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Linear Systems
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ABC-System

Linear Time-Invariant Input-Output System:

̇x(t) = A x(t) + Bu(t)
y(t) = C x(t)

▶ Input: u :ℝ → ℝM

▶ State: x :ℝ → ℝN

▶ Output: y :ℝ → ℝQ

▶ Input Matrix: B ∈ ℝN×M

▶ System Matrix: A ∈ ℝN×N

▶ Output Matrix: C ∈ ℝQ×N
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> DEF-Extensions

Linear Time-Invariant Input-Output System with Feed-Forward:

̇x(t) = A x(t) + Bu(t)
y(t) = C x(t) + Du(t)

▶ Feed-Forward Matrix: D ∈ ℝM×Q

▶ D is typically excluded from the reduction process.
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> DEF-Extensions

Generalized Linear Time-Invariant Input-Output System:

E ̇x(t) = A x(t) + Bu(t)
y(t) = C x(t)

▶ Mass Matrix: E ∈ ℝN×N

▶ If E is singular, this becomes a descriptor system.
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> DEF-Extensions

Linear Time-Invariant Input-Output System with Source:

̇x(t) = A x(t) + Bu(t) + F
y(t) = C x(t)

▶ Source Vector: F ∈ ℝN

▶ Also known as load vector.
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> DEF-Extensions

Linear Parametric Linear Time-Invariant Input-Output System:

̇x(t) = A x(t) + Bu(t) + F θ
y(t) = C x(t)

▶ Source Matrix: F ∈ ℝN×P

▶ Parameter: θ ∈ ℝP
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> DEF-Extensions

Parametric Linear Time-Invariant Input-Output System:

̇x(t) = A(θ) x(t) + B(θ)u(t)
y(t) = C(θ) x(t)

▶ System Map: A :ℝP → ℝN×N

▶ Input Map: B :ℝP → ℝN×M

▶ Output Map: C :ℝP → ℝQ×N

▶ Parameter: θ ∈ ℝP
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> DEF-Extensions

Affine Parametric Linear Time-Invariant Input-Output System:

̇x(t) = (A0 +
K

∑
k=1

Ak(θ)) x(t) + Bu(t)

y(t) = C x(t)

▶ System Maps: Ak :ℝP → ℝN×N

▶ Parameter: θ ∈ ℝP
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> Port-Hamiltonian Systems

Linear Time-Invariant Port-Hamiltonian Input-Output System:

E ̇x(t) =
A

⏞(J − R)Q x(t) +
B

⏞(G − P)u(t)
y(t) = (G + P)⊺Q⏟⏟⏟⏟⏟

C

x(t)

▶ Energy Flux: J = −J⊺

▶ Energy Dissipation: R = R⊺ ≥ 0
▶ Energy Storage: Q = Q⊺ > 0

▶ Mass Matrix: E = E⊺ > 0
▶ Control Ports: G
▶ Resistive Ports: P
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Model Reduction
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> Projection-Based Model Reduction
Reconstructing and Reducing Projections:

Un ∈ ℝN×n, Vn ∈ ℝn×N, VU = 𝟙

Reduced Order State:

xr(t): = Vn x(t) ∈ ℝn → x(t) ≈ Un xr(t) ∈ ℝN

Reduced Order Model:

UnVn ̇x(t) = AUnVn x(t) + Bu(t)
̃y(t) = CUnVn x(t)
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> Projection-Based Model Reduction
Reconstructing and Reducing Projections:

Un ∈ ℝN×n, Vn ∈ ℝn×N, VU = 𝟙

Reduced Order State:

xr(t): = Vn x(t) ∈ ℝn → x(t) ≈ Un xr(t) ∈ ℝN

Reduced Order Model:

̇xr(t) = (Vn AUn) xr(t) + (Vn B)u(t)
̃y(t) = (CUn) xr(t)
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> Projection-Based Model Reduction
Reconstructing and Reducing Projections:

Un ∈ ℝN×n, Vn ∈ ℝn×N, VU = 𝟙

Reduced Order State:

xr(t): = Vn x(t) ∈ ℝn → x(t) ≈ Un xr(t) ∈ ℝN

Reduced Order Model:

̇xr(t) = Ar x(t) + Br u(t)
̃y(t) = Cr x(t)
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> Controllability Gramians

Controllability Gramian:

WC : = ∫
∞

0
eA x(t) BB⊺ eA⊺x(t) dt

▶ Controllability: Ability to drive a system to a steady-state.
▶ Impulse Response: eA x(t) B = (B⊺ eA⊺x(t))⊺.
▶ Lyapunov equation: AWC +WC A⊺ = −BB⊺.
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> Proper Orthogonal Decomposition
System-Theoretic View of POD:

WC
SVD= U

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

λ1
λ2

⋱
λN

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

U⊺

Energy-fraction-based truncation:

∑n
k=1 λk

∑N
k=1 λk

> (1 − ε) → Un : = U[ 𝟙n

0N−n
] → Vn = U⊺

n
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> Goal-Oriented POD
Output Controllability Gramian:

CWCC⊺ SVD= CU

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

λ1
λ2

⋱
λN

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

U⊺C⊺ = ĈΛ Ĉ⊺

Sort by Impulse-response norm:

‖y‖2 = √tr(CWC C⊺) =
√√√
⎷

N
∑
k=1

( ̂ck,∗ ̂c⊺
k,∗ λk)
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> Observability Gramians

Observability Gramian:

WO : = ∫
∞

0
eA⊺x(t) C⊺ C eA x(t) dt

▶ Observability: Ability to see changes in states in outputs.
▶ Adjoint Impulse Response: eA⊺x(t) C⊺ = (C eA x(t))⊺.
▶ Lyapunov equation: AWO +WO A⊺ = −C⊺ C.
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> Modified POD
POD and Adjoint POD:

WC
SVD= U

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

λ1
λ2

⋱
λN

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

U⊺, WO
SVD= V

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

μ1
μ2

⋱
μN

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

V⊺

Oblique Projection (VU ≠ 𝟙):

Vn : = [𝟙n 0N−n]V, Un : = U[ 𝟙n

0N−n
]

Christian Himpe ( https://himpe.science ) 12

https://himpe.science


> Dominant Subspace Projection Model Reduction
POD and Adjoint POD:

WC
SVD= U

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

λ1
λ2

⋱
λN

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

U⊺, WO
SVD= V

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

μ1
μ2

⋱
μN

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

V⊺

Galerkin Projection:

Un Σn Ṽn
SVDs(n)
= [([𝟙n 0N−n]V) (U[ 𝟙n

0N−n
])] → Vn = U⊺

n
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> Balanced Truncation

Balancing Transformation:

U ΣV SVD= WOWC

Petrov-Galerkin Projection:

Vn : = [𝟙n 0N−n] Σ−1U⊺WO, Un : = WCV Σ−1 [ 𝟙n

0N−n
]
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> Balanced Gains
Balancing Transformation:

U

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

σ1
σ2

⋱
σN

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

V SVD= WOWC

Sort by Impulse-response norm:

‖y‖2 = √tr(Ĉ ŴC Ĉ⊺) =
√√√
⎷

N
∑
k=1

̂ck,∗ ̂c⊺
k,∗ σk
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> Balanced POD
Approximate Balancing Transformation:

WO
SVDs= UOΜUT

O, WC
SVDs= VC ΛVTC

U ΣV SVD= UO V⊺
C

Petrov-Galerkin Projection:

Vn : = [𝟙n 0N−n] Σ−1U⊺UO, Un : = VCV Σ−1 [ 𝟙n

0N−n
]
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> Cross Gramians

Cross Gramian:

WX : = ∫
∞

0
eA x(t) BC eA x(t) dt

▶ Minimality: How many states are minimally required.
▶ Cross Operator: ( eA x(t) B)(C eA x(t) ).
▶ Sylvester equation: AWX +WX A = −BC.
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> DMD-Galerkin
Dynamic Mode Decomposition (DMD) in 1 minute
1. X = [x0 … xK]

2. X0 : = [x0 … xK−1] , X1 : = [x1 … xK]

3. xk+1
!= A xk

4. X1 = ADMD X0
5. ADMD = X1 X+0

DMD-Galerkin (Empirical Modal Truncation):

ADMD
SVDs= Un Λn Ṽn → Vn = U⊺

n
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> Nonlinear Systems
(Adjoint) Impulse Response:

▶ x(t) = eA x(t) Bu(t)
▶ z(t) = eA⊺x(t) C⊺v(t)

Empirical Gramians:
▶ Empirical Controllability Gramian: ŴC = ∫∞

0 x(t) x(t)⊺ dt
▶ Empirical Observability Gramian: ŴO = ∫∞

0 z(t) z(t)⊺ dt
▶ Empirical Cross Gramian: ŴX = ∫∞

0 x(t) z(t)⊺ dt
(Nonlinear systems use x(t) and y(t))
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> Parametric Systems
Parametric Input-Output System:

̇x(t) = f(x(t),u(t),θ, t)
y(t) = g(x(t),u(t),θ, t)

Average Gramian:

W∗ =
P

∑
p=1

W∗(θp)

(Applies also to time-varying systems)
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> Structured Systems
(Block) Structured Linear Time-Invariant System:

(ṗ(t)
q̇(t)

) = (App Apq
Aqp Aqq

) (p(t)
q(t)

) +(Bp

Bq
)u(t)

y(t) = (Cp Cq) (p(t)
q(t)

)

(Block) Structured System Gramians:

W∗ = (W∗,pp W∗,pq
W∗,qp W∗,qq

)
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> Hyperbolic Systems

Empirical Gramians for Hyperbolic Systems:
▶ (Linear) system theory is centered around impulse responses.
▶ Transport can introduce a delay between input and outputs.
▶ Impulse input may dissipate before output is reached.
▶ Step input is an alternative.
▶ But: (Infinite-time) Gramians are not defined for step inputs.
▶ However: Step response Gramians are defined on finite time.
▶ All empirical Gramians are practically time-limited.
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> Gain Matching

System Gain:

S = h(0) = C(𝟙
=0
⏞s −A)−1B = CA−1 B

Gain Matching by adding feed-through to ROM:

Dr : = CA−1 B − Cr A−1r Br
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> Gain Matching

System Gain:

S = h(0) = C(𝟙
=0
⏞s −A)−1B = CA−1 B

Gain Matching by adding feed-through to ROM (port-Hamiltonian FOM):

Dr : = CQ−1 B − Cr Q−1
r Br
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Gas Networks
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> Gas Pipeline
Friction-Dominated 1D Isothermal Euler Equations:

1
T0 RS z0

∂tp = −
1
S ∂xq

∂tq = −S∂xp − (

Gravity
⏞Sghx
T0 RS z0

p +

Friction
⏞⏞⏞⏞⏞⏞⏞T0 RS z0λ0
2dS

|q|q
p )

▶ Pressure: p(x, t)
▶ Mass-Flux: q(x, t)
▶ Pipe Incline: hx
▶ Pipe Diameter: d
▶ Pipe Cross-Section: S

▶ Friction Factor: λ0
▶ Compressibility Factor: z0
▶ Temperature: T0 =:θ1
▶ Specific Gas Constant: RS =:θ2
▶ Gravity Acceleration: g

Christian Himpe ( https://himpe.science ) 25

https://himpe.science


> Gas Networks
Kirchhoff Laws:
1. The sum of mass-flux in- and outflows at every junction is zero:

𝒜q(t) = ℬd dq(t)
2. The sum of pressure drops in every fundamental loop is zero.

→ Nodal pressures at in-flows equal to boundary function:

𝒜⊺
0 p(t) +ℬ⊺

s sp(t) = |𝒜⊺
0 |p(t)

▶ Incidence Matrix: 𝒜
▶ Reduced Incidence Matrix: 𝒜0

▶ Boundary Pressure Map: ℬs

▶ Boundary Mass-Flux Map: ℬd

▶ Pressure: p(t)
▶ Mass-Flux: q(t)
▶ Pressure Boundary: sp(t)
▶ Mass-Flux Boundary: dq(t)
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> Input-Output System
Square Input-Output-System (ODE) with Compressors:

(Ep(θ) 0
0 Eq

)(ṗ
q̇

) =( 0 Apq
Âqp 0

)(p
q

)+( 0 Bpd

Bqs 0
)(sp

dq
)+( 0

FC + fq(p,q,θ)
)

(sq
dp

)=( 0 Csq
Cdp 0

)(p
q

)

Input:
▶ Pressure @ supply: sp
▶ Mass-flux @ demand: dq

State:
▶ Pressure: p
▶ Mass-flux: q

Output:
▶ Pressure @ demand: dp
▶ Mass-flux @ supply: sq
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> Practical Remarks
Gas Networks:

▶ Compressors → Source term
▶ Initial values → Steady-State problem
▶ Exchangeable compressibility factor formula
▶ Exchangeable friction factor formula
▶ Tuning factor to match real data

Model Reduction:
▶ Structuring, nonlinearity, parametricity voids BT properties
▶ Hyperbolicity may require large reduced order model (ROM)
▶ Galerkin is stability preserving for port-Hamiltonian systems
▶ Approximate adjoint for local repeated scalar nonlinearities
▶ Quality of ROM depends on quality of data (and thus solver)
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Numerical Experiments
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> MORGEN - Model Order Reduction for Gas and Energy Networks
Design Principles:

▶ No Optimization (Steady-State, Time-Stepper, ROMs, Stabilization)
▶ Approximate Adjoint if available (Port-Hamiltonian + SRSN)
▶ Only global, but structured projectors (Unstructured → Unstable)

General Features:
▶ Open-Source
▶ MATLAB & Octave Compatibility
▶ Modular / Configurable / Extensible

Specific Features:
▶ Holistic Approach: Model–Solver–Reductor Ensembles
▶ Data-Driven System-Theoretic MOR
▶ Realistic Test Networks
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> Experimental Setup
Training:

▶ Short Offline phase (1-12h, depending on network expanse).
▶ Generic training scenarios (step inputs).
▶ Sparse grid parameter sampling.

Testing:
▶ Long testing phase (24h).
▶ Designed, random or realistic scenarios.
▶ Uniformly distributed parameter sampling.

Evaluation:
▶ L2 ⊗ L2-Norm model reduction error (also Lx ⊗ Ly; x, y = 0, 1, 2,∞)
▶ MORscore: Area above reduced-order-vs-error graph.
▶ Averaged over multiple parameter samples.
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> Yamal-Europe Pipeline (N ≈ 1000)

20 40 60 80 100 120 140

10
-10
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10
0

Struct. Proper Orthogonal Decomposition (WR)

Struct. Empirical Dominant Subspaces (WR + WO)

Struct. Empirical Dominant Subspaces (WX)

Struct. Empirical Dominant Subspaces (WZ)

Struct. Balanced POD (WR + WO)

Struct. Empirical Balanced Truncation (WR + WO)

Struct. Empirical Balanced Truncation (WX)

Struct. Empirical Balanced Truncation (WZ)

Struct. Goal-Oriented POD (WR)

Struct. Empirical Balanced Gains (WR + WO)

Struct. Empirical Balanced Gains (WX)

Struct. Empirical Balanced Gains (WZ)

Struct. Dynamic Mode Decomposition Galerkin (WR)

MORscore μ ∈ [0, 1)
POD (WR) 0.40
DSPMR (WR + WR*) 0.51
DSPMR (WX*) 0.57
DSPMR (WZ*) 0.56
BPOD (WR + WR*) 0.14
BT (WR + WR*) 0.03
BT (WX*) 0.10
BT (WZ*) 0.15
GOPOD (WR) 0.41
BG (WR + WR*) 0.02
BG (WX*) 0.14
BG (WZ*) 0.11
DMD-G (WR) 0.53
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> MORGEN-Network (N ≈ 1000)
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Struct. Proper Orthogonal Decomposition (WR)

Struct. Empirical Dominant Subspaces (WR + WO)

Struct. Empirical Dominant Subspaces (WX)

Struct. Empirical Dominant Subspaces (WZ)

Struct. Balanced POD (WR + WO)

Struct. Empirical Balanced Truncation (WR + WO)

Struct. Empirical Balanced Truncation (WX)

Struct. Empirical Balanced Truncation (WZ)

Struct. Goal-Oriented POD (WR)

Struct. Empirical Balanced Gains (WR + WO)

Struct. Empirical Balanced Gains (WX)

Struct. Empirical Balanced Gains (WZ)

Struct. Dynamic Mode Decomposition Galerkin (WR)

MORscore μ ∈ [0, 1)
POD (WR) 0.16
DSPMR (WR + WR*) 0.32
DSPMR (WX*) 0.15
DSPMR (WZ*) 0.13
BPOD (WR + WR*) 0.03
BT (WR + WR*) 0.00
BT (WX*) 0.00
BT (WZ*) 0.00
GOPOD (WR) 0.14
BG (WR + WR*) 0.00
BG (WX*) 0.00
BG (WZ*) 0.01
DMD-G (WR) 0.21
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> GasLib-134 (N ≈ 2700)
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Struct. Proper Orthogonal Decomposition (WR)

Struct. Empirical Dominant Subspaces (WR + WO)

Struct. Empirical Dominant Subspaces (WX)

Struct. Empirical Dominant Subspaces (WZ)

Struct. Balanced POD (WR + WO)

Struct. Empirical Balanced Truncation (WR + WO)

Struct. Empirical Balanced Truncation (WX)

Struct. Empirical Balanced Truncation (WZ)

Struct. Goal-Oriented POD (WR)

Struct. Empirical Balanced Gains (WR + WO)

Struct. Empirical Balanced Gains (WX)

Struct. Empirical Balanced Gains (WZ)

Struct. Dynamic Mode Decomposition Galerkin (WR)

MORscore μ ∈ [0, 1)
POD (WR) 0.14
DSPMR (WR + WR*) 0.16
DSPMR (WX*) 0.12
DSPMR (WZ*) 0.12
BPOD (WR + WR*) 0.14
BT (WR + WR*) 0.00
BT (WX*) 0.00
BT (WZ*) 0.00
GOPOD (WR) 0.10
BG (WR + WR*) 0.00
BG (WX*) 0.00
BG (WZ*) 0.00
DMD-G (WR) 0.19
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> American Gas Association Net (N ≈ 1500)
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Struct. Proper Orthogonal Decomposition (WR)

Struct. Goal-Oriented POD (WR)

Struct. Dynamic Mode Decomposition Galerkin (WR)

Struct. Empirical Dominant Subspaces (WR + WR*)

Struct. Empirical Dominant Subspaces (WX*)

Struct. Empirical Dominant Subspaces (WZ*)

MORscore μ ∈ [0, 1)
POD (WR) 0.19
GOPOD (WR) 0.15
DMD-G (WR) 0.15
DSPMR (WR + WR*) 0.24
DSPMR (WX*) 0.04
DSPMR (WZ*) 0.03
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> Chinese Transport Network (N ≈ 11000)
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Struct. Proper Orthogonal Decomposition (WR)

Struct. Goal-Oriented POD (WR)

Struct. Dynamic Mode Decomposition Galerkin (WR)

Struct. Empirical Dominant Subspaces (WR + WR*)

Struct. Empirical Dominant Subspaces (WX*)

Struct. Empirical Dominant Subspaces (WZ*)

MORscore μ ∈ [0, 1)
POD (WR) 0.12
GOPOD (WR) 0.07
DMD-G (WR) 0.06
DSPMR (WR + WR*) 0.12
DSPMR (WX*) 0.05
DSPMR (WZ*) 0.04
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> Summary
Findings:
▶ Model: Port-Hamiltonian Endpoint Discretization
▶ Solver: First-Order Implicit-Explicit
▶ Reductor: Dominant Subspace Projection Model Reduction

https://himpe.science

https://gramian.de

https://git.io/morgen

https://git.io/hapod

christian.himpe@wwu.de
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