 2016. doi:10.1080/21642583.2016.1215273
C. Himpe, M. Ohlberger: Cross-Gramian-Based Combined State and Parameter Reduction for Large-Scale Control Systems;
Mathematical Problems in Engineering 2014: 843869, 2014. doi:10.1155/2014/843869
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Gas Networks, Brain Networks, and Model Reduction

> Motivation
The Brain is Complicated:

▶ A human brain consists of billions of neurons
▶ Myriad connections exists between neurons
▶ How does the brain work?
▶ How is information propagated between neuronal regions?

Understanding Brain Connectivity:
▶ Expensive experiments
▶ Complicated experimental set ups
▶ Indirect measurements
▶ (Bayesian) inverse problem
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Gas Networks, Brain Networks, and Model Reduction

> Single Region EEG / MEG Model

𝜏𝑒 ̇𝑣1 = 𝑥1
𝜏𝑒�̇�1 = 𝐻𝑒𝛾1�̄�𝜅(𝑣4 − 𝑣5) − 2𝑥1 − 𝑣1
𝜏𝑖 ̇𝑣2 = 𝑥2
𝜏𝑖�̇�2 = 𝐻𝑖𝛾2�̄�𝜅(𝑣1 − 𝑣2) − 2𝑥2 − 𝑣2
𝜏𝑒 ̇𝑣3 = 𝑥3
𝜏𝑒�̇�3 = 𝐻𝑒𝛾3�̄�𝜅(𝑣4 − 𝑣5) − 2𝑥3 − 𝑣3 + 𝐻𝑒𝑢
𝜏𝑒 ̇𝑣4 = 𝑥4
𝜏𝑒�̇�4 = 𝐻𝑒𝛾4�̄�𝜅(𝑣3) − 2𝑥4 − 𝑣4
𝜏𝑖 ̇𝑣5 = 𝑥5
𝜏𝑖�̇�5 = 𝐻𝑖𝛾5�̄�𝜅(𝑣1 − 𝑣2) − 2𝑥5 − 𝑣5
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Gas Networks, Brain Networks, and Model Reduction

> Multi-Region EEG / MEG Model

(𝜏∗𝟙 0
0 𝜏∗𝟙

)( ̇𝑣
̇𝑥
) = ( 0 𝟙

−𝟙 −2 𝟙
) (𝑣

𝑥
) + ( 0

𝐴𝑣
) �̄�𝜅(𝐴𝜎𝑣) + 𝐻𝑒(𝛿10×1

8,1 ⊗ 𝐵)𝑢

𝑦 = (0 0 0 𝐿 −𝐿 0 0 0 0 0) (𝑣
𝑥

)
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Gas Networks, Brain Networks, and Model Reduction

> Combined State and Parameter Reduction
Goal:

dim(𝑥𝑟(𝑡)) ≪ dim(𝑥(𝑡)) ∧ dim(𝜃𝑟) ≪ dim(𝜃) s.t. ‖𝑦(𝜃) − ̃𝑦(𝜃𝑟)‖ ≪ 1

Reducing and Reconstructing Projections:

𝑥𝑟(𝑡) ∶= 𝑉𝑟𝑥(𝑡) → 𝑥(𝑡) ≈ 𝑈𝑟𝑥𝑟(𝑡)
𝜃𝑟 ∶= Π⊺

𝑟 𝜃 → 𝜃 ≈ Π𝑟𝜃𝑟

Reduced Order Model:

(𝑉𝑟𝐸(Π𝑟𝜃𝑟)𝑈𝑟) ̇𝑥𝑟(𝑡) = (𝑉𝑟𝐴𝑈𝑟) 𝑥𝑟(𝑡) + (𝑉𝑟𝐵) 𝑢(𝑡) + 𝑉𝑟 𝑓(𝑈𝑟𝑥𝑟(𝑡), 𝑢(𝑡), Π𝑟𝜃𝑟)
̃𝑦(𝑡) = (𝐶𝑈𝑟) 𝑥𝑟(𝑡)
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Gas Networks, Brain Networks, and Model Reduction

> System-Theoretic Idea

Parametric Input-Output System:

̇𝑥(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝜃)
𝑦(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝜃)

Augmenting System with Parameter-States:

[ ̇𝑥(𝑡)
̇𝜃(𝑡)

] = [𝑓(𝑥(𝑡), 𝑢(𝑡), 𝜃)
0

]

𝑦(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝜃)
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Gas Networks, Brain Networks, and Model Reduction

> Data-Driven Computation
Empirical Augmented Observability Gramian / Joint Gramian:

𝑊𝑂 = (𝑊𝑂 𝑊𝑀
𝑊 ⊺

𝑀 𝑊𝐴
) , 𝑊𝐽 ∶= 𝑊𝑋 = (𝑊𝑋 𝑊𝑀

0 0
)

Identifiability Gramian / Cross-Identifiability Gramian:

𝑊𝐼 ∶= 𝑊𝐴 − 𝑊 ⊺
𝑀𝑊 +

𝑂𝑊𝑀 , 𝑊 ̈𝐼 ∶= −1
2𝑊 ⊺

𝑀(𝑊𝑋 + 𝑊 ⊺
𝑋)+𝑊𝑀

Parameter Projection:

𝑊𝐼
SVD= Π Σ Π𝑇 , 𝑊 ̈𝐼

SVD= Π Σ Π𝑇
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> Some Remarks
▶ Identifiability as parameter-state observability!
▶ Parameter projection always one-sided (Galerkin)!
▶ Impulse responses are basically Jacobians wrt parameters!
▶ Complexity scales with state plus parameter dimension (𝑁 + 𝑃 )!
▶ Operating range of parameters is important!
▶ Related to Fisher information matrix.
▶ Related to active subspaces method.
▶ Related to Hessian in unconstrained optimization.
▶ Dimension reduction by SVDs of covariances of simulations ...

→ Unsupervised Learning of System Properties via Synthetic Data
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> Test Problems
Training Test

Input Function Impulse Experiment
Parameter Sampling Sparse Grid Uniformly Random

Time Horizon 2𝑠/20𝑠 2𝑠/20𝑠

Evaluation
Measure Relative Output Error

Norm ‖ ⋅ ‖𝐿2⊗𝐿2

Ranking Uniform Reduction
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> Numerical Illustration (EEG/MEG)
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> More Results
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> Conclusions
▶ Cross-Gramian for non-square systems:

Non-symmetric cross Gramian
▶ Parameter controllability is not needed:

Parameter observability is sufficient and more efficient
▶ Gramian-based parameter reduction is feasible:

The cross Gramian can encode parameter identifiability
▶ Underlying inference problem:

Solvable over reduced parameter space
▶ Low-Rank (Cross-)Identifiability Gramian:

Can be re-used in optimization as Hessian
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> MORe Challenges

▶ Bilinear, quadratic extension:
→ Even higher dimensional parameter spaces

▶ Region variability:
→ Additional non-connectivity parameters

▶ fMRI / fNIRS BOLD:
→ Severely nonlinear models
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> Lastly ...

▶ emgr – EMpirical GRamian Framework: https://gramian.de

▶ Hierarchical Approximate Proper Orthogonal Decomposition

▶ Full Circle: very nonlinear systems biology networks
with high-dimensional parameter-spaces (U Potsdam)
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> Summary

▶ Parametric Model Order Reduction for Gas Networks
▶ Combined State and Parameter Reduction for Brain Networks
▶ One Data-Driven All-Purpose Tool: Empirical Gramians

https://himpe.science

Christian Himpe ( https://himpe.science ) 33

https://himpe.science
https://himpe.science

