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Abstract

This work investigates two complementary methods for combined state and parameter re-
duction of nonlinear systems. First, a system-theoretic approach using empirical gramians,
and second, an iterative method utilizing the greedy algorithm. The presented methods are
applied in the context of connectivity analysis of functional neuroimaging data, in which
these nonlinear model reduction techniques are demonstrated to accelerate the solution of
many-query problems enabling the data-driven exploration of more complex neuronal net-
works, for example in the human brain.

Zusammenfassung
Diese Arbeit untersucht zwei komplementäre Methoden für die kombinierte Zustands- und
Parameterreduktion von nichtlinearen Systemen. Einerseits wird ein systemtheoretischer
Ansatz untersucht, der empirische Gram-Matrizen benutzt, andererseits eine iterative Meth-
ode, die den Greedy-Algorithmus verwendet. Die vorgestellten Methoden werden auf die
Konnektivitätsanalyse aus funktionellen neurobildgebenden Verfahren angewandt, für welche
gezeigt wird, dass diese nichtlinearen Modellreduktions-Techniken oft zu wiederholende Lö-
sungen beschleunigen und damit eine datengetriebene Erforschung von komplexeren neu-
ronalen Netzwerken erlauben, zum Beispiel im menschlichen Gehirn.
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1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Dual Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Ever more detailed mathematical models for numerical simulations of natural and technical
processes demand increasing computing power. Combined reduction is a type of model
reduction that allows to decrease the computational complexity while retaining the model's
functionality even for nonlinear relations.

1.1. Motivation

The human brain, with its estimated 1011 neurons1, embodies one of the most complex
systems known to mankind. This enormous network of neurons can process information to
a degree enabling abstract thought and sophisticated planning.
Functional neuroimaging data reveals downstream physical effects of the brain's inner work-
ings, yet not the networked neuronal activity itself. An inverse problem to reconstruct the
connectivity of a hidden (neuronal) network from neuroimaging data is formed, which is a
computationally challenging task even for a few network(ed) nodes. Hence, for large-scale
networks surrogate models with similar dynamic behavior, yet of reduced dimensionality,
are sought. Model reduction enables the computation of such smaller approximate systems.
The general underlying mathematical model is an input-output system, given by a time-
invariant, parametrized, possibly nonlinear, control system:

�x(t) = f (x(t),u(t),� ),

y(t) = g(x(t),u(t),� ),
(1.1)

with the state x representing neuronal activity among the considered nodes (brain regions).
The change of neuronal activity over time �x is described by the vector �eld f , that depends
on x , the external input u and the parameters � ; the latter embody, for example, the net-
work connectivity between the individual nodes. In this setting the output functional g then
transforms the neuronal activity x to the measurable output y . Essentially, this model maps
inputs u to outputs y , as illustrated in Figure 1.1.

1See for example: [54, Ch. 3].

1



1. Introduction

Figure 1.1.: A schematic input-output system.

In experiments with known input u, output data yd is recorded. The inverse problem is
constituted by estimating the parameters � such that the model's output y matches the
recorded output data yd . This inversion of measured data to deduce the underlying con-
nectivity can be computationally infeasible for complex networks, due to high-dimensional
state- and parameter-spaces.

1.2. Aim

In settings with a high-dimensional state-space dim(x(t)) � 1 and a high-dimensional
parameter-space dim(� )� 1, repeated simulations for different locations in the parameter-
space, as in estimation or optimization of � , may be computationally costly. The presented
combined state and parameter reduction methods are targeted at such many-query or re-
lated situations, for example in uncertainty quanti�cation. By reduction of the state-space,
the solution for a certain location in the parameter-space is accelerated, while by reduction
of the parameter-space, the overall number of required solutions is reduced.
In this context an application in neuroscience is investigated: To infer connectivity between
multiple regions of the brain, the parameters of a network model are optimized to match the
model's output to neuroimaging recordings. For networks with many nodes, the parameter
inference of the associated large-scale model presents a use case for these combined (state
and parameter) reduction methods.

1.3. Dual Approach

This work explores two methods for nonlinear model order reduction, more speci�cally the
combined state and parameter reduction [112] of nonlinear control systems. First, a system-
theoretic ansatz derived from balanced truncation is presented, which assesses system prop-
erties like controllability and observability encoded in (gramian) matrices for linear systems,
and extends to nonlinear systems by the use of empirical gramian matrices. Second, an
optimization-based approach based on the greedy algorithm is investigated that assembles
iteratively a low-dimensional base from locally optimal base components, and also extends
to nonlinear systems.

2



1. Introduction

1.4. Literature Review

In this section major works on the explored topics of model order reduction are outlined,
which are the basis for themethods developed in the following chapters, �rst, on the gramian-
based methods, then, on the optimization-based methods. In addition, related methods are
mentioned and an overall classi�cation is given.

1.4.1. Gramian-Based Model Reduction

Gramian-based model reduction originates in [168] by MOORE, introducing the balanced
truncation method, which proposes the balancing of a system in terms of controllability2

and observability3 [132] (encoded in gramian matrices) and truncating the least important
states in this view. ENNS [61] and GLOVER [86] discovered global error bounds of the result-
ing reduced order model, while an ef�cient balancing procedure was devised in [146] and
the related concept of balanced gains was introduced in [131, 49].
In [63, 64, 65, 66, 67, 68, 69], FERNANDO and NICHOLSON introduced the cross gramian,
combining controllability and observability into a single matrix. The scope of the cross
gramian concept was expanded in [145, 1, 195] and also revisited by SORENSEN and AN-
TOULAS in [209, 210]. Another notable work on the cross gramian is [4] by ALDHAHERI.
Numerical methods for the computation of the cross gramian encompass, for example, the
utilization of the matrix sign function [14] by BAUR and BENNER or a variant of the alternat-
ing direction implicit iteration [188] by SAAK, BENNER and KÜRSCHNER.
The concept of nonlinear balancing was formally introduced by SCHERPEN in [189, 190].
Based on the former, a nonlinear cross gramian is assessed in [123, 124, 125, 126, 127, 191,
79] mainly by IONESCU, FUJIMOTO and SCHERPEN. An alternative ansatz for gramian-based
model reduction of nonlinear systems are empirical gramians. Empirical (controllability and
observability) gramians were introduced by LALL, MARSDEN and GLAVASKI [142, 143], which
were further developed (among others) in [97, 98, 99, 100, 102] by HAHN and EDGAR and in
[44, 45, 43] by CONDON and IVANOV. The empirical cross gramian for Single-Input-Single-
Output systems was introduced by STREIF et al. [214, 215] and generalized to symmetric
Multiple-Input-Multiple-Output systems by the author and OHLBERGER in [110]. Moreover,
parametric model order reduction using the (empirical) cross gramian is presented in [113]
and an extension of the cross gramian to non-symmetric systems is introduced in [117], both
by the author and OHLBERGER.
Using empirical gramians for system identi�cation is demonstrated from a controllability
point of view in [217, 218] by SUN and HAHN. From an observability point of view, empirical-
gramian-based parameter identi�cation is explored in [200, 201, 203] by SINGH and HAHN

as well as in [83, 82] by GEFFEN and applied in [58]. A �rst step in cross-gramian-based
system identi�cation is made in [214]. In [110], the empirical cross gramian is extended
by the author and OHLBERGER to enable cross-gramian-based parameter identi�cation and
thus concurrent combined state and parameter reduction4.

2The effectiveness of the input u in driving the state x , see Section 3.2.1.
3The effectiveness of the output y in characterizing the state x , see Section 3.2.2.
4This approach is assessed in [91] by GRESSER.

3



1. Introduction

1.4.2. Optimization-Based Model Reduction

An alternative approach is motivated by large-scale (Bayesian) inverse problems for which
model reduction is employed in order to enable or accelerate the approximation of a solu-
tion [75]. The optimization-based approach investigated in this work is based upon work by
LIEBERMAN, WILLCOX and GHATTAS in [151]. This method combines parameter-space reduc-
tion and state-space reduction targeted at (Bayesian) inverse problems. The parameter-space
reduction utilizes the greedy algorithm, described in [225] by VEROY, PRUD'HOMME, ROVAS
and PATERA, to obtain a reduced order parameter sub-space [31]. For the state-space reduc-
tion in the context of inverse problems, various approaches have been explored: The use of
proper orthogonal decomposition for optimal control is investigated by KUNISCH and VOLK-
WEIN in [140], and by NGUYEN andWILLCOX for Bayesian inversion in [170]. A goal-oriented
approach is introduced in [229] by WILLCOX et al., which is used in [30] by BUI-THANH et

al. for the reduced order optimization.
Another related method is the Hessian-matrix-based model reduction method targeted at
input-free systems, introduced by BASHIR et al. [12, 13] and discussed in [149]. In [154],
this Hessian-based approach is connected to the system-theoretic concept of observability
and a generalization to nonlinear systems is presented in [80] by GALBALLY et al. A low-rank
approximation of the Hessian is developed in [71] by FLATH et al.

In [114], the author and OHLBERGER extend the original approach from [151] by incorpo-
rating the observed data and accelerating the reduced order model assembly using a ran-
domized approach.
In a wider sense, the low-rank approximation used in [32] by BUI-THANH et al. is a related
ansatz, and the inference for prediction method introduced in [150, 153] by LIEBERMAN
connects the system-theoretic balanced truncation with Bayesian inversion.

1.4.3. Related work

Both, the empirical-gramian-based and the optimization-based model reduction methods
are data-driven, and loosely related to the method of snapshots [205] by SIROVICH utiliz-
ing proper orthogonal decomposition (POD) [141]. More closely related to the empirical
gramian method is balanced POD [228] introduced by WILLCOX and further developed by
ROWLEY in [184]. Remotely related approaches are the Loewner framework by ANTOULAS
and IONITA [128] as well as the utilization of the impulse response gramian and the system's
gram matrix by SREERAM and AGATHOKLIS [212].
Apart from the reduction of (nonlinear) state-space systems, model reduction is also appli-
cable to partial differential equations5 (PDE), such as the Navier-Stokes equation [9]. In the
realm of PDEs, the reduced basis method (RBM) [186], is employed in the context of para-
metric model order reduction for evolution equations in [96] by HAASDONK and OHLBERGER.
Furthermore, the optimization-based approach is related to the �eld of PDE-constrained op-
timization [22].
An overview of related model reduction methods and associated software implementations
is given for example in [19, 7, 8, 17, 20, 23].

5The methods investigated in this work are restricted to spatially discretized instationary PDEs.
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1. Introduction

1.4.4. Synoptic View

The presented methods are applicable to �rst and second order nonlinear parametric sys-
tems, and even though the focus in this work is on input-output systems governed by ODEs
(1.1), the presented methods also apply to discretized (instationary) PDEs. In the context
of other model reduction techniques, the presented methods can be classi�ed as follows:
While the gramian-based combined reduction is a balancing method which extends the (al-
gebraic) system gramians to the empirical gramians with focus on the cross gramian, the
optimization-based combined reduction joins a greedy parameter-space reduction with an
energy-based state-space reduction and thus is related to the class of POD-based methods.
A layout of the interrelations of the mentioned methods is given in Figure 1.2. It should
also be noted that both methods for combined reduction produce globally reduced order
models. Neither the underlying system (state-space) nor the associated parameter-space is
partitioned, which would yield locally reduced models.

1.4.5. Neuroscienti�c Application

The modeling of neuronal networks and their reconstruction from functional neuroimaging
data in terms of causal interactions between different regions of the brain is a major research
objective in the neurosciences. To this end the dynamic causal modelling framework, in-
troduced in [77] by FRISTON et al. can be employed, which models the hidden underlying
neuronal network by a dynamic system and the measurements by an attached output func-
tional. Together, this amounts to a control system model (1.1), which can be evaluated with
system-theoretic tools as in [169] by MORAN et al. The parametrized network connectivity
is then estimated by Bayesian inference from time series data constrained by the model.

1.5. Overview

This work is composed of two main parts. The �rst part sets up the mathematical theory
and develops the combined state and parameter reduction methods; the second part sum-
marizes the software realization, introduces the neuroscienti�c application and assesses the
computational results.

1.5.1. Outline

The subsequent content is structured as follows: Chapter 2 reviews control systems and
the properties important to model reduction methods. In Chapter 3 gramian-based state
reduction, parameter reduction and combined state and parameter reduction are presented.
Chapter 4 describes the optimization-based combined reduction. The implementation of the
presented approaches is discussed in Chapter 5. An outline of network-based connectivity
inference, the target application, is given in Chapter 6. Numerical experiments and their
results are evaluated and discussed in Chapter 7. Finally, a conclusion and an outlook are
given in Chapter 8.
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1. Introduction

1.5.2. Published Results

This work is based upon peer-reviewed research articles and proceedings by the author. The
empirical-cross-gramian-based combined reduction in Chapter 3 is originally introduced in
the article [110], and the use of empirical gramians for parametric systems is presented in
the proceedings [113]. Furthermore, the non-symmetric cross gramian is proposed in the
article [117]. Chapter 4 presents the optimization-based combined reduction of instationary
systems which is based on the article [114]. The empirical gramian framework, described in
Chapter 5, is initially described in the article [109]. Finally, the combined reduction for net-
work models and neuroimaging models, analyzed in Chapter 7, is devised in the proceedings
[111] and [112] respectively.

1.5.3. Key Contributions

In brief, the following contributions are featured:

� Nonlinear (Cross-)Gramian-based combined state and parameter reduction.

� Nonlinear (Greedy-)Optimization-based combined state and parameter reduction.

� Reusable software implementation for both methods.

� Application of the combined reduction in systems neuroscience.

Figure 1.2.: Interrelations of referenced model reduction methods.
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In this chapter an outline of dynamical systems, control systems and model reduction is pro-
vided to establish notation and terminology. Since the theory for the employed approaches in
nonlinear model order reduction is based on results from linear system theory, this summary
focuses on the linear setting.

2.1. Dynamical Systems

First, a minimal introduction to dynamical systems is provided, as a foundation to the en-
closing concept of control systems, which is presented in the next Section 2.2.
A continuous dynamical system with �nite dimensional state-space N <1 can be described
by an ordinary differential equation (ODE) [147, Ch. 6],

�x(t) = f (t, x(t)),(2.1)

with t 2 R>0, the state x : R ! R
N and a vector �eld f : R�RN ! R

N . An ODE together
with an initial condition x0 = x(t0) forms an initial value problem (IVP). By the theorem
of Picard-Lindelöf (see for example [94]) an IVP has a unique solution, if f is Lipschitz-
continuous. The image of the solution x(t) is called orbit or trajectory.
A time-invariant6 homogeneous linear dynamical system has a time independent linear vec-
tor �eld f (t, x(t)) = f (x(t)), given by a transition matrix A2 RN�N :

�x(t) = Ax(t).(2.2)

In this homogeneous linear setting, the solution for the IVP is given by:

x(t) = eAt x0,

with the fundamental solution operator L,

L(�)(t) = eAt .(2.3)

6Also known as: autonomous (system).
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2. Preliminaries

For an inhomogeneous linear system, with the continuous function b : R! R
N , b 2 C0,

�x(t) = Ax(t) + b(t),

the solution is given by the sum of the homogeneous solution and an inhomogeneous solu-
tion, the latter is a convolution of the fundamental solution (2.3) with b,

x(t) = L(x0)(t) + (L � b)(t) = eAt x0 +

Z t

0

eA� b(�)d�,

which is a consequence of Duhamel's principle [148, Ch. 5.1.1].
Usually, a solution to an IVP is additionally sought to be stable. Stability can roughly be
de�ned by kx(t)k<1 8 t > 0; yet, a more precise de�nition requires a steady-state7 x̄ of
the dynamical system, which is a root of the vector �eld f :

f ( x̄) = 0,

thus, x̄ := x(t0)) x(t > t0) = x̄ holds. A solution x(t) to (2.1) is called (Lyapunov) stable
if, given a steady-state x̄ , for all � > 0 there exists a � > 0 such that:

kx(t)� x̄k< � 8 t � 0, 8 x0 : kx0 � x̄k< �.

Furthermore, a solution x(t) is called asymptotically stable if for all � > 0 and all � > 0
there exists a T > 0 such that:

kx(t)� x̄k< � 8 t � T, 8 x0 : kx0 � x̄k< �.

If additionally there exist constants c1, c2 2 R>0 such that:

kx(t)� x̄k< c1 e
�c2 t kx0 � x̄k, 8 t � 0,

a solution x(t) is called exponentially stable.
Linear systems (2.2) are exponentially stable (which implies asymptotic stability) if and only
if the real parts of all eigenvalues of A are negative:

Re(�i(A))< 0, 8 i = 1, . . . ,N ; (2.4)

in this case the (transition) matrix A is called a Hurwitz matrix.
For a nonlinear vector �eld, the system's stability can be assessed locally in a neighborhood
around a steady-state by linearization. If the vector �eld f 2 C1 is continuously differen-
tiable, a local linearization of the vector �eld at the steady-state x̄ is given by the Jacobian
of f :

A=
@ f

@ x
( x̄)

) �x l(t) =Ax l(t)� f (x(t)) : kx(t)� x̄k< �.

Then, the trajectory x(t) is locally exponentially stable near x̄ if x l(t) is exponentially stable.

7Also known as: equilibrium point.
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2. Preliminaries

2.2. Control Systems

This section de�nes control systems, establishes notation and summarizes some attributes of
linear control systems. Since the methods developed in Chapter 3 and Chapter 4 are mainly
concerned with the time-domain evaluation of control systems, frequency-domain related
concepts are omitted if not explicitly required.
First, a general de�nition of a control system in state-space formulation is given.

De�nition 2.1 (Control System)
A control system consists of a dynamical system and an output function. The dynamical system

has a vector �eld f : R�RN �RM �RP ! R
N depending on time t, the state x : R! R

N , input

u : R ! R
M and parameter � 2 RP . The output functional g : R�RN �RM �RP ! R

O also

depends on time t, the state x(t), input u(t) and parameter � ,

�x(t) = f (t, x(t),u(t),� ),

y(t) = g(t, x(t),u(t),� ).
(2.5)

Extracted from the state x(t), the output y(t) of the output functional g represents some
quantity of interest (QoI), for example measurements by a small set of sensors. Additionally,
a unique solution of y(t) requires an initial condition x0 2 RN ,

x(0) = x0.

For the dimensions of the control system components, the following notation is used consis-
tently throughout this work:

� Input: M := dim(u(t))<1,

� State: N := dim(x(t))<1,

� Output: O := dim(y(t))<1,

� Parameter: P := dim(� )<1.

A special class of control systems are linear control systems.

De�nition 2.2 (Linear Control System)
A linear control system is a control system with a linear vector �eld and a linear output

functional. The vector �eld is a sum of a linear transformation A2 RN�N of the state x(t), and

a linear transformation B 2 RN�M of the input u(t). The output functional is also a sum of a

linear transformation C 2 RO�N of the state x(t) and a linear transformation D 2 RO�M of the

input u(t),

�x(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t) + D(t)u(t).

Unless noted otherwise, linear time-invariant (LTI) systems are considered, thus:

�x(t) = Ax(t) + Bu(t),

y(t) = C x(t) + Du(t).
(2.6)
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2. Preliminaries

The following names are used for the components of linear control systems:

� System Matrix: A2 RN�N ,

� Input Matrix: B 2 RN�M ,

� Output Matrix: C 2 RO�N ,

� Feedforward Matrix8: D 2 RO�M .

Yet, for the remainder of this work we will consider a trivial feedforward matrix:

D = 0,

since it is not affected by the presented model reduction methods. Following [6], a short-
hand notation of a linear control system is given by a block matrix �(A,B,C):

�=

�
A B

C 0

�
.

Some required attributes of linear control systems are summarized next.
An input function u(t) = �(t) 2 L2 with

R1
0
�(t)dt = 1 is called impulse input and the

impulse response matrix,

�g(t) = C eAt B,

is the fundamental solution to an LTI system. The operator mapping impulse input to the
output of a linear control system is called impulse response.

De�nition 2.3 (Impulse Response)
The impulse response of a linear system is given by:

g(t) =

¨
C eAt B t � 0

0 t < 0
.

For negative time the impulse response g(t) is set to zero to ensure causality [105, Ch. 3].
The convolution of the impulse response with an input function u(t) then yields the output
y(t) for a zero initial state x0 = 0,

y(t) = (g � u)(t) =
Z 1
0

C eA(t��) Bu(�)d�, (2.7)

which leads to the concept of input-output stability. A linear system, which for bounded input
kukL1 <1 generates bounded output kykL1 <1, is called bounded-input-bounded-

output (BIBO) stable. As a consequence of Young's inequality (Appendix A.1), this is the
case if the L1-norm of the impulse response (2.19) exists, i.e. kgkL1 <1:

kykL1 = kg � ukL1 � kgkL1kukL1 . (2.8)

8Also known as: feedthrough matrix.
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The associated system running backward in time �t := �t is called adjoint system �
� and has

the impulse response g�(�t) = �B| eA|�t C|, thus it has the following state-space description
[6, Ch. 5.2].

De�nition 2.4 (Adjoint System)
The adjoint system to a linear control system is given by:

�z(�t) = �A|z(�t)� C|u�(�t),

y�(�t) = B|z(�t).

The control system (2.6) is represented in the time-domain; a Laplace transformation of this
state-space representation of the impulse response leads to a frequency-space representation
of the control system: the transfer function.

De�nition 2.5 (Transfer Function)
A linear system's transfer function for a frequency s is given by:

G(s) = C(s1N �A)�1B.

The system gain S corresponds to the trace of the transfer function at zero frequency s = 0:

S := � tr(G(0)) = � tr(CA�1B),

and quanti�es the output ampli�cation for constant input u(t) = 1.
Lastly, the following concept of symmetric (linear) control systems is essential for the cross-
gramian-based model reduction presented in Chapter 3.

De�nition 2.6 (Symmetric System)
A linear control system is called symmetric if the system's transfer function is symmetric9 [73]:

G(s) = (G(s))|.

A single-input-single-output (SISO) system is always symmetric10, since the associated trans-
fer function is scalar and thus symmetric. A multiple-input-multiple-output (MIMO) system
is symmetric if a symmetric matrix J 2 RN�N , J = J| exists, such that

AJ = JA|,

B = JC|.
(2.9)

In the special case of J = 1N , such a system is called state-space symmetric and one has:

A= A|,

B = C|.
(2.10)

9Equivalently, the symmetry of the impulse response g(t) = g(t)|, or the Markov parameter

CAkB = (CAkB)|,8k 2 N, indicates a symmetric linear system.
10This holds also for nonlinear (SISO) systems, with the concept of a gradient system as nonlinear general-

ization to symmetric systems [191].
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2.3. Model Reduction

Model reduction ormodel order reduction (MOR) can be de�ned as the algorithmic com-
putation of a surrogate model, which exhibits similar dynamics but is of lower dimensional-
ity compared to the original system. A model reduction method provides a reduced order

model (ROM) of smaller dimension than the original full order model (FOM), and is ex-
pected to exhibit a small error compared to the original model's dynamics, or to conserve
additional properties such as stability, passivity or conservation of energy. More recently,
the scope of state-space reduction is broadened to parametric systems. Parametric model

order reduction (pMOR) targets reduced order models that also preserve a parameter de-
pendency of the FOM. In this work, model reduction encompasses the reduction of the state-
space dimension (in the presence of parameters) and also a reduction of the parameter-space
dimension P = dim(� ). For the dimensions of the reduced order model's components, the
following notation is used:

� Reduced State: xr(t),with: n := dim(xr(t)),

� Reduced Parameter: �r ,with: p := dim(�r).

For dynamical systems, reduced order modelling involves �nding a low-dimensional sub-
space to the state-space,

dim(xr(t))� dim(x(t)),

that contains the dominant evolution of the trajectory x(t),

kx � xrk � 1.

In the context of control systems, model reduction also refers to the reduction of the state-
space dimension N = dim(x(t)), but with respect to the output dynamics y(t). The dimen-
sion of the state-space is usually large compared to the dimension of the inputs and outputs:

dim(x(t))� 1,

dim(u(t))� dim(x(t)),

dim(y(t))� dim(x(t)).

For the evaluation of these input-output systems, the mapping from inputs to outputs u 7! y

is of prominent interest. It is then reasonable to ask, if for this mapping from the low-
dimensional inputs u(t) to the low-dimensional outputs y(t), a low-dimensional approxi-
mate state trajectory xr(t),

dim(xr(t))� dim(x(t)),

may still yield acceptable output trajectories yr(t) compared to y(t),

ky � yrk � 1,

in a suitable norm.
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Figure 2.1.: A cartoon illustration of model reduction for an input-output system.

While the order reduction of a dynamical system aims to match the ROM for the whole state-
space trajectory, a reduced order control system approximates the lower-dimensional output
trajectory. Hence, model reduction methods for control system models take advantage of
the presence of an output function. Schematically, the model reduction process is depicted
in Figure 2.1.
pMOR aims to reduce the state-space in a manner such that the ROM remains valid over the
whole (admissible) parameter-space �:

ky(� )� yr(� )k � 1.

If the parameter-space dimension is large,

dim(� )� 1,

an optimization or inference on the parameters constraint by the parametrized model be-
comes computationally expensive. A low-dimensional approximate parameter �r ,

dim(�r)� dim(� ),

obtained from a parameter-space reduction, with a reconstruction � � �(�r), may still pro-
vide workable results,

ky(� )� y(�(�r))k � 1,

yet for a lower computational cost.
Finally, the combined state and parameter reduction aims to concurrently reduce the state-
and parameter-space dimensions. This combined reduction integrates the parametric state-
space reduction with the parameter-space reduction to yield ROMs which approximate a
highly parametrized FOM:

ky(� )� yr(�r)k � 1.

In a many-query setting like optimization, where the complexity depends on the parameter-
space dimension, the combined reduction can accelerate these repeated evaluations.
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2.3.1. Reduced Order Model

Generally, a reduced order model can be formulated based on a reduced state xr(t) 2 Rn, a
reduced vector �eld fr , a reduced output functional gr a and reduced parameter �r yielding
the reduced order output yr(t):

�xr(t) = fr(xr(t),u(t),�r),

yr(t) = gr(xr(t),u(t),�r),

xr(0) = xr,0.

For the investigated methods, the input u(t) remains unchanged and the reduced order
output yr(t) retains the original model's dimension,

dim(yr(t)) = dim(y(t)).

2.3.2. Projection-Based Model Reduction

A projection is an idempotent linear mapping. In this work, reduced order models are
constructed by projecting the states (and parameters) to low-dimensional linear subspaces,
which capture the dominant features of the enclosing spaces, de�ned by the underlying (con-
trol) system model, with respect to a some norm. Furthermore, it is assumed that all spaces
considered for reduction are Hilbert spaces.
Projection-based model reduction is founded upon the approximation:

xr(t) = V x(t),

using a reducing truncated projection V and a reconstructing truncated projection U ,

x(t)� Uxr(t).

An oblique projection with bi-orthogonal matrices U 2 RN�n and V 2 Rn�N ,

VU = 1n,

is called Petrov-Galerkin projection. An orthogonal projection with an orthogonal matrix
representation U 2 RN�n,

U|U = 1n,

and V := U| is called Galerkin projection11, which can be seen as a special case of a Petrov-
Galerkin projection.
For parametrized systems two variants of the projection-based approach can be considered
[23, Sec. 4]; either several projections are constructed which act as local bases for a spe-
ci�c parameter subspace12, or a single �xed projection representing a global base covering
the whole parameter-space. In the work at hand the latter, global approach is exclusively
considered.

11Also known as: Ritz-Galerkin projection or Galjorkin projection.
12See for example [172].
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State Reduction

A framework for the projection-based state-space dimension reduction of a general control
system near a steady-state x̄ is given by [161]:

fr := V f ( x̄ + Uxr(t),u(t),� ),

gr := g( x̄ + Uxr(t),u(t),� ),

x0,r := V (x0 � x̄),

(2.11)

and will be used in the nonlinear model order reduction (nMOR) setting.
In the case of linear systems (with zero steady-state) the projection matrices can be directly
applied to the control system components A,B,C and initial state x0:

Ar := VAU ,

Br := VB,

Cr := CU ,

x0,r := V x0.

(2.12)

Parameter Reduction

For the parameter reduction, a Galerkin projection is employed to con�ne the parameters
to their dominant subspace and with the inverse projection, the parameter is approximately
reconstructed:

�r = ��

) � � �|�r .
(2.13)

Combined Reduction

Finally, the combined state and parameter reduction is a combination of the state reduction
from (2.11) and the parameter reduction from (2.13):

fr = V f ( x̄ + Uxr(t),u(t),�
|�r),

gr = g( x̄ + Uxr(t),u(t),�
|�r),

x0,r = V (x0 � x̄),

�r = �� .

(2.14)

At the heart of this work are two approaches for this combined reduction of state- and
parameter-spaces applicable to nonlinear models. The combined reduction of states and
parameters provides a ROM that can be especially useful for many-query settings such as
optimization and inverse problems. While the parameter reduction reduces the complexity
of the task itself, the state reduction accelerates the simulations for the individual locations
in the parameter-space. The task of obtaining the state and parameter projections (numeri-
cally) is investigated in the following chapters.
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2.4. Reduced Order Model Quality

The quality of a reduced order model is assessed by two families of norms [223, 62] that
evaluate the model reduction error of the reduced compared to the original system. First,
the signal norms, which quantify the output error signal ye := y � yr between y and yr in
the time-domain,

"Time = ky � yrk= kyek,
are considered and second, the system norms, which measure the error transfer function
Ge := G � Gr between G and Gr in the frequency-domain,

"Frequency = kG � Grk= kGek.

2.4.1. Time-Domain Norms

In the time-domain, the Lebesgue norms k � kLp for vector-valued signals are utilized. These
Lp-norms measure certain properties of a time-series and are the basic tool for quanti�cation
of error signals. Of interest here are Lp-norms for p 2 f1,2,1}. The L1-norm, or action, of
a vector signal is de�ned by

kykL1 :=
Z 1
0

ky(t)k1 dt =
Z 1
0

OX
j=1

jyi(t)jdt,

the L2-norm, or energy, of a vector signal is given by

kykL2 :=
vutZ 1

0

ky(t)k2
2
dt =

vuutZ 1
0

OX
j=1

y2
i
(t)dt,

and the L1-norm of a vector signal in the time-domain is the peak component over time:

kykL1 := ess sup
t2[0,1)

ky(t)k1 = ess sup
t2[0,1)

max
j
jy j(t)j.

The previously introduced time-domain norms are related through Hölder's inequality:

kyk2L2 � kykL1kykL1 .

For discrete output trajectories yh over T time steps of width �t, discrete variants of the
time-domain norms k � k`p are given by:

kyhk`1 :=�t

TX
i=1

OX
j=1

jyh, j(t i)j,

kyhk`2 :=

vuut�t

TX
i=1

OX
j=1

(yh, j(t i))
2, (2.15)

kyhk`1 :=max
t i

max
j
jyh, j(t i)j.
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2.4.2. Joint State and Parameter Norms

Errors for parametric model order reduction and combined state and parameter reduction
are assessed in joint state- and parameter-space norms. The employed norms are related to
the joint measures introduced in [16, Sec. 5.1]. These joint norms can be constructed as a
composition of a parameter-space Lq-norm �after� the time-domain Lp-norm [18]. Thus, for
all elements of the parameter-space, the output is measured in the Lp-norm, then over all
output norms the Lq-norm yields the joint state and parameter norm:

ky(� )kLp
Lq := (k � kLq � k � kLp)(y(� )).

In the scope of this work the following four joint state and parameter norms are utilized:

ky(� )kL1
L2 =
vutZ

�

ky(� )k2L1 d� ,

ky(� )kL2
L2 =
vutZ

�

ky(� )k2L2 d� ,

ky(� )kL1
L2 =
vutZ

�

ky(� )k2L1 d� ,

ky(� )kL2
L1 = sup
�2�
ky(� )kL2 .

Practically, the joint norm cannot be computed for all elements of the parameter-space.
Hence, some representative discrete subspace e� of the parameter-space has to be selected,
either, a prede�ned grid or a number of random samples with suitable statistics. This leads
to the discrete variants of the previous four joint norms:

kyh(� )k`1
`2 =

vuut je�jX
k=1

(�t

TX
i=1

OX
j=1

jyh, j(t i; ��k)j)2,(2.16a)

kyh(� )k`2
`2 =

vuut je�jX
k=1

�t2
TX
i=1

OX
j=1

(yh, j(t i; ��k))2,(2.16b)

kyh(� )k`1
`2 =

vuut je�jX
k=1

(max
t i

max
j
jyh, j(t i; ��k)j)2,(2.16c)

kyh(� )k`2
`1 =max
��2e�

vuut�t

TX
i=1

OX
j=1

(yh, j(t i; �� ))2,(2.16d)

which are computable numerically.
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2.4.3. Frequency-Domain Norms

In the frequency-domain, the Hardy-norms k � kH p
of the transfer function for p 2 f2,1g

are employed. The H p-norms measure the magnitude of the frequency response, and are
also called system norms. Generally, the Hardy-norms are the Schatten norms of the transfer
function constrained to positive frequencies !> 0; hence, theH 2-norm is de�ned as:

kGkH 2
:=

vutZ 1
0

tr(G(� �!)�G(�!))d!.

As a result of Parseval's theorem [6, Ch. 5.5.1], theH 2-norm is equal to the L2-norm of the
impulse response,

kGkH 2
= kgkL2 ,

and, by Young's inequality (Appendix A.1), a bound for the L1-norm in the time-domain:

kykL1 = kg � ukL1
� kgkL2kukL2 = kGkH 2

kukL2 .
(2.17)

TheH1-norm is de�ned as the maximum singular value of the transfer function G,

kGkH1
:= sup

!2R>0
�max(G(�!))

= sup
kukL2=1

kyk2,

which is equivalent to the L2-gain of the system. This leads to a bound for the L2-norm in
the time-domain,

kykL2 � kGkH1
kukL2 . (2.18)

As presented in [16], compound frequency- and parameter-space norms could also be used
such as k � kH 2
L2 , but are not considered in the work at hand.
For nonlinear systems only the time-domain norms can be applied directly, while the frequency-
domain norms would require a linearization of the system; nonetheless, especially in the
case of the gramian-based state-space reduction, the previous norms can be utilized for er-
ror bounds and error indicators.
Lastly, the system L1-norm is presented in this context:

kgkL1 :=max
i

OX
j=1

�Z 1
0

jg(t)jdt
�
i j
= k

Z 1
0

jg(t)jdtk1, (2.19)

which corresponds to the L1-gain of the system (2.8) and leads to a time-domain bound in
the L1-norm (Appendix A.1):

kykL1 = kg � ukL1 � kgkL1kukL1 .
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2. Preliminaries

2.5. Principal Axis Transformation

A fundamental mathematical building block of model reduction is the availability of a trans-
formation which allows to sort a model's components by their importance. For the subspace
of symmetric matrices the existence of such a principal axis transformation is guaranteed by
the following theorem.

Theorem 2.7 (Principal Axis Theorem)
For every real symmetric matrix there exists an orthogonal base of eigenvectors.

Proof. See for example [84, Ch. 3.8.7].

An eigendecomposition of a symmetric matrix yields the eigenvectors as dominant �direc-
tions�, which can be sorted by their associated eigenvalues13 and at the same time embody
an orthogonal basis, and thus uncorrelated elements, over the Hilbert space RN equipped
with the Euclidean inner product. Since this result is only valid for symmetric matrices, a
generalization to arbitrary matrices is mentioned next.

2.5.1. Singular Value Decomposition

For a non-symmetric matrix X 2 R
N�M the product with its transpose XX | is symmetric,

to which the previous Theorem 2.7 can be applied. The same holds for X |X . A matrix
factorization that yields the (orthogonal) eigenvectors of XX | and X |X is the singular value
decomposition (SVD).

Theorem 2.8 (Singular Value Decomposition)
For a matrix X 2 RN�M there exists orthogonal matrices U 2 RN�N , V 2 RM�M and a diagonal

matrix D 2 RN�M such that:

X = UDV |,

with the diagonal entries of D corresponding to the singular values � of X :

Dii = �i =
Æ
�i(XX |),

thus the dyadic decomposition with columns ui of U and vi of V :

X =

NX
i=1

ui�iv
|

i
,(2.20)

is a singular value decomposition.

Proof. See for example [6, Ch. 3.2.1].

The eigenvectors of XX | are thus given by the left singular vectors ui and those of X |X by
the right singular vectors vi to which the singular values �i > 0, as the square roots of the
eigenvalues of XX |, correspond.

13The eigenvalues of a real symmetric matrix are real.
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Figure 2.2.: SVD-based dimension reduction of a digital image of dimension 1200� 1600.

Dimension Reduction

Without loss of generality the left and right singular vectors ui , vi are usually assumed to be
sorted by their corresponding singular values �i in descending order. The truncation of the
sum (2.20) to n < N summands results in a low rank approximation eX to X , excluding the
components with small singular values. This SVD-based dimension reduction15 is illustrated
in Figure 2.2, by compressing a grayscale image.

Proper Orthogonal Decomposition

Given a dataset X = [x1, . . . , xM ] 2 RN�M , x i 2 RN , an eigendecomposition of the associated
autocorrelation matrix R := E[XX |],

R�i = �iwi, X =W�W�1,

yields the (�nite dimensional) proper orthogonal decomposition (POD) of X , which is equiv-
alent to the SVD of X and is also called Karhunen-Lóeve transformation. POD is a basic tool
to construct Galerkin projections as the left singular vectors of a discrete time-series [205]
obtained from numerical simulations and is also called method of snapshots. Balanced POD
is a variant of this method taking into account adjoint information [120].

Principal Component Analysis

The eigendecomposition of the covariance matrix C := E[(X � E[X ])|(X � E[X ])] of the
aforementioned dataset X ,

C�i = �iwi, (X �E[X ]) =W�W�1,

results in the principal component analysis (PCA) of X . This method is also called empirical
eigenfunctions or empirical orthogonal functions. A nonlinear extension to the PCA is the
kernel principal component analysis (KPCA) developed in [193].

15See code/ch2/dimred.m in the supplementary source code archive (Appendix B.1).
15Image by: NINA-CLAIRE HIMPE, 2015; licensed under CC-BY.
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Gramian-basedmodel reduction is a system-theoretic approach, developed originally in [168]
for the state-space reduction of linear control systems. The nonlinear state-space reduction,
parameter-space reduction, and consequently the combined reduction, are based upon the
theory for linear state reduction. Central to this approach are two attributes of control sys-
tems, controllability and observability; the associated gramian matrices are instrumental
to this SVD-based model reduction technique. Special focus is placed on the (empirical)
cross gramian matrix, which has theoretical and numerical favorable properties.

3.1. State Reduction

Gramian-based state-space reduction aims to con�ne the dynamics of a system to a low-
dimensional subspace Rn � RN ,n� N based on its input-output behavior [17]. The output
y(t) of a control system (2.6) at a time t 2 R

>0, for an initial state x0 and a squarely
integrable input function u(t) is given by:

y(t) = C eAt x0 +

Z 1
0

C eA(t��) Bu(�)d�.

More generally, a stable control systemmaps the input or control u 2 LM2 [0,1) to the output
y 2 LO

2
[0,1). For a linear control system with zero initial state, this mapping from inputs

to outputs is described by an operator S,

u : LM2 [0,1)
S����! y : LO2 [0,1),

which is given by a convolution of the impulse response g with the input function u as in
(2.7) for a zero initial state,

y(t) = S(u)(t) = (g � u)(t) =
Z 1
0

g(t ��)u(�)d�,(3.1)

Yet, the convolution operator16 S cannot be assumed to be of �nite rank [6, Ch. 5].
16Also known as: evolution operator.
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3. Gramian-Based Combined Reduction

The composition of the operator S with a �time-�ip�-operator [90] F : [0,1)! (�1, 0],
F(u)(t) = u(�t),

H := S � F, (3.2)

yields the related Hankel operator,

H(u)(t) =

Z 0

�1

g(t ��)u(�)d�

=

Z 0

�1

C eA(t��) Bu(�)d�

= C eAt
Z 1
0

eA� Bu(��)d�,

which maps past inputs17 F(u) to future outputs y [52]. This means, the current state x(0)
is the result of the past inputs F(u),

x(0) =

Z 0

1

e�A� Bu(�)d�;

and the future outputs y(t) for the current state x(0) are given by:

y(t) = C eAt x(0).

Thus, if the underlying system is stable, the Hankel operator is decomposable into a mapping
from (past) inputs to states, C : L2(�1, 0] ! R

N , and a mapping from states to (future)
outputs, O : RN ! L2[0,1), see Figure 3.1.

LM2 (�1, 0]
H����! LO2 [0,1)

C & %O
R
N

Figure 3.1.: Commutative diagram illustrating the action of the Hankel operator mapping past

inputs to future outputs.

A stable system matrix A implies the L2-stability of the system and thus kGkH1
<1. Then,

following [74, Ch. 5, Thm. 1], the composition of the surjective operatorC with the injective
operator O ,

O �C (= H),

has �nite rank N and hence the Hankel operator has �nite rank less or equal to N .

17This assumes future inputs are zero.
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Hankel Singular Values

Given a �nite-dimensional system N <1, the Hankel operator exposes properties which
provide the foundation for gramian-based model reduction. For a stable system, the associ-
ated Hankel operator is compact due to its �nite rank. Since compact operators are bounded,
they admit a singular value decomposition; and the Hankel operator is a Hilbert-Schmidt op-
erator as its Frobenius norm, the �nite sum of squared singular values, is �nite:

kHkF = tr(H�H)

=

NX
i=1

�2
i (H)<1.

The singular values of the Hankel operator �i(H) are a system invariant (independent from
the state-space coordinate system). These Hankel singular values (HSV) classify the states
by importance in terms of energy transfer to the overall system18. This measure of coher-
ence between system inputs and outputs motivates model reduction by excluding states with
corresponding small HSVs which transfer the least energy. Additionally, the Hankel operator
is also a nuclear operator, since its trace norm is �nite:

kHk� = tr((H�H)
1
2 )

=

NX
i=1

�i(H)<1.

This property will be important in Section 3.2.4, since it enables the computation of upper
bounds for the model reduction error.

Hankel Norm

The Hankel operator induces a norm which can provide a lower error bound for the re-
duced system. For a linear state-space system �(A,B,C), the Hankel norm is de�ned as the
maximum singular value19 of the Hankel operator,

k�kH := max
i=1...N

(�i(H)).

As the following gramian-based model reduction approach is based upon these HSVs, a ROM
of rank n given by �r(Ar ,Br ,Cr) would exhibit at least an error "MOR:

"MOR � �n+1(H) = k���rkH .

This can be seen as a lower bound on the model reduction error [86, 87] for the subsequent
gramian-based methods, which is the result of the famous Adamjan-Arov-Krein theorem
[2, Thm. 1.1].

18HSVs are without loss of generality assumed to be sorted in descending order �1 � � � � � �N .
19Also known as: Schatten-1 norm.
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3. Gramian-Based Combined Reduction

3.2. System Gramians

Essential information on a control system can be encoded in certain gramian matrices. A
gramian matrix20 W to a given matrix V 2 RN�M is de�ned as [84, Ch. 8.6.1]:

W := VV |,

which is symmetric and positive semi-de�nite and thus the eigenvalues of W are real and
non-negative, �(W ) 2 R�0. For V =

�
v1 . . . vN

�|
, the gramian matrix can also be written

as the matrix of all inner products of row vectors vi 2 RM ,

Wi j = hvi , v ji.

Generally, a gramian matrix can be computed for a given set of vector-valued functions.

De�nition 3.1 (Gramian Matrix)
For a set of functions fvi 2 LN2 [0,1)gi=1...M an associated gramian matrix W 2 R

N�N is

de�ned as the inner product of all combinations of the set's elements:

Wi j := hvi , v ji.

Condensing the set of vector-valued functions fvigi=1...M into amatrix-valued function V (t) =�
v1(t) . . . vM (t)

�
yields the following representation of a gramian matrix:

W =

Z 1
0

V (t)V |(t)dt.

The gramian matrices associated with control systems, the so-called system gramians, en-
code information on attributes of the states. These system gramians enable the model order
reduction since they relate to the HSVs through the previously introduced operators C and
O . Following, three system gramians21 are presented, namely:

� the controllability gramian,

� the observability gramian,

� and the cross gramian.

While the controllability gramian and the observability gramian are self-adjoint, the cross
gramian is generally not a gramian matrix in the sense of De�nition 3.1, but rather a cross-
covariance matrix, yet it was introduced under the label �gramian� [65] and is designated
throughout this work as �cross gramian� to avoid confusion. Over the course of this chapter
the cross gramian is recurringly of particular interest and thus investigated more closely in
the linear system theory context of this section.

20Also known as: grammian or Gram matrix.
21The impulse response gramian and the system's gram matrix [212] can also be considered system gramians

but are not investigated in this work.
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3.2.1. Controllability Gramian

Controllability quanti�es howwell the states x(t) of a (control) system are driven by external
input u(t). More speci�cally, a controllable system guarantees that from any location in the
state-space a steady-state x̄ is attained in �nite time. A stronger concept to controllability
is reachability, which certi�es that from a steady-state any location in the state-space can be
reached in �nite time. A weaker concept to controllability is stabilizability and warrants that
a steady-state is reached asymptotically.

De�nition 3.2 (Controllability, Reachability, Stabilizability)

� Controllability: A system is called controllable if for any state �x 2 RN there exists an

input function u : [0,T ]! R
M , T <1, such that x(0) = �x and x(T ) = x̄ .

� Reachability: A system is called reachable if for any state �x 2 RN there exists an input

function u : [0,T ]! R
M , T <1, such that x(0) = x̄ and x(T ) = �x.

� Stabilizability: A system is called stabilizable if all uncontrollable subsystems are (asymp-

totically) stable.

Reachability implies controllability [105, Ch. 11] which in turn implies stabilizability [105,
Ch. 14] and for continuous LTI systems controllability and reachability are equivalent [6,
Thm. 4.18]. The associated operator to evaluate controllability maps past inputs to cur-
rent states. Hence, the controllability operator C : LM2 (�1, 0] ! R

N is de�ned as:

C (u) :=

Z 0

�1

e�At Bu(t)dt =

Z 1
0

eAt Bu(�t)dt.(3.3)

The adjoint operator C � : RN ! LM2 (�1, 0] is then given by:

C �(z)(t) = B| eA
| t z.

Now, a gramian matrix for C can be de�ned.

De�nition 3.3 (Controllability Gramian)
For an asymptotically stable LTI system the controllability gramian 22 WC is given by:

WC :=C �C � =
Z 1
0

eAt BB| eA
| t dt.

If the controllability gramian WC has full rank, the associated system is controllable. The
system gramian WC can be computed as the solution to a matrix equation.

Lemma 3.4 (Controllability Gramian)
The controllability gramian satis�es the Lyapunov equation:

AWC +WCA
| = �BB|.

Proof. See proof of Lemma 3.9

22This work uses the term �controllability� instead of �reachability� due to the use in [168, 65, 142].

25



3. Gramian-Based Combined Reduction

3.2.2. Observability Gramian

Observability quanti�es how well the output y(t) of a control system re�ects the state x(t).
Essentially, reconstructability23 of a system guarantees that any initial state x0 in the state-
space trajectory can be determined from the output in �nite time. A stronger concept to
reconstructability is observability, which certi�es that any state can be determined from pre-
vious output after �nite time. A weaker concept to reconstructability is detectability and
warrants that the initial state is retrieved asymptotically.

De�nition 3.5 (Reconstructability, Observability, Detectability)

� Reconstructability: A system is called reconstructable if an initial state x0 is uniquely

determined by the output y(t) 2 RO on a �nite time interval [0,T ].

� Observability: A system is called observable if any state x(T ) is uniquely determined by

the output y(t) 2 RO on a �nite time interval [0,T ].

� Detectability: A system is called detectable if all unobservable subsystems are (asymptot-

ically) stable.

Observability implies reconstructability [105, Ch. 15] which in turn implies detectability
[105, Ch. 16] and for continuous LTI systems observability and reconstructability are equiv-
alent [6, Thm. 4.18]. The associated operator to evaluate observability maps current states
to future outputs. Hence, the observability operator O : RN ! LO

2
is de�ned as:

O (x0)(t) := C eAt x0. (3.4)

The adjoint operator O � : LO
2
! R

N is then given by:

O �(y) =
Z 1
0

eA
| t C| y(t)dt.

Again, also a gramian matrix for O can be de�ned.

De�nition 3.6 (Observability Gramian)
For an asymptotically stable LTI system the observability gramian WO is given by:

WO := O � � O =

Z 1
0

eA
| t C|C eAt dt.

If the observability gramianWO has full rank, the associated system is observable. The system
gramian WO can also be computed as the solution to a matrix equation.

Lemma 3.7 (Observability Gramian)
The observability gramian satis�es the Lyapunov equation:

A|WO +WOA= �C|C .

Proof. See proof of Lemma 3.9

23Also known as: constructability.
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3.2.3. Cross Gramian

The cross gramian encodes controllability and observability into a single matrix. It was
introduced for SISO systems in [65]24, and extended to (symmetric) MIMO systems in [145,
68, 69]. This system �gramian� requires that the number of inputs is equal to the number of
outputs, M = O; a system with such property is called square.

De�nition 3.8 (Cross Gramian)
For a square, asymptotically stable LTI system the cross gramian25, WX is given by the compo-

sition of the controllability operator with the observability operator:

WX :=C �O =

Z 1
0

eAt BC eAt dt.(3.5)

Iff the cross gramian has full rank, the associated (symmetric) system is controllable and ob-
servable and thus minimal [64, 69]. The cross gramianWX can be computed as the solution
to a matrix equation.

Lemma 3.9 (Cross Gramian)
The cross gramian satis�es the Sylvester equation:

AWX +WXA= �BC .
Proof.

As a preliminary remark it should be noted that A is negative de�nite and thus, �rst, A is
invertible, and second limt!1 eAt = 0. Then, from integration by parts follows:Z 1

0

eAt BC eAt dt = A�1 eAt BC eAt
���1
0
� A�1

Z 1
0

eAt BC eAt Adt

) A

Z 1
0

eAt BC eAt dt +

Z 1
0

eAt BC eAt dtA= eAt BC eAt
���1
0

) AWX +WXA= �BC .

The core property of the cross gramian [64, 145, 67, 1, 210] is given by its relation to the
controllability and observability gramian, which only holds for symmetric systems (2.9).

Lemma 3.10 (Cross Gramian)
For a symmetric linear system the squared cross gramian equals the product of controllability

and observability gramian,

W 2
X =WCWO.

Proof (First Variant).

A symmetric system implies a symmetric Hankel operator: H = H� ) H = OC = (OC )�,
and thus:

W 2
X =COCO =C (OC )�O =CC �O �O =WCWO.

24Even though [64] is published earlier, it references [65] already, see also [63].
25Other symbols used for the cross gramian are WCO and XCG .
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Proof (Second Variant).

WCWO =

Z 1
0

Z 1
0

eAt BB| eA
| t eA

|� C|C eA� dt d�

=

Z 1
0

Z 1
0

eAt BCJ eA
| t eA

|� J�1BC eA� dt d�

=

Z 1
0

Z 1
0

eAt BCJ eA
|(t+�) J�1BC eA� dt d�

=

Z 1
0

Z 1
0

eAt BCJ eJ
�1AJ(t+�) J�1BC eA� dt d�

=

Z 1
0

Z 1
0

eAt BC eJJ
�1AJJ�1(t+�) BC eA� dt d�

=

Z 1
0

Z 1
0

eAt BC eAt eA� BC eA� dt d�=W 2
X .

As a consequence of the previous Lemma 3.10 the following relation between the system's
gramians holds [65]:

Corollary 3.11

The absolute value of the cross gramian's eigenvalues are equal to the square root of the eigen-

values of the product of controllability and observability gramians,

W 2
X =WCWO) j�i(WX )j=

Æ
�i(WCWO), i = 1 . . .N . (3.6)

Furthermore, a relation26 between the trace of the cross gramian and the system gain,

tr(WX ) = �
1
2
tr(CA�1B),

was shown �rst for SISO systems in [65] and generalized for MIMO systems in [110], while a
more general result is presented in [85]. The cross gramian also provides additional informa-
tion on the underlying system [115], such as the system's transfer function's Cauchy-index
through the cross gramian's signature [66], the system's singularity index [164] using the
virtual system �(WX ,B,C) and the cross gramian minimum information loss (CGMIL) index
[78].
For the special case of state-space symmetric systems (2.10) another useful relation [155]
connects the controllability, observability and cross gramian.

Note 3.12 (State-Space Symmetric System Gramians)
For state-space symmetric systems the controllability gramian, observability gramian and cross

gramian are equal:

A= A| ^ B = C|)WC =WO =WX . (3.7)

This is a direct consequence of the de�nition of the system gramians.
26This result is used in [214, 215] for a parametrized system as a sensitivity measure S(� ) := tr(WX (� )) in

the context of sensitivity analysis, in decentralized control as an interaction measure [197] and in optimal sensor

placement [160].

28



3. Gramian-Based Combined Reduction

Controllability-Based Cross Gramian

Controllability and observability are dual operators [6, Ch. 4.2.3]. The controllability gramian
of a linear system is equal to the observability gramian of the adjoint system, and vice versa,
the observability gramian of the system is equal to the controllability gramian of the adjoint
system. For linear control systems, the cross gramian can thus be computed using only the
controllability gramian as introduced in [69] and revisited in [195, 18]. Augmenting a linear
system's vector �eld with its negative adjoint yields:

��x(t) =

�
A 0
0 A|

�
�x(t) +

�
B

C|

�
�u(t).

Then, the controllability gramian of such a system has the following block structure:

�WC =

�
WC WX

W
|

X WO

�
,

in which the cross gramian WX constitutes the upper right block.

Non-Symmetric Cross Gramian

The core property of the cross gramian (3.6) is only available for symmetric systems. Yet,
the cross gramian can be computed for any square system and [14] shows that even for non-
symmetric systems, heuristically the cross gramian can yield usable results. For an arbitrary
square system the following weaker relation between the cross gramian and the HSVs is
shown in [210].

Lemma 3.13 (Non-Symmetric Cross Gramian Singular Value Properties)
For a non-symmetric square system the following inequalities for the singular values of the cross

gramian �i(WX ) and the Hankel singular values �i(H) hold:

kX
i=1

�i(H)�
kX

i=1

�i(WX )^
kX

i=1

�N�i+1(WX )�
kX

i=1

�N�i+1(H).

There are three methods for computing a cross gramian for non-symmetric systems. First,
the class of systems for which the cross gramian's core property holds can be expanded to
orthogonally symmetric systems [1]. Second, by embedding a non-symmetric system into a
symmetric system of which its cross gramian is then an approximation [209, 210]. Third,
an averaged cross gramian over all SISO subsystems is proposed in [117].
A generalization to symmetric systems (see: De�nition 2.6) are orthogonally symmetric sys-
tems27.

De�nition 3.14 (Orthogonally Symmetric Systems)
A linear system is called orthogonally symmetric if:

9!P = P|, 9U
¨
2 RM�O O � M

2 RO�M M � O
, U|U = 1,

27The use of an (orthogonal) output projection in [120, Ch. 5.3] is a related method.
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such that:

AP = PA|,

B = PCU|,

C = PBU .

In case of an orthogonally symmetric system a cross gramian can be de�ned that satis�es
the core property Lemma 3.10.

De�nition & Theorem 3.15 (Orthogonally Symmetric Cross Gramian)
For an orthogonally symmetric, asymptotically stable, linear system a cross gramian is given by:

WX :=

Z 1
0

eAt BUC eAt dt.

which ful�lls:

W 2
X =WCWO.

Proof.

The proof is similar to the proof of Lemma 3.10 and can be found in [1].

Furthermore, as shown in [1], the cross gramian of an orthogonally symmetric system can
be computed only by P and either a controllability or observability gramian as:

WX =WC P
�1 = PWO.

The embedding approach from [209, 210] requires a symmetrizer matrix J 2 RN�N to the
system matrix A2 RN�N , which is a symmetric matrix J = J| with the property,

A J = JA|,

and is the solution28 to the Sylvester equation A J � JA| = 0 [46]. Given a symmetrizer
matrix J to the system matrix A of a linear control system, a system can be embedded into a
symmetric system as follows:

Ā := A,

B̄ :=
�
JC| B

�
,

C̄ :=

�
C

B|J�1

�
.

Then, the cross gramian of the enclosing symmetric system �̄(Ā, B̄, C̄) approximates the cross
gramian of the original system.

28A symmetrizer matrix can also be approximated by eigenanalysis as proposed in [53].
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A recent approach [117] is related to decentralized control, which aims to partition aMIMO
system into a set of SISO systems by selecting the input-output combinations that exhibit the
highest coherence. Splitting the input matrix B by columns and the output matrix C by rows,

B =
�
b1 . . . bM

�
, bi 2 RN�1, C =

0
@c1

...
cO

1
A , c j 2 R1�N ,

yields a set of M � O many SISO sub-systems �(A, bi , c j). The system gramians for these
SISO systems are given by:

WC ,i =

Z 1
0

eAt bi b
|

i
eA

| t dt,

WO, j =

Z 1
0

eA
| t c

|

j
c j e

At dt,

WX ,i j =

Z 1
0

eAt bic j e
At dt.

In decentralized control, interaction measures29 based on Schatten-norms of the Hankel op-
erators related to these subsystems [136, 165, 166, 167, 196] are used to quantify the coher-
ence between an input and an output. All interaction measures of a system then constitute
a participation matrix or pairing matrix, the maximum values of which, selected either row-
or column-wise, determine the input-output pairings of the decentralized system.
Following [165, 3], a relation between the MIMO system gramians and the SISO system
gramians is demonstrated exemplary for the cross gramian.

Lemma 3.16 (Cross Gramian Superposition)
The cross gramian WX of a square MIMO system is equal to a sum of M = O many SISO

sub-system cross gramians with i = j:

WX =

MX
i=1

WX ,ii .

Proof.

WX =

Z 1
0

eAt(BC)eAt dt

=

Z 1
0

eAt(
MX
i=1

bici)e
At dt

=

MX
i=1

Z 1
0

eAt bici e
At dt.

29The interaction measures are closely related to parameter identifying measures in Section 3.4.

31



3. Gramian-Based Combined Reduction

Similarly, a relation can be derived for the controllability and observability gramian:

WC =

MX
i=1

WC ,i , WO =

OX
j=1

WO, j .

Hence, the product of controllability and observability gramian, which is essential to Lemma 3.10,
can be written in terms of the subsystem cross gramians:

WCWO =

MX
i=1

OX
j=1

WC ,iWO, j =

MX
i=1

OX
j=1

WX ,i jWX ,i j .

This relation motivates a de�nition for a non-symmetric cross gramian, proposed in [117],
based upon the SISO partitioning of the underlying system.

De�nition 3.17 (Non-Symmetric Cross Gramian)
The non-symmetric cross gramian WZ is de�ned as the sum of all subsystem cross gramians

WX ,i j:

WZ :=
MX
i=1

OX
j=1

WX ,i j .

As noted in [117] this cross gramian does not preserve the regular cross gramian's core
property of Lemma 3.10, but is shown to have a property related to linear superposition
justifying its use.

Lemma 3.18 (Average Cross Gramian)
The non-symmetric cross gramian WZ is equal to the cross gramian of the �averaged� SISO

system �(A,
PM

i=1 bi ,
PO

j=1 c j).

Proof.

WZ =

MX
i=1

OX
j=1

Z 1
0

eAt bic j e
At dt

=

Z 1
0

eAt(
MX
i=1

OX
j=1

bic j)e
At dt

=

Z 1
0

eAt(
MX
i=1

bi)(

OX
j=1

c j)e
At dt.

Thus, this non-symmetric cross gramian can be seen as an average or mean cross gramian
over all SISO subsystem's cross gramians.
The non-symmetric cross gramian can also be computed for nonlinear systems if a cross
gramian for a nonlinear SISO system is available30. But it should be noted that for nonlinear
systems the property from Lemma 3.18 cannot be expected to hold globally.

30For example using the empirical cross gramian, see Section 3.3.3.
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3.2.4. Balanced Truncation

Various methods are available for the construction of projections yielding reduced input-
output mappings from the preceding system gramians [231]. Following, the renowned bal-
ancing approach is summarized. An initial result of this chapter was the factorization of the
Hankel operator H into the observability and controllability operators:

H = OC .

This leads, �rst, to a relation between the Hankel operator and the cross gramian:

tr(H) = tr(OC ) = tr(CO ) = tr(WX );

as the controllability and observability operators are Hilbert-Schmidt operators from which
this trace property follows. And second, a further relation between the HSVs and the system
gramians emerges.

Lemma 3.19

The singular values of the Hankel operator coincide with the square root of the eigenvalues of

the product of controllability and observability gramian:

�i(H) =
Æ
�i(WCWO).

Proof.

�i(H) =
Æ
�i(H�H) =

Æ
�i((OC )�(OC ))

=
Æ
�i(C �O �OC )

=
Æ
�i(C �WOC )

Using [119, Proposition 1] yields:

=
Æ
�i(WOCC �)

=
Æ
�i(WOWC)

...

=
Æ
�i(WCWO).

And by (3.6), also the absolute value of the eigenvalues of the cross gramian (in case of a
symmetric system) are equal to the HSVs:

�i(H) = j�i(WX )j,

which means, that the HSV are computable through the system gramians, either by the
controllability and observability gramians or by the cross gramian. To translate this property
into a method for reduced order modelling, the underlying system has to undergo a (linear
coordinate) transformation that orients the systems along the directions belonging to the
singular vectors associated to the HSVs.
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Balanced Realization

To obtain the reduced order model, the least controllable and least observable states are to
be neglected31. This requires a balancing (ordering) of the states simultaneously in terms
of controllability and observability. A balancing transformation T is obtained from the si-
multaneous diagonalization of the controllability and observability gramian [6, Ch. 7] such
that:

TWCT
| = T�|WOT

�1 =

0
@�1 0

...
0 �N

1
A .

Typically, the so called square-root-algorithm is used to compute a balancing transformation
[146, 19], which does not require the full order controllability and observability gramians,
but their respective Cholesky factors LC and LO:

WC

Cholesky
= LC L

|

C
,

WO

Cholesky
= LOL

|

O
,

LC L
|

O

SVD
= UDV.

The Cholesky factors of the empirical gramians, which are introduced in the following
Section 3.3, are not computable without assembling the full gramian. Related to the com-
monly used square-root-algorithm is the balancing algorithm from [19, 81]:

WC
SVD
= UCDCU

|

C
,

WO
SVD
= UODOU

|

O
,

UCD
1
2

C
U
|

C
UOD

1
2

O
U
|

O
=W

1
2

C
W

1
2

O
,

W
1
2

C
W

1
2

O

SVD
= UDV.

This algorithm can be computationally more ef�cient if the reduced order is known and the
full system gramians are computed directly instead of their Cholesky factors [146, 222], since
then truncated SVDs can be computed for the system gramians WC and WO as in balanced

proper orthogonal decomposition (bPOD) [228, 184].
Now, U and V are the right and left balancing transformations and the diagonal matrix
D comprises the Hankel singular values of which the right subspace spanned by U can be
considered the controllability subspace and the left subspace spanned by V the observability
subspace. In the following it is essential that the left and right singular vectors in U and V

are sorted by their associated HSVs in descending order. The bi-orthogonal Petrov-Galerkin
projection fU ,Vg applied to a linear system gives a system in balanced form, with the same
input-output behavior, but with balanced states sorted simultaneously by their controllability
and observability.

31In contrast to POD, which in comparison considers only controllability [229].
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Truncated Balanced Realization

Given a balancing transformation fU ,Vg, the reduced order model can be obtained by trun-
cating the (N � n) least signi�cant states in terms of input-output coherence. A truncating
projection S:

S :=

�
1n

0n

�
2 RN�n,

can then be applied to the balanced model components or directly to the balancing projec-
tions:

U1 := U � S,
V1 := S| � V.

Hence, the method called balanced truncation (BT) consists of the composition of a bal-
ancing transformation with a truncating projection. Truncating (N � n) columns and rows
from U and V respectively, yields a (balanced) reducing truncated projection,

U =
�
U1 U2

�
! U1 2 RN�n,

V =

�
V1
V2

�
! V1 2 Rn�N ,

(3.8)

from which a stability-preserving [175, 198] reduced order model follows as in (2.12).

Approximate Balancing and Direct Truncation

For the cross gramian, a balancing transformation can be determined from its eigendecom-
position:

WX = T

0
@�1 0

...
0 �N

1
A T�1.

Assuming the eigenvalues �i(WX ) are sorted in descending order by their absolute value
[4], the associated eigenvectors yield left and right eigenspace projections T and T�1 [72,
Ch. 7.4]:

U = T�1,

V = T,

and can be used as a two-sided balancing projection in case of a (orthogonally) symmetric
system. The left (or right) eigenspace projection can then be truncated as for the truncated
balanced realization and used as a reducing projection. This method is equivalent to the
poor man's truncated balanced realization (PMTBR) described in [176].
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The projection obtained from an eigendecomposition is generally not orthogonal. Alter-
natively, an approximate balancing transformation can be computed from a singular value
decomposition of the cross gramian WX :

WX
SVD
= UDV.

In [180, M3] it is proposed to truncate columns from U and rows from V and use it as two-
sided projection. Yet, a (bi-orthogonal) Petrov-Galerkin projection fU1,V1g is generally not
stability preserving.
By a truncation of the left singular vectors32 forming the columns of U , and using it as an
orthogonal projection, a reduced order model is assembled from the truncated projection
fU1,U

|

1
g. This method is called direct truncation33 (DT) [110] and yields an orthogonal

Galerkin projection. A Galerkin projection is generally not stability preserving, but in this
case, due to the use of adjoint information in WX , the projection obtained from direct trun-
cation preserves the stability of the ROM by the same argument as in [120, Ch. 5.4]. The
direct truncation of the cross gramian is closely related to the balanced POD procedure from
[184]. This is illustrated by viewing the SVD of WX as an SVD of WO with respect to the
inner product C �C :

WX =CO ! O �C �CO = O �(C �C )O
! V (y(t)) := y(t)|(C �C )y(t)

) �V (y(t)) = �y(t)|(C �C )y(t) + y(t)|(C �C )�y(t)

= x|(A|(O (t)|C �CO (t)) + (O (t)|C �CO (t))A)x A<0
< 0,

with O (t) = C eAt being the �nite time observability operator. This inner product is energy-
preserving, if the system is stable, since V is a Lyapunov function [105, Sec. 8.5]. The
stability property of the balanced POD, resting upon an energy-preserving inner product
interpretation [185, Sec. 2.3], thus transfers to the cross-gramian-based direct truncation.
This illustrates the viewpoint in [184, Sec. 3.4] of balanced truncation, balanced POD (and
the cross gramian) being variants of the POD using an energy-preserving inner products
[185].
Overall, the advantage of the cross gramian method compared to balanced truncation is
that conceptually only one gramian needs to be computed from which a single truncated
SVD obtains the reducing projection, and in case of direct truncation the ROM is not only
stability preserving but under a weak condition also passivity preserving34; yet, due to the
use of a one-sided projection the resulting ROM may be less accurate compared to balanced
truncation. Additionally, the cross gramian provides more information on the underlying
system as outlined in Section 3.2.3.

32Alternatively, also the right singular vectors could be used.
33Generally, the singular values of the cross gramian are not equal to the HSV.
34 A system is called passive if it does not generate energy, which means mathematically:

R t

�1
u(�)| y(�)d��

0, 8t 2 R (see [6, Ch. 5.9.1]). Balanced truncation is generally not passivity preserving, but there exist variants

of balanced truncation which guarantee passivity [177]. The cross-gramian-based direct truncation is passivity

preserving if the underlying system matrix A is negative semi-de�nite since the Galerkin projection is a congru-

ence transformation that preserves de�niteness.
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H1-Error Bound

An acclaimed property of balanced truncation is the existence of an a-priori error bound of
the model reductionH1-error for the reduced order system, which was developed concur-
rently, but separately, in [86] and [61].

Theorem 3.20 (H1-Error Bound)
For distinct HSVs �1(H)< ...< �N (H) the error in theH1-norm is bounded by:

kG(s)� Gr(s)kH1
� 2

NX
k=n+1

�k(H)

= 2
NX

k=n+1

Æ
�k(WCWO)(3.9)

= 2
NX

k=n+1

j�k(WX )j.

Hence, the model reduction error in theH1-norm is enclosed by the following error bound
solely based on the system's (truncated) HSVs [8]:

�n+1(H)� kG(s)� Gr(s)kH1
� 2

NX
k=n+1

�k(H).

With (2.18) this H1-error bound35 extends to the L2-norm in the time-domain. A more
conservative, yet more practical error bound is given by:

2
NX

k=n+1

�k(H)� 2
NX

k=n+1

�n+1(H) = 2(N � n)�n+1(H),(3.10)

which does not require all HSVs to be known.

H 2-Error Indicator

Also in the H 2-norm, an error bound for the model reduction error kG � GrkH 2
can be

derived, but it requires the full order system gramians [163]. Since this may be a complex
task for large systems, a simpler error indicator from [210] is presented here.
TheH 2-norm can be expressed utilizing the controllability or observability gramians:

kGkH 2
=
Æ
tr(CWCC

|) =
Æ
tr(B|WOB);(3.11)

and for symmetric systems also by the cross gramian:

kGkH 2
=
Æ
tr(CWXB).(3.12)

This relation is directly derived from the de�nition of the gramians and used in [210] to
obtain the following (a-priori)H 2 model reduction error indicator.

35In [173], theH1-error bound is explored from a trace-norm point of view.
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Note 3.21 (H 2-Error Indicator)
For a balanced system e�(eA, eB, eC) and a diagonal36 system gramian W with a partitioning of

the following form: �
��x1(t)
��x2(t)

�
=

�eA11 eA12eA21 eA22
��

�x1(t)
�x2(t)

�
+

�eB1eB2
�
u(t),

y(t) =
�eC1 eC2���x1(t)�x2(t)

�
,

W =

�
W11 0
0 W22

�
,

an error indicator is provided by:

kG(s)� Gr(s)kH 2
�
q
tr(eC2W22

eB2). (3.13)

For theH 2-error indicator, a more conservative error indicator is given by:q
tr(eC2W22

eB2)�qtr(eC2�n+1
eB2), (3.14)

which only requires the �rst (n+ 1) HSVs to be known.

Balanced Gains

The relation in (3.11) also suggests that truncation of (balanced) states based on the HSVs
might result in larger errors in the H 2-norm. In [131] the concept of balanced gains is
introduced with regard to this issue. A related, but more accessible, procedure is presented
in [49], based on (3.11) and (3.12); given a balanced input matrix eB =

�
�b1 . . . �bN

�|
and a

balanced output matrix eC =
�
�c1 . . . �cN

�
, it is proposed to partition and truncate the states

not based upon the HSVs �i(H), but on the quantities di , which relate to the HSVs by:

di := �bi�b
|

i
�i = �c|

i
�ci�i = j�bi�cij�i .

L1-Error Bound

Additionally, an L1-error bound for the impulse response, and hence for the L1 time-domain
error, is derived in [144] and extended in [171, Ch. 1]:

kg � grkL1 � 4(N + n)

NX
i=n+1

�i , (3.15)

which in turn is bounded, given the �rst n+ 1 HSVs, by

4(N + n)

NX
i=n+1

�i � 4(N + n)(N � n� 1)�n+1 = 4(N2 � N � n2 � n)�n+1. (3.16)

36In balanced form all system gramians are diagonal and equal and are composed of the HSVs.
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Second-Order Systems

A special case of linear systems are linear second-order systems, which in practice often
result from mechanical applications and are of the form:

Mq̈(t) + G�q(t) + Kq(t) = BVu(t),

y(t) = CPq(t) + CV �q(t),

with a (non-singular) mass matrix M 2 R N
2
� N

2 , damping matrix G 2 R N
2
� N

2 , stiffness matrix
K 2 R N

2
� N

2 , input matrix BV 2 R
N
2
�M and output matrices CP ,CV 2 RO� N

2 . Referring to the
physical interpretation of second-order systems in Hamiltonian mechanics, P denotes �posi-
tion� and V denotes �velocity�. Such systems can be reduced to a �rst-order system (2.6),
where the components A,B,C of the (�rst-order) linear control system have the following
structure:

A=

�
0 N

2
1 N

2

�M�1K �M�1G

�
,

B =

�
0 N

2

M�1BV

�
,

C =
�
CP CV

�
.

(3.17)

In this form, the previously described ansatz for gramian-based model reduction can be
applied. Yet, due to the original second-order nature of the system, structure preserving
(and also more ef�cient) methods, called second-order balanced truncation (SOBT) [36],
are available37 [183, 233, 21].
The associated system gramians to a second-order system interpreted as �rst-order system
have the following block structure:

WC =

�
WC ,P WC ,12

W
|

C ,12
WC ,V

�
,

WO =

�
WO,P WO,12

W
|

O,12
WO,V

�
,

WX =

�
WX ,P WX ,12

WX ,21 WX ,V

�
.

A variety of methods for structure preserving balanced truncation are presented in [183,
220]. The common approach in those methods is the use of separate balancing projections
for the position and velocity components,

V =
�
VP VV

�
,

U =

�
UP

UV

�
,

which are applied to their associated system components.

37See also [187, Ch. 7.2].
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By the truncated projection matrices UP,1,UV,1 2 R
N
2
� n

2 and VP,1,VV,1 2 R
n
2
� N

2 a ROM is ob-
tained which is of the same block structure as the full-order model (3.17),

Ar =

�
0 n

2
1 n

2

�VV,1M�1KUP,1 �VV,1M�1GUV,1

�
,

Br =

�
0 n

2

VV,1M
�1BV

�
,

Cr =
�
CPUP,1 CVUV,1

�
.

Generally, as opposed to �rst-order balanced truncation and direct truncation these methods
are not guaranteed to yield stable ROMs as shown in [183].
Following, three selected methods are listed from [183, 220] for balanced truncation (BT),

� balanced truncation of the position gramians:

fVP = VV ,UP = UV g ! BT (WC ,P ,WO,P),

� balanced truncation of the velocity gramians:

fVP = VV ,UP = UV g ! BT (WC ,V ,WO,V ),

� balanced truncation of the position and velocity gramians:¨
fVP ,UPg ! BT (WC ,P ,WO,P)

fVV ,UV g ! BT (WC ,V ,WO,V )
.

as well as the cross-gramian-based methods [233] for the direct truncation (DT),

� direct truncation of the position cross gramian:

fVP = VV = U
|

P = U
|

V g ! DT (WX ,P),

� direct truncation of the velocity cross gramian:

fVP = VV = U
|

P = U
|

V g ! DT (WX ,V ),

� direct truncation of the position and velocity cross gramian:¨
fVP = U

|

Pg ! DT (WX ,P)

fVV = U
|

V g ! DT (WX ,V )
.

The above listed methods do not require the mixed position-velocity gramians, which con-
sequently will not have to be computed or stored, and preserve the second-order structure
of the system.
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3.3. Empirical Gramians

Already in [159] a gramian-based approach for nonlinear model reduction is presented.
Therein, after a linearization around a steady-state, a balancing transformation is determined
from the linearized model, which is then truncated and applied as in (2.11).
A systematic ansatz to nonlinear balancing is pursued in [189, 190], which is based on the
controllability energy function LC and observability energy function LO:

LC := min
u2L2(0,1)

1
2

Z 0

�1

ku(t)k2 dt = 1
2
x
|

0
W�1C x0,

LO :=
1
2

Z 1
0

ky(t)k2 dt = 1
2
x
|

0
WOx0.

From a computational point of view this method is rather involved for nonlinear systems, re-
quiring the solution of an optimal control problem on a Hamilton-Jacobi PDE and a nonlinear
Lyapunov equation.
Initially, in [168], the controllability and observability gramianwere not computed by solving
Lyapunov equations, but from (output) trajectories; hence, nonlinear systems are generally
admissible for the construction of the system gramians. This approach is the basis for the
empirical gramians38 introduced in [142, 143]. An empirical gramian matrix is not com-
puted as solution of a matrix equation, but as (auto-)correlation matrix Wi of trajectories
x i(t),

Wi =

Z 1
0

(x i(t)� x̄ i)(x i(t)� x̄ i)
| dt,(3.18)

with the temporal mean x̄ i ,

x̄ i := lim
T !1

1
T

Z T
0

x i(t)dt.

These correlation matrices are then averaged over a certain operating region 
 of the un-
derlying system:

W =

j
jX
i=1

Wi .

This operating region 
 is de�ned by perturbations of a nominal input u(t) and a nominal
initial state x0.

De�nition 3.22 (Perturbation Sets)
The input perturbations for an impulsive input u(t) = �(t) are de�ned as:

Eu = fei 2 RM ;keik= 1; hei , e j 6=ii= 0; i, j = 1, . . . ,Mg,
Ru = fSi 2 RM�M ;S|

i
Si = 1M ; i = 1, . . . , sg,

Qu = fci 2 R; ci > 0; i = 1, . . . ,qg.
38A related approach is already described in [174] and enhanced in [158].
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The initial state perturbations for an initial state x0 are de�ned as:

Ex = f fi 2 RN ;k fik= 1; h fi , f j 6=ii= 0; i, j = 1, . . . ,Ng,
Rx = fTi 2 RN�N ; T|

i
Ti = 1N ; i = 1, . . . , tg,

Q x = fdi 2 R; di > 0; i = 1, . . . , rg.

The perturbations can be understood as (standard) directions, rotations39 and scales for the
input and initial state, by which the whole operating region
= (Eu�Ru�Qu)�(Ex�Rx�Q x)

can be covered [44]. While the choice of the scaling sets Qu,Q x depends on the application,
as a generic choice for the rotation sets Ru,Rx , the identity matrix and negative identity
matrix f1,�1g are suggested in [142, 143]. Alternatively, in [83, 82, 58] a (partial) factorial
design is proposed, which enables combinations of component perturbations, yet this results
in large rotation matrices.
For each point in the (Cartesian) product of the required perturbation sets, an individual
empirical gramian is computed. The (arithmetic) average over all these sub-gramians then
yields the �nal empirical gramian.
Since the computation of empirical gramians requires only trajectories, this approach ex-
tends, beyond linear systems, also to nonlinear systems; yet for linear systems the em-
pirical gramians reduce to the (linear) system gramians (see: Lemma 3.24, Lemma 3.28,
Lemma 3.33). Also, due to the initial state perturbations, empirical balanced truncation
addresses the issue of inhomogeneous initial conditions raised in [104].
The empirical gramian method requires the asymptotic stability of the underlying system
over the whole operating region. Accuracy of the reduced order model obtained from em-
pirical gramians depends heavily on the coverage of the operating region encoded in the
perturbation sets. Given a good coverage, the empirical gramians provide more precise in-
formation than classic algebraic methods on the controllability and observability [200] and
thus the input-output behavior; and for nonlinear model reduction the empirical gramians
can outperform linearization [51].
As a generalization to the empirical gramian matrices, the empirical covariance matrices

were introduced in [100, 102]. The empirical covariance matrices allow, apart from cen-
tering the trajectories around the steady-state instead of the temporal average, for a larger
class of input functions. While the empirical gramians require impulse input u(t) = �(t),
the empirical covariance matrices admit a series of step functions u(t) = v(t) as input:

v(t) :=
X
k

vk�[tk ,tk+1)(t). (3.19)

A discrete variant, the discrete empirical covariance matrices can then be computed nu-
merically [98, 99], for any discretized input function.
Beyond model reduction, the empirical gramians have a variety of applications in system
identi�cation, for example nonlinearity quanti�cation [98]; and while in this work only
time-invariant systems are of interest, in [44] the use of empirical gramians for (linear)
time-varying systems is developed, and applied for example in [111].

39Rotation matrices are orthogonal by de�nition.
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3.3.1. Empirical Controllability Gramian

Originally, in [168], the controllability gramianWC is computed using the impulse responses
x j(t) = eAt Be j , with e j being the j-th column of the M � M -dimensional identity matrix,
which are concatenated to X (t) =

�
x1(t) . . . xM (t)

�
:

WC =

Z 1
0

X (t)X |(t)dt.

The empirical controllability gramian introduced in [142, 143] is a generalization to this
approach, in which the trajectories are centered and the controllability gramians for each
centered trajectory are averaged over the Cartesian product of all perturbations.

De�nition 3.23 (Empirical Controllability Gramian)
For sets Eu, Ru, Qu, the empirical controllability gramian cWC 2 RN�N is given by:

cWC =
1

jQujjRuj

jQujX
h=1

jRujX
i=1

MX
j=1

1

c2
h

Z 1
0

	
hi j(t)dt,

	
hi j(t) = (xhi j(t)� x̄hi j)(xhi j(t)� x̄hi j)| 2 RN�N ,

with xhi j(t) being the trajectory for the input con�guration uhi j(t) = chSie j�(t) and x̄hi j the

associated temporal mean state.

A justi�cation for this de�nition is provided in [142, 143] by showing that the empirical
controllability gramian reduces to the controllability gramian from De�nition 3.3 for linear
control systems.

Lemma 3.24 (Empirical Controllability Gramian)
For asymptotically stable linear systems the empirical controllability gramian is equal to the

(linear) controllability gramian.

Proof.

	
hi j(t) = (eAt BchSie j)(e

At BchSie j)
|

= c2
h
(eAt BSie j)(e

|

j
S
|

i
B| eA

| t)

= c2
h
eAt BB| eA

| t

)cWC =
1

jQujjRuj

jQujX
h=1

jRujX
i=1

MX
j=1

1

c2
h

Z 1
0

c2
h
eAt BB| eA

| t dt

=

Z 1
0

eAt BB| eA
| t dt =WC .

Hence, the empirical controllability gramian cWC is subsequently denoted by WC .
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In [99, 102] the empirical controllability gramian is generalized to an empirical controllabil-
ity covariance matrix, by expanding the class of admissible input function from impulse input
to a series of step functions (3.19) and centering the state trajectories around a steady-state
instead of the temporal mean.

De�nition 3.25 (Empirical Controllability Covariance Matrix)
For sets Eu, Ru, Qu, input u(t) and input during the steady-state x̄ , ū, the empirical control-

lability covariance matrix fWC 2 RN�N is given by:

fWC =
1

jQujjRuj

jQujX
h=1

jRujX
i=1

MX
j=1

1

c2
h

Z 1
0

	
hi j(t)dt,

	
hi j(t) = (xhi j(t)� x̄hi j)(xhi j(t)� x̄hi j)| 2 RN�N ,

with xhi j(t) being the trajectory for the input con�guration uhi j(t) = chSie j � u(t) + ū.

Since an empirical controllability gramian or covariance matrix is computed from discrete
trajectories, a discrete version of the previous de�nition follows as suggested in [98, 99].

Note 3.26 (Discrete Empirical Controllability Gramian / Covariance Matrix)
For sets Eu, Ru, Qu, discrete time interval [0,T ] with time step �t, discrete input ut and the

temporal mean (steady-) state x̄ , ū = 0 (input during the steady-state x̄ , ū), the discrete

empirical controllability gramian (discrete empirical controllability covariance matrix)

wC 2 RN�N is given by:

wC =
1

jQujjRuj

jQujX
h=1

jRujX
i=1

MX
j=1

�t

c2
h

T =�tX
t=0

	
hi j
t ,

	
hi j
t = (x

hi j
t � x̄hi j)(x

hi j
t � x̄hi j)| 2 RN�N ,

with x
hi j
t being the discrete trajectory for the input con�guration u

hi j
t = chSie j � ut + ū.

The empirical controllability gramian and empirical controllability covariance matrix are
closely related to PCA and POD [142, 70] of time series. For a given set of impulse responses
x j(t), the associated auto-correlation matrix (for an asymptotically stable, linear system) is
the empirical controllability covariance matrix:

fWC = E[XX |], (3.20)

from which an eigendecomposition yields the POD; the associated covariance matrix for the
x j(t) is the empirical controllability gramian:

WC = E[(X �E[X ])(X �E[X ])|], (3.21)

from which an eigendecomposition yields the PCA.
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3.3.2. Empirical Observability Gramian

In [168], the observability gramianWO is computed using the responses y j(t) = C eAt f j , with
f j being the j-th column of the N � N -dimensional identity matrix, which are concatenated
to Y (t) =

�
y1(t) . . . yN (t)

�
:

WO =

Z 1
0

Y |(t)Y (t)dt.

The empirical observability gramian introduced in [142, 143] is a generalization to this
approach, in which the output trajectories are centered and the observability gramians for
each centered trajectory are averaged over the Cartesian product of all perturbations.

De�nition 3.27 (Empirical Observability Gramian)
For sets Ex , Rx , Q x , the empirical observability gramian cWO 2 RN�N is given by:

cWO =
1

jQ x jjRx j

jQx jX
k=1

jRx jX
l=1

1

d2
k

Z 1
0

Tl	
kl(t)T

|

l
dt,

	
kl
ab
(t) = (ykla(t)� ȳkla)|(ykl b(t)� ȳkl b) 2 R,

(3.22)40

with ykla(t) being the output trajectory for the initial state con�guration xkla0 = dkTl fa and

associated temporal mean output ȳkla.

A justi�cation for this de�nition is provided in [142, 143] by showing that the empirical
observability gramian reduces to the observability gramian from De�nition 3.6 for linear
control systems.

Lemma 3.28 (Empirical Observability Gramian)
For asymptotically stable linear systems the empirical observability gramian is equal to the

(linear) observability gramian.

Proof.

	
kl
ab

= (C eAt dkTl fa)
|(C eAt dkTl fb)

= d2
k
( f |a T

|

l
eA

| t C|)(C eAt Tl fa)

) 	
kl = d2

k
T
|

l
eA

| t C|C eAt Tl

)cWO =
1

jQ x jjRx j

jQx jX
k=1

jRx jX
l=1

1

d2
k

Z 1
0

Tld
2
k
T
|

l
eA

| t C|C eAt TlT
|

l
dt

=

Z 1
0

eA
| t C|C eAt dt =WO.

Hence, the empirical observability gramian cWO is subsequently denoted by WO.

40
	

kl(t) is a matrix valued function with components 	kl
ab
(t) for a, b = 1 . . .N .
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In [99, 102, 202] the empirical observability gramian is generalized to an empirical observ-
ability covariance matrix, by centering the output trajectories around a steady-state output
instead of the output temporal mean.

De�nition 3.29 (Empirical Observability Covariance Matrix)
For sets Ex , Rx , Q x and output ȳ during the steady-state x̄ , the empirical observability co-

variance matrix fWO 2 RN�N is given by:

fWO =
1

jQ x jjRx j

jQx jX
k=1

jRx jX
l=1

1

d2
k

Z 1
0

Tl	
kl(t)T

|

l
dt,

	
kl
ab
(t) = (ykla(t)� ȳkla)|(ykl b(t)� ȳkl b) 2 R,

with ykla(t) being the output trajectory for the initial state con�guration xkla0 = dkTl fa + x̄ .

Since an empirical observability gramian or covariance matrix is computed from discrete
output trajectories, a discrete version of the previous de�nition follows as suggested in [98,
99].

De�nition 3.30 (Discrete Empirical Observability Gramian / Covariance Matrix)
For sets Ex , Rx , Q x , discrete time interval [0,T ] with time step�t, and output ȳ during steady

state x̄ , the discrete empirical observability gramian (discrete empirical observability co-

variance matrix) wO 2 RN�N is given by:

wO =
1

jQ x jjRx j

jQx jX
k=1

jRx jX
l=1

�t

d2
k

T =�tX
t=0

Tl	
kl
t T

|

l
, (3.23)

	
kl
t,ab

= (yklat � ȳ)|(ykl bt � ȳkl b) 2 R, (3.24)

with yklat being the discrete output trajectory for the initial state con�guration

xkla0 = dkTl fa + x̄ .

While the empirical controllability covariance matrix differs in the types of admissible (per-
turbed) inputs and the centering of the trajectories from the empirical controllability gramian,
the empirical observability covariance matrix only differs in the centering of the output tra-
jectories from the empirical observability gramian.
For linear control systems it is computationally more ef�cient41 to compute the equivalent
empirical controllability gramian of the adjoint system,

WO =W �C ,

since for the choice of perturbation sets De�nition 3.22, in case of an empirical observability
gramian (or empirical observability covariance matrix) multiples of N = dim(x0) trajectories
have to be obtained, yet for an empirical controllability gramian (or empirical controllability
covariance matrix) only multiples of M = dim(u(t)) trajectories are required.

41For the choice Ru = f�1M ,1Mg and Rx = f�1N ,1Ng.

46



3. Gramian-Based Combined Reduction

3.3.3. Empirical Cross Gramian

Similar to the empirical controllability and observability gramian, for a square system, an em-
pirical cross gramian can be computed using the impulse responses x j(t) = eAt Be j
and adjoint impulse responses z j(t) = eA

| t C|e j , with e j being the j-th column
of the M � M -dimensional identity matrix. These trajectories are concatenated to
X (t) =

�
x1(t) . . . xM (t)

�
and Z(t) =

�
z1(t) . . . zM (t)

�
respectively:

WX =

Z 1
0

X (t)Z|(t)dt.

The empirical cross gramian generalizes this approach and is derived in two steps. First,
for linear systems, which is equivalent to computing the controllability-based cross gramian
[18] from Subsection 3.2.3. Second, for nonlinear systems; this variant does not require
adjoint (dual) snapshots [110].
In the linear system setting, an empirical cross gramian is given by centering the trajectories
and adjoint trajectories and average their product for the Cartesian product of the perturba-
tion spaces. Due to the utilized duality of controllability and observability the cross gramian
for linear systems is related to the empirical controllability gramian.

De�nition 3.31 (Empirical Linear Cross Gramian)
For sets Eu, Ru, Qu the empirical linear cross gramian cWY 2 RN�N is given by:

cWY =
1

jQujjRuj

jQujX
h=1

jRujX
i=1

MX
j=1

1

c2
h

Z 1
0

	
hi j(t)dt,

	
hi j(t) = (xhi j(t)� x̄hi j)(zhi j(t)� z̄hi j)| 2 RN�N .

With xhi j being the trajectory for the input con�guration uhi j(t) = chSie j�(t), and zhi j being

the adjoint trajectory for the input con�guration vhi j(t) = chSie j�(t), and associated temporal

means x̄hi j , z̄hi j .

The linear empirical cross gramian is closely related to the bPOD approach from [184], �rst
introduced in [228], which, as indicated in [10], is essentially computed from a (linear)
�cross gramian�,

WbPOD = Z|X 2 RO�M .

This product has the dimension of adjoint snapshots times primal snapshots; in the empirical
gramian setting the dimension is equal to number of outputs times inputs. The reducing
projections fU ,Vg are then computed by an SVD ofWbPOD of which the left and right singular
vectors are partitioned and truncated as in (3.8):

WbPOD
SVD
= UDV,

U = XV1D
1
2

1
, V = ZU1D

1
2

1
.

While bPOD also utilizes primal and dual snapshots, a full cross gramian is not explicitly
computed yielding a smaller memory footprint.
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The linear empirical cross gramian and also bPOD do not (directly) extend to nonlinear sys-
tems as no adjoint system is readily available in this case42. A generalization of the empirical
cross gramian was introduced in [214] for SISO systems and extended in [110] to MIMO
systems. This cross gramian is computable for square nonlinear systems, as it requires only
state and output trajectories by combining the computational formula of the empirical con-
trollability gramian and empirical observability gramian.

De�nition 3.32 (Empirical Cross Gramian)
For sets Eu,Ex ,Ru,Rx ,Qu,Q x , the empirical cross gramian cWX 2 RN�N is given by:

cWX =
1

jQujjRujM jQ x jjRx j

jQujX
h=1

jRujX
i=1

MX
j=1

jQx jX
k=1

jRx jX
l=1

1
chdk

Z 1
0

Tl	
hi jkl(t)T

|

l
dt,

	
hi jkl

ab
(t) = f

|

b
T
|

l
�xhi j(t)e

|

j
S
|

i
�ykla(t) 2 R,

�xhi j(t) = (xhi j(t)� x̄hi j),

�ykla(t) = (ykla(t)� ȳkla).

(3.25)43

With xhi j and ykla being the trajectory and output trajectory for the input

uhi j(t) = chSie j�(t) and initial state xkla0 = dkTl fa respectively as well as associated temporal

mean state x̄hi j and temporal mean output ȳkla.

For linear systems, this empirical cross gramian reduces to the classic cross gramian from
De�nition 3.8 as shown in [214, 110].

Lemma 3.33 (Empirical Cross Gramian)
For asymptotically stable linear systems the empirical cross gramian equals the (linear) cross

gramian.

Proof.

	
hi jkl

ab
(t) = f

|

b
T
|

l
(eAt BchSie j)e

|

j
S
|

i
(C eAt dkTl fa)

= chdk f
|

b
T
|

l
eAt BC eAt Tl fa

) 	
hi jkl(t) = chdkT

|

l
eAt BC eAt Tl ,

)cWX =
1

jQujjRujM jQ x jjRx j

jQujX
h=1

jRujX
i=1

MX
j=1

jQx jX
k=1

jRx jX
l=1

1
chdk

Z 1
0

Tl chdkT
|

l
eAt BC eAt TlT

|

l
dt

=

Z 1
0

eAt BC eAt dt =WX .

Hence, the empirical cross gramian cWX is subsequently denoted by WX .
In [110] the empirical cross gramian is generalized to an empirical cross covariance ma-
trix, also by centering the output trajectories around a steady-state (output) instead of the
temporal (output) mean.

42For work on nonlinear adjoint operators see [192]
43
	

hi jkl(t) is a matrix valued function with components 	
hi jkl

ab
(t) for a, b = 1 . . .N .
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De�nition 3.34 (Empirical Cross Covariance Matrix)
For sets Eu, Ex , Ru, Rx , Qu, Qx , input ū during steady-state x̄ with output ȳ, the empirical

cross covariance matrix fWX 2 RN�N is given by:

fWX =
1

jQujjRujM jQ x jjRx j

jQujX
h=1

jRujX
i=1

MX
j=1

jQx jX
k=1

jRx jX
l=1

1
chdk

Z 1
0

Tl	
hi jkl(t)T

|

l
dt,

	
hi jkl

ab
(t) = f

|

b
T
|

k
�xhi j(t)e

|

i
S
|

h
�ykla(t) 2 R,

�xhi j(t) = (xhi j(t)� x̄hi j),

�ykla(t) = (ykla(t)� ȳkla).

With xhi j and ykla being trajectory and output trajectory for the input

uhi j(t) = chSie j � u(t) + ū and initial state xkla0 = dkTl fa + x̄ respectively.

Since an empirical cross gramian or covariance matrix is computed from discrete (output)
trajectories, a discrete version of the previous de�nition follows as in [110].

De�nition 3.35 (Discrete Empirical Cross Gramian / Covariance Matrix)
For sets Eu, Ex , Ru, Rx , Qu, Q x , discrete time interval [0,T ] with time step �t, input ū during

steady state x̄ with output ȳ, the discrete empirical cross gramian (discrete empirical cross

covariance matrix) wX 2 RN�N is given by:

wX =
1

jQujjRujM jQ x jjRx j

jQujX
h=1

jRujX
i=1

MX
j=1

jQx jX
k=1

jRx jX
l=1

�t

chdk

T =�tX
t=0

Tl	
hi jkl
t T

|

l
,

	
hi jkl

t,ab
= f

|

b
T
|

k
�x

hi j
t e

|

i
S
|

h
�yklat 2 R,

�x
hi j
t = (x

hi j
t � x̄hi j),

�yklat = (yklat � ȳkla).

With xhi j and ykla are the discrete trajectory and discrete output trajectory for the input

uhi j(t) = chSie j � u(t) + ū and initial state xkla0 = dkTl fa + x̄ respectively.

Even though the empirical cross gramian is a computable cross gramian for square nonlin-
ear systems, the cross gramian of a linear system exhibits its core property (3.6) only for
(orthogonally) symmetric systems; similarly for nonlinear systems, useful results can only
be expected for a certain class of systems. An extension of the concept of symmetry for non-
linear systems is given by gradient systems [124, 123, 127, 191]. A generalized de�nition
for symmetric systems is introduced in [126], which states that a system is symmetric, if
the image of the observability operator is equal to the image of the pseudo-inverse of the
controllability operator:

imO = imC +.

In this context it should be noted that in [123, 124, 125, 126, 191, 127] an alternative
nonlinear cross gramian, called cross operator or cross map [79], is developed.
Lastly, the empirical cross gramian can be assembled especially ef�cient using generalized
transpositions as summarized in [116] and in the non-symmetric case from Section 3.2.3,
the observability simulations with perturbed initial state have to be computed only once.
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3.3.4. Parametrized Systems

For parametrized systems a reduced order model should (approximately) preserve the pa-
rameter dependency [23]. In [218], an approach for robust reduction of (linearly) parametrized
systems of the form:

�x(t) = Ax(t) + Bu(t) + F� ,

y(t) = C x(t),
(3.26)

with an additional source matrix F 2 RN�P and parameter � 2 RP is presented. By treating
the parameters � as constant inputs u� (t) = � , the system can be rewritten as:

�x(t) = Ax(t) +
�
B F

�� u(t)

u� (t)

�
,

y(t) = C x(t).

The associated empirical controllability covariance matrix is computed as an (arithmetic)
average over all empirical controllability covariance matrices for each location in the input
perturbation space 
u = Eu � Ru �Qu. With a discretized parameter-space,

�h = f�1 . . .�ng,

expressed as perturbations around a nominal parameter �̄ , the input perturbation space

u[� := 
u [�h is then enlarged. Alternatively, one can extend the perturbation spaces by
an additional factor to the perturbation space 
� := 
��h which then yields:

WC =
1
j�hj

j�hjX
i=1

WC(�i).

A similar argument can be made for the empirical observability gramian as controllability of
the adjoint system,

WO =
1
j�hj

j�hjX
i=1

WO(�i),

and for the empirical cross gramian [113] that also requires input perturbations:

WX =
1
j�hj

j�hjX
i=1

WX (�i).

For the discretization of high-dimensional parameter-spaces, techniques such as sparse grids
(see for example: [15]) should be considered, which also holds for the construction of the
other factors of the perturbation sets.
It should also be noted that for general (nonlinear) parametrizations, the parameters com-
monly do not act as input sources.
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3.4. Parameter Reduction

Reducing the parameter-space dimension requires to identify the dominant parameter sub-
space, which can be accomplished by parameter identi�cation [92]. Essentially, this ap-
proach employs the parameter reduction based on sensitivity analysis from [217]. Given
a covariance matrix ! 2 R

P�P on the parameters � 2 R
P , a (linear) identi�cation of the

parameters is obtained from a PCA. An SVD of ! yields the variances (singular values)
�1 � � � � � �P and principal components (singular vectors) �1, . . . ,�n to the symmetric
positive semi-de�nite covariance matrix,

!
SVD
= �

0
@�1

. . .
�P

1
A�|,

�=
�
�1 . . . �P

�
.

From such a decomposition each parameter component is identi�able by its contribution to
the associated singular vector [83].
The overall identi�ability of the parameters, for example in the context of optimal actua-
tor and sensor placement [201, 204, 216], can be determined by several measures44 based
on the singular values of the covariance matrix presented in [224]; for instance the trace
(norm45) of !,

k!k� = tr(!).(3.27)

By sorting the parameters by their identi�ability, the parameter-space dimension can be re-
duced by truncating the least identi�able (linear combinations of) parameters. A parameter
projection (2.13) of such a parameter covariance is also obtained by the singular value de-
composition of !. Treating the principal components � as a one-sided projection, that is
partitioned and truncated similar to the state-space direct truncation (3.8),

�=
�
�1 �2

�
! �1 2 RP�p,

then acts as a Galerkin projection. Due to the relation of the SVD to the L2-norm this proce-
dure excludes the (linear combinations of) parameters that carry the least energy, which is
in line with the state reduction also based on the energy transfer of the states.
To obtain a covariance matrix on the parameters, the gramian-based state reduction (identi-
�cation and truncation) is applied. A variant of each of the previously introduced (empirical)
system gramians can also be utilized for parameter identi�cation, which is based on the re-
lation of the empirical gramians to the covariance (3.21). Following, a controllability-based,
an observability-based and a cross-gramian-based approach to parameter identi�cation and
parameter reduction is presented.
To this end the parameters are treated as inputs or states; in case of Ru = f�1M ,1Mg and
Rx = f�1N ,1Ng and general parametrizations one has to ensure energy is introduced into
the system for example by some additional steady-state input [134, 2.2].

44Further measures are among others: determinant det(!), logarithmic determinant logdet(!), smallest

eigenvalue �min(!), spectral radius j�max(!)j or trace of the inverse tr(!�1).
45See Appendix A.3.
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3.4.1. Controllability-Based Parameter Reduction

For a linear system with linear parameter dependency (3.26), the vector �eld of this system
can be additively decomposed,

�x(t) = Ax(t) + Bu(t) + F� = Ax(t) + Bu(t) +

PX
i=1

Fi�i , F =
�
F1, . . . , FP

�
,

with Fi 2 R
N�1, and as shown in [217], due to the superposition in linear systems, the

controllability gramian can be decomposed similarly:

WC =WC ,0 +

PX
i=1

WC ,i ,

WC ,0 =

Z 1
0

eAt BB| eA
| t dt,

WC ,i>0 =

Z 1
0

eAt FiF
|

i
eA

| t dt.

Similar to [199, 203, 214, 215], in [109], the parameter sensitivity is measured by the trace
of the sub-controllability gramiansWC ,i as in (3.27). The trace of the controllability gramian
can be interpreted as the average controllability [216] and is used for example in optimal
actuator placement. This sensitivity information is compiled into a matrix.

De�nition 3.36 (Sensitivity Gramian)
The sensitivity gramian WS is de�ned as the diagonal matrix composed of the traces of the

parameter sub-controllability gramians:

WS :=

0
@tr(WC ,1) 0

. . .

0 tr(WC ,P)

1
A .

For models with many homogeneous parameter components it may be helpful to center the
sensitivity gramian's diagonal around its root mean square (RMS),

W S,ii =WS,ii �
q
tr(WSW

|

S
). (3.28)

Also an empirical sensitivity gramian can be computed for nonlinear systems with vector
�elds of the form:

f (x ,u,� ) = f0(x ,u) +
PX

i=1

fi(x ,�i).

Due to the nonlinearity, the superposition does not hold and the controllability gramian is
only approximated,

WC �WC ,0 +

PX
i=1

WC ,i .

In case the parameter � does not act as an input source, an additional input perturbation
has to be applied.
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3.4.2. Observability-Based Parameter Reduction

In [83, 82], the observability of states is expanded to observability of parameters for purposes
of parameter identi�cation; in the related context of optimal sensor placement a similar
approach is used in [201, 203]. Given a parametrized system (2.5), the parameters � can
be treated as constant states; this yields an augmented system of the form:

��x(t) =

�
�x(t)
�� (t)

�
=

�
f (x(t),u(t),� )

0

�
,

y(t) = g(x(t),u(t),� ),(3.29)

�x0 =

�
x0
�0

�
,

with the initial state augmented by the (nominal) parameter. Due to the trivial vector �eld
of the parameter states, the initial parameter states are the steady (parameter) state and the
stability of the system is not affected [82, Ch. 4.3.3, Remark 4]. For such an augmented
system, an augmented observability gramian can be computed, which is composed of the
following block matrices:

�WO =

�
WO WM

W
|

M WP

�
2 R(N+P)�(N+P) .

The upper left block WO 2 RN�N corresponds to the non-augmented system's observability
gramian, the lower right block WP 2 RP�P encodes the observability of the parameters and
the blocksWM 2 RN�P ,W |

M 2 RP�N are mixed blocks. The parameter identi�ability can then
be extracted from this augmented observability gramian [83].

De�nition 3.37 (Identi�ability Gramian)
The Schur-complement of block WO of an augmented observability gramian �WO is called iden-

ti�ability gramian WI :

WI :=WP �W
|

MWO
�1WM .(3.30)

The identi�ability gramian may also be approximated by the lower right block of the aug-
mented observability gramian:

WI �WP .

Notably, the empirical observability gramian of the augmented system �WO is closely related to
the Fisher information matrix F , if the perturbations are restricted to the parameter-states,
as shown in [201],

WP =

Z 1
0

�
@ y(t)

@ �

�|�@ y(t)
@ �

�
dt =F .
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3.4.3. Cross-Gramian-Based Parameter Reduction

The parameter-state augmented system in (3.29) is still square for square systems and con-
serves symmetry (in the linear case) since the matrices A,B,C are augmented with zeros.
Hence, a cross gramian can be computed for such systems, too [110].

De�nition 3.38 (Joint Gramian)
The cross gramian of an augmented system is called joint gramian WJ :

WJ :=

�
WX WM

Wm WP

�
2 R(N+P)�(N+P) .

The upper left block of the joint gramian is the cross gramian of the non-augmented system.
As opposed to the observability gramian, the cross gramian is generally not symmetric,

WX 6=W
|

X )WJ 6=W
|

J )WM 6=W |

m.

Since the augmented �parameter-states� are directly and indirectly independent from the
input u(t) and thus uncontrollable, the rows of the joint gramians relating to these states
are zero,

kWmk= kWPk= 0.

Hence, using the Schur-complement as for the identi�ability gramian from De�nition 3.37
to extract information on the parameters has a trivial result:

WP �WmW
�1
X WM = 0� 0W�1X WM = 0.

Yet, the information on the parameter identi�ability is encoded in the mixed matrix WM . To
extract this identi�ability information one can use the symmetric part of the joint gramian,

W J :=
1
2
(WJ +W

|

J ).

As for the identi�ability gramian, the cross-gramian-based identi�ability information is then
retrieved by the Schur-complement.

De�nition 3.39 (Cross-Identi�ability Gramian)
The Schur-complement of the upper left block W X = 1

2(WX +W
|

X ) of the symmetric part of the

joint gramian W J is called cross-identi�ability gramian WÏ :

WÏ := �
1
2
W

|

MW
�1
X WM .

For ef�cient computation of an approximation to the inverse symmetric part of the cross
gramian W

�1
X , see the approach in [230, 116], which is also summarized in Appendix A.4.

Furthermore, the empirical joint gramian can also be computed for non-symmetric systems,
since the non-symmetric extension to the cross gramian in Section 3.2.3 also applies to the
joint gramian.
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3.4.4. Nonlinear Error Indicators

For general nonlinear systems (2.5), theH1-error bounds (3.9), (3.10) andH 2-error indi-
cators (3.13), (3.14) cannot be used directly, since their justi�cation utilizes the linear struc-
ture of the underlying control system. The H 2-error indicators require the linear system
components B,C for an a-priori computation (3.11), (3.12). Yet, for a nonlinear control-
af�ne system of the form,

�x(t) = f (x(t)) + h(x(t))u(t),

y(t) = g(x(t)),

approximate components eB and eC can be obtained by linearization [105, Ch. 2]. Together
with the empirical gramians, an L1-error indicator can be approximated as in (3.13) by the
balanced and truncated parts of the linearized input eB2, output matrices eC2 and empirical
system gramian W22:

ky � yrkL1 �
q
tr(eC2W22

eB2).
Since the L2-error bound is computed only from the HSVs, likewise an error indicator can
be computed by the approximate HSVs obtained from empirical gramians as in (3.9),

ky � yrkL2 . 2
NX

i=n+1

Æ
�i(WCWO) = 2

NX
i=n+1

j�i(WX )j.

Similarly, the same approach can be used for an L1-error indicator from (3.15) for the impulse
response,

ky � yrkL1 . 4(N + n)

NX
i=n+1

Æ
�i(WCWO) = 4(N + n)

NX
i=n+1

j�i(WX )j.

Another error indicator, used for example in [45], is the information content or relative
energy fraction of the total transferred energy represented by the trace norm of the Hankel
operator H and the Hankel operator of the reduced order model Hr ,

"e,x =
kHrk�
kHk�

=

Pn

i=1�i(Hr)PN

i=1�i(H)
.

The quality of the ROM is then indicated by the disparity from one. By using the empirical
gramians to obtain the Hankel singular values, the energy transfer mismatch "e,x can be com-
puted also for nonlinear systems. Similarly, for the parameter gramians ! 2 fWS ,WI ,WÏg
and the reduced parameter gramians !r this error indicator can also be utilized,

"e,� =
k!rk�
k!k�

.

As for the error bounds of linear systems, also for nonlinear systems and parameter error
indicators, more conservative but more ef�cient error bounds can be computed by approxi-
mating singular values of the tail �i < �r by �i � �r for r < i � N .
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3.4.5. State and Parameter Empirical Gramian Interrelation

The presented empirical gramians are all interrelated (see Figure 3.2). From the control-
lability operator C the controllability gramian WC is derived, and from the observability
operator O the observability gramian WO. The linear cross gramian WY fuses both, control-
lability and observability operators, and the cross gramianWX uses the concept of the linear
cross gramian, but utilizes the formulation of the controllability and observability gramians.
Derived from the cross gramian, the non-symmetric cross gramian WZ enables input-output
energy-based state reduction for non-square or non-symmetric systems. Based on the pa-
rameter dependent fraction of average controllability, the sensitivity gramian WS allows a
sensitivity analysis on parametric systems. The identi�ability gramianWI extends observabil-
ity from states to parameters using the observability gramian. Related to the identi�ability
gramian is the cross-gramian-based joint gramianWJ which provides the cross-identi�ability
gramian WÏ for parameter identi�cation.

Figure 3.2.: Overview of the relationships between the (empirical) system gramians.
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3. Gramian-Based Combined Reduction

3.5. Combined Reduction

Each of the three previously presented parameter-based (empirical) gramians induces an
approach for combined state and parameter reduction [110]. While other than the follow-
ing combinations of state and parameter reduction methods are surmisable, this selection
exhibits the advantage that along with the parameter-space gramian, a state-space gramian
is computed. These three methods allow a combined reduction as described in (2.14).

3.5.1. Controllability-Based Combined Reduction

The (empirical) sensitivity gramian provides a parameter reducing projection by an SVD;
and an (approximate) controllability gramian is computed in the process. Together with an
observability gramian, using balanced truncation, a (two-sided) state reducing projection is
obtained. This controllability-based combined reduction is summarized in Algorithm 1,

Algorithm 1: Controllability-Based Combined Reduction

Compute WS

Extract WC

Compute WO

fU ,Vg= BT (WC ,WO)

f�,�|g= DT (WS)

and utilizes the input-to-output coherence to identify the dominant state-subspace and the
input-to-state coherence to identify the dominant parameter-subspace.

3.5.2. Observability-Based Combined Reduction

The (empirical) identi�ability gramian provides a parameter reducing projection by an SVD;
and an observability gramian is computed in the process. Together with a controllability
gramian, using balanced truncation a (two-sided) state reducing projection is obtained. This
observability-based combined reduction is summarized in Algorithm 2,

Algorithm 2: Observability-Based Combined Reduction

Compute WC

Compute �WO

Extract WO

Extract WI

fU ,Vg= BT (WC ,WO)

f�,�|g= DT (WI)

and utilizes the input-to-output coherence to identify the dominant state-subspace and the
state-to-output coherence to identify the dominant parameter-subspace.
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3.5.3. Cross-Gramian-Based Combined Reduction

The (empirical) joint gramian provides both: a parameter reducing projection through an
SVD of the cross-identi�ability gramian, and a (one-sided) state reducing projection through
an SVD of the cross gramian. This cross-gramian-based combined reduction is summarized
in Algorithm 3,

Algorithm 3: Cross-Gramian-Based Combined Reduction

Compute WJ

Extract WX

Extract WÏ

fU ,U|g= DT (WX )

f�,�|g= DT (WÏ)

and also utilizes the input-to-output coherence to identify the dominant state-subspace and
the state-to-output coherence to identify the dominant parameter-subspace.

3.5.4. The Case for the Joint Gramian

The (empirical) joint gramian contains information on the states in terms of controllability
and observability as well as on the (observability-based) identi�ability of the parameters.
Using the cross-gramian-based joint gramian has multiple advantages. First the resulting
ROM is stable if the underlying model is (locally) asymptotically stable. Second, the cross-
identi�ability gramian can be (computationally) a memory economical alternative to the
identi�ability gramian. The joint gramian WJ is a rectangular matrix of dimension N �
(N + P) and the augmented observability gramian �WO a symmetric matrix of dimension
(N + P)�(N + P), and needs to store 1

2(N + P)(N + P+1) elements. Hence, for systems with
N < P+1, the joint gramian requires less memory. Third, the cross-gramian-based combined
state and parameter reduction requires only two truncated SVDs (TSVD), as opposed to one
TSVD and a balancing procedure which warrants at least the complexity of a TSVD.
It should be noted that the empirical gramians (and thus the empirical joint gramian) are
explicitly targeted at nonlinear systems. For linear systems, speci�c algorithms can be em-
ployed to directly compute low-rank representations of the system gramians. For example
the alternating direction implicit (ADI) iteration [187, 188] for low-rank approximations
of the Cholesky factors of the controllability gramian and observability gramian, and the
implicit restarted Arnoldi method [209, 210] or matrix sign function [14] for a low-rank
cross gramian approximation. Yet, for nonlinear systems the empirical gramians can capture
more accurately the dynamic behavior over a designated operating region than a lineariza-
tion [200, 51] or a linear model [101].
Lastly, the cross-gramian-based joint gramian can principally handle high-dimensional parameter-
spaces P � 1 for either pMOR or (combined state and) parameter reduction which is a rare
trait, especially in combination with applicability to nonlinear systems.
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Optimization-based combined state and parameter reduction is an iterative model reduction
approach. While the parameter-space reduction is a greedy method based upon [152, 151],
the state-space reduction is related to POD.
Central to this technique is the selection of the dominant parameter-subspace, which deter-
mines the sampling points for the associated reduced state base. Alongside an extension to
the basic optimization-based combined reduction targeted at inverse problems, a variant for
nonlinear systems is considered.

4.1. Parameter Reduction

The core idea of the optimization-based parameter-space reduction is the iterative assembly
of a parameter projection� 2 RP�p by incorporating parameter base vectors that dominantly
affect the input-output behavior. In the I -th iteration, the next projection �I+1 is obtained
from orthogonalizing a designated parameter base vector �I+1, selected from the parameter-
space, to the current projection �I :

�I+1 = f�I [ (�I+1 ��I�
|

I �I+1)g.(4.1)

The parameter projection is initialized by some nominal parameter �0, for example the cen-
troid or a parameter selected from additional (prior) knowledge:

�0 = �0.

To obtain information on the identi�ability of parameter components, the nominal parameter
�0 is perturbed and the sampled input-output behavior is analyzed. Yet, sampling in a high-
dimensional parameter-space on a uniform parameter grid, is computationally infeasible due
to the curse of dimensionality. Non-uniform grids, such as sparse grids [15, 39], can be used
to select parameter sampling points more ef�ciently. An alternative approach to prede�ned
grids for selection of �I+1 is an adaptive sampling strategy based on the current coverage,
which is described over the next sections.
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4.1.1. Model Constrained Optimization

Since the greedy sampling strategy will be formulated as an optimization problem, �rst,
model constrained optimization is brie�y introduced; for further information on this topic
see [22] and [29].
Model constraint optimization encompasses optimization problems of which the associated
cost function requires evaluations of an underlying (dynamic) model. A starting point is the
linear state-space system with linear parametrization,

�x(t) = Ax(t) + Bu(t) + F� ,

y(t) = C x(t).
(4.2)

Given a dataset yd to which the model's parameters � are to be tuned, the associated opti-
mization problem is formulated in the (energy-minimizing) least-squares sense as:

�d = argmin
�2RP

ky(� )� ydk2L2 ,

subject to:

�x(t) = Ax(t) + Bu(t) + F� ,

y(t) = C x(t),

x(0) = x0,

and represents the optimization constrained by the model (4.2). Without loss of generality,
over the course of this section u(t) = 0 and x0 = 0 is assumed. Then, this formulation can
be simpli�ed, due to the linear nature of the model, using the convolution operator (3.1):

�d = argmin
�2RP

kS(� )� ydk2L2 ,

subject to: (4.3)

S(� ) =

Z 1
0

C eA� F� d�.

Since the convolution operator (3.1) is bounded [6, Ch. 5.2], S admits a singular value
decomposition,

S(� )
SVD
=

1X
i=1

�ih� , viiui , (4.4)

with which, by the pseudo-inverse operator, the least-squares solution can be obtained:

�d = S+(yd) =

1X
i=1

1
�i

hyd ,uiivi .

An approximate solution is then given by truncating the sum in the pseudo-inverse operator,
assuming the singular values are sorted in descending order. This direct solution is only
exemplarily demonstrated for the linearly parametrized linear control system. Yet, other
parametrizations of the linear control system model also require the boundedness of the
mapping from parameters to outputs given inputs and initial state.
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4.1.2. Best Approximating Subspace

While the model constraint optimization aims to minimize the norm of a residual, a best
approximating subspace can be obtained by maximizing the norm of a residual. For the
linear state-space system with linear parametrization (3.26), an associated parameter-space
reduced system is then given by:

�x(t) = Ax(t) + Bu(t) + F�I�r ,

yr(t) = C x(t),

with a Galerkin parameter projection �I 2 RP�I and �r 2 RI . Opposed to the (least-squares)
model constraint optimization (4.3), which seeks a parameter that minimizes the energy of
the error-output-trajectory between model and data, a best approximating subspace (in the
energy-norm sense) aims to maximize the error between the original model and the reduced
model,

�I+1 = argmax
�2RP

ky(� )� yr(�
|

I � )k2L2
= argmax

�2RP

ky(� )� y(�I�
|

I � )k2L2 .

Subsequently, in each iteration, a resulting parameter base vector �I+1 is incorporated into
the parameter projection (4.1), which represents the currently worst approximated subspace.
As for the model constraint optimization, this maximization problem can be rewritten in the
fully linear setting to:

�I+1 = argmax
�2RP

kS(� )� S(�I�
|

I � )k2L2
= argmax

�2RP

kS(� ��I�
|

I � )k2L2 .

By the same argument as in (4.4) an SVD exists and the �rst left singular vector u1 associated
to the largest singular value �1 poses an approximate solution to the (one-dimensional)
energy maximization problem:

u1 � argmax
�2�

kS(� ��I�
|

I � )k2L2 .

This cost functional attains its maximum for k�k !1. Hence, a compact subspace � � RP

consisting only of elements with bounded length is chosen,

� := f� 2 RP : k�k2 � 1g;
from which the (normalized) energy-maximal parameter location is selected as next param-
eter base vector.
Like for the model constraint optimization, the best approximated subspace method requires
the boundedness of the solution operator representing the mapping from parameters to out-
puts.
Summarizing, in each iteration, the left singular vector associated to the next largest singular
value is incorporated into the parameter base �I . This adaptive scheme leads to the greedy
sampling approach.
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4.1.3. Greedy Sampling

Instead of sampling over a (high-dimensional) grid of the discretized parameter-space �h,
an adaptive sampling strategy can be employed, with a heuristic to select the next sam-
pling location in the parameter-space. In the special case of greedy sampling, a location in
parameter-space is sought that maximizes the error between output trajectories associated
to the full and reduced order parameter. This greedy sampling method in the context of
model reduction was introduced in [225], extended in [31] and adapted in [151]. A related
greedy technique is already proposed in [33] to obtain an optimal basis from a given set
of vectors. In general, a greedy approach seeks a locally optimal result, and in terms of a
least-squares optimization problem this variant of the greedy algorithm can be written as:

�I+1 := argmax
�2�

ky(� )� y(�I�
|

I � )k2L2 ,

subject to:

�x(t) = A(� )x(t) + B(� )u(t) + F(� ),

y(t) = C(� )x(t),

x(0) = x0,

u(t) 2 L2,

�
|

I�I = 1,

(4.5)

for a suitable parameter-space � � R
P . The resulting parameter �I+1 then extends the

reduced parameter base �I by orthogonalization as in (4.1). Locally, the resulting base �I+1

minimizes the maximal L2 output error between FOM and ROM (2.16d). More generally,
the optimization problem (4.5) can be written using an objective function J :

J(� ;�I) := ky(� )� y(�I�
|

I � )k2L2 ,
�I+1 = argmax

�2�
J(� ;�I).

(4.6)

Practically, in each iteration the equivalent minimization problem can be solved:

�I+1 = argmin
�2�

�J(� ;�I). (4.7)

The solution to this ODE-constrained (or PDE-constrained) optimization problem usually
requires numerous simulations of the constraining system. It may be advisable to use a
weak greedy algorithm which replaces the error between the FOM and ROM by an error
estimator r : RP ! R,

�J(� ;�I) := kr(� ;�I)k2L2 .

As a starting parameter to the optimization algorithm, it is suggested in [31, Sec. 3.3] to use
a random initial guess which lies in the null space of the last iteration's parameter projection
�I�1.

62



4. Optimization-Based Combined Reduction

Greedy Sampling Properties

The greedy sampling expresses the parameter-space reduction as an optimization problem.
An optimization problem is calledwell-posed if the following three Hadamard requirements
are met:

1. existence of a solution,

2. uniqueness of the solution,

3. stability of the solution46.

If any of the above criteria is not ful�lled, the problem is considered ill-posed. The opti-
mization problem, by which the greedy sampling is performed, is generally not well-posed
which is illustrated next.
In [31, Sec. 4.1] the existence of a (global) maximizer is shown which is restated here:

Theorem 4.1 (Existence of Maximizer)
If J(� ) : � � RP ! R is continuous and � is compact in RP then there exists a maximum z̄ such

that J(z̄)> J(z) 8z 2 �, which holds for each greedy sampling iteration.

Proof.

This is a direct consequence of the (Weierstrass) extreme value theorem.

Hence, in each iteration a local maximizer zI can be found, but it is most likely not unique.
This means that the underlying optimization of the greedy sampling approach is considered
to be ill-posed. The next section presents a counter measure to ensure uniqueness.
Secondly, it is shown in [31, Sec. 4.2] that the iterative adaptive re�nement of the reduced
order parameter-space is improving with each iteration, and in case of linear state-space sys-
tems, maximizers are increasing over subsequent iterations compared to previously obtained
solutions:

J(�I)< J(�I+1)< . . . .

Thus, independent from the parametrization of the underlying model the greedy sampling
technique can be utilized to assemble a parameter-space base. Yet, a rate of convergence
can generally not be determined.
For low-dimensional parameter-spaces, an analysis of the convergence of the greedy sam-
pling strategy, from the reduced basis point of view, of parametrized PDEs is given in [25],
based on the Kolmogorov width47 of the greedily selected low-dimensional subspace com-
pared to the best approximating subspace of the low-order dimension. Using the Kolmogorov
width, a decay rate for the convergence of the (weak) greedy algorithm is derived in [25].

46Stability refers in this context to a continuous dependence of the solution on the parameters.
47The optimality of the reduced bases obtained from POD and balanced truncation is analyzed in [50]; these

bases are shown to be optimal in the Hilbert-Schmidt-norm.
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Tikhonov Regularization

The previous argument characterized the solution of the optimization problem abstractly
using the SVD. Practically, a constrained (ill-posed) optimization problem has to be solved,
which may pose computational dif�culties due to the constraint on the parameter norm and
the ill-posedness. Alternatively, instead of the previous hard constraint, a soft constraint on
the parameter length can be imposed using a penalty term, which leads to regularization.
The following de�nition is adapted from [60].

De�nition 4.2 (Regularization Operator)
A family of continuous operators R� is called regularization operator, if for all � 2 � there

exists a map � = �(�,��) such that:

lim sup
�!0

fkR�(�,��)
(��)� S(� )k : k�� � �k � �g= 0,

lim sup
�!0

f�(�,��) : k�� � �k � �g= 0.

The quadratic constrained optimization problem:

�I+1 = argmax
�2�

kS(� )k2L2 ,

can be formulated as a regularized unconstrained optimization problem by the use of La-
grange multipliers as derived in [59]:

�I+1 = argmax
�2RP

kS(� )k2L2 �R�2
,

with the regularization operator R�2
and multiplier �2 > 0. Generally, the regularization

term counters the maximization by decreasing the to-be-maximized cost functional for larger
parameter norms and thus prefers solutions with smaller norms.
If the optimization problem is in standard form, so that the constraint is given by k�k2 2 R>0,
then the regularization operator is given by:

R�2
= �2k�k22.

This regularization method is also called L2-regularization.
In case the constraint has the form k��k2 2 R>0 for a symmetric positive-de�nite matrix � ,
the regularization operator has the form:

R�2,�
= �2k��k22, (4.8)

and is called Tikhonov regularization, which makes the L2-regularization operator a special
case of the Tikhonov regularization operator with � = 1.
Overall, the regularization has a dual purpose: ensuring the uniqueness of a greedy sample
and enforcing the constraint on the parameters.
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4.2. State Reduction

Similar to the gramian-based methods in Chapter 3, the optimization-based state-space re-
duction also aims to minimize the energy in the error between trajectories of the full and the
reduced order model. To this end a least-squares optimization can be employed to assemble
a state reducing Galerkin projection U using a residual r(U),

�U = argmin
U2RN�n

kr(U)k2L2 .

The residual r(U) is given by the error between the full and reduced model (or an error esti-
mator), which can be based in this control system setting on one of the following mappings:

� from inputs to states:

� : LM2 (R)! LN2 (R),

u(t) 7! x(t),

which corresponds to the convolution operator (2.7) with an output matrix C = 1.

� from states to outputs:

� : RN ! LO2 (R),

x0 7! y(t),

which corresponds to the convolution operator (2.7) with an input matrix B = 0.

� from inputs to outputs:

S : LM2 (R)! LO2 (R),

u(t) 7! y(t),

which corresponds to the convolution operator (2.7).

These mappings bear not by accident resemblance to the controllability, observability and
Hankel operator as illustrated in Table 4.1. Furthermore, these mappings relate to the linear
system gramians as described in [6, Ch. 4.3].

Input-to-Output S : LM2 (R)! LO
2
(R) H : LM2 (R�)! LO

2
(R+) Hankel

Input-to-State � : LM2 (R)! LN2 (R) C : LM2 (R�)! R
N Controllability

State-to-Output � : RN ! LO
2
(R) O : RN ! LO

2
(R+) Observability

Table 4.1.: Comparison of state mappings and operators.

As the convolution operator is bounded for stable systems (Section 3.1), the previous map-
pings admit a POD. Opposed to the gramian-based method a �nite spectrum is not required.
In the following, the optimization problems yielding the reducing state-space projection for
the input-to-state, state-to-output and input-to-output mappings, are described.
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4.2.1. Input-to-State Mapping

Finding a reduced order mapping from an input u to a state x amounts to determining a low-
dimensional surrogate for the dynamical system component of the linear control system,

�x(t) = Ax(t) + Bu(t),

x(0) = 0.
(4.9)

The operator mapping an input function to a state-space trajectory is a variant of the convo-
lution operator (3.1).

De�nition 4.3 (Input-to-State Map)
An input-to-state map � maps a function u : [0,1) ! L2 to a state-space trajectory

x : [0,1)! L2 based on an asymptotically stable linear dynamical system (4.9) and is given

by:

�(u)(t) :=

Z t

0

eA(�) Bu(�)d�.

The input-to-state map is related to the controllability operatorC (3.3) through composition
with the time-�ip operator C = � � F . A low-order approximation to the system,

�xr(t) = Ar xr(t) + Bru(t),

xr(0) = 0,

is determined by a state reducing projection UC 2 RN�n as in (2.12), which can be obtained
as the maximum input-to-state energy conserving Galerkin projection and is described next
as the solution to a least-squares optimization problem:

UC = argmin
U2RN�n,U|U=1

kx � Uxrk2L2 ,

subject to:

x(t) =

Z t

0

eA� Bu(�)d�,

xr(t) =

Z t

0

eU
|AU� U|Bu(�)d�.

Due to the relation of the SVD (POD) and the linear least squares method through the
Schmidt-Eckhardt-Young-Mirsky theorem [6, Ch. 3], the solution is obtained as the �rst
n left eigenvectors of the controllability gramian,

�
SVD
= UDV ! U =

�
U1 U2

�
! UC := U1,

with a reduction error (for discrete trajectories):

min
U2RN�n,U|U=1

kx � Uxrk2L2 = �n+1(�).

The computation of the SVD of the discrete image of the input-to-state operator together
with a selection of left singular vectors makes this approach equivalent to the POD method
of snapshots from [205].
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4.2.2. State-to-Output Mapping

To �nd a reduced order mapping from an initial state x0 to an output y amounts to deter-
mining a low-dimensional surrogate for the input-free linear control system,

�x(t) = Ax(t),

y(t) = C x(t),(4.10)

x(0) = x0.

The operator mapping an initial state to an output trajectory is also a variant of the convo-
lution operator (3.1).

De�nition 4.4 (State-to-Output Map)
A state-to-output map � maps an initial state x0 to an output trajectory y : [0,1) ! L2
based on an input-free asymptotically stable linear control system (4.10) and is given by:

�(x0)(t) := C eAt x0.

The state-to-output operator is equal to the observability operator O = � from (3.4).
A low-order approximation to the input-free system,

�xr(t) = Ar xr(t),

yr(t) = Cr xr(t),

xr(0) = xr,0,

is determined by a state reducing projection UO 2 RN�n as in (2.12), which can be obtained
as the maximum energy conserving state-to-output Galerkin projection and is described next
as the solution to a least-squares optimization problem:

UO = argmin
U2RN�n,U|U=1

ky � yrk2L2 ,

subject to:

y(t) = C eAt x0,

yr(t) = CU eU
|AU t U|x0.

The cost function of the minimization problem can be reformulated as a weighted least-
squares problem of the input-to-state map:

ky � yrk2L2 = kC x � Cr xrk2L2 = kC x � CUxrk2L2 = kx � Uxrk2C|C .(4.11)

A method related to the state-to-output map is the Hessian-based approach from [12, 13],
which in turn is a variant of the observability gramian as shown in [154]. Alternatively, by
the use of the adjoint system (see De�nition 2.4), the projection can be determined as the
input-to-state map from De�nition 4.3.
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4. Optimization-Based Combined Reduction

4.2.3. Input-to-Output Mapping

Lastly, a reduced order mapping from the input u to output y leads to an approximate low-
dimensional representation of the linear control system,

�x(t) = Ax(t) + Bu(t),

y(t) = C x(t), (4.12)

x(0) = x0.

The operator mapping an input function to an output trajectory is given by the convolu-
tion operator (3.1). Using the input-to-output mapping method resembles the goal-oriented
approach from [229, 30]. For sake of completeness a de�nition of this mapping is also given.

De�nition 4.5 (Input-to-Output Mapping)
A input-to-output map S maps an input function u : [0,1) ! L2 to an output trajectory

y : [0,1) ! L2 based on an asymptotically stable linear control system (4.12) and is given

by:

S(u)(t) := C eAt x0 +

Z t

0

C eA� Bu(�)d�.

A low-order approximation is then given by:

�xr(t) = Ar xr(t) + Bru(t),

yr(t) = Cr xr(t),

xr(0) = xr,0,

obtained by a projection UH 2 RN�n as in (2.12).
The maximum energy conserving input-to-output Galerkin projection UH 2 R

N�n can be
described as the solution to a least-squares optimization problem:

UH = argmin
U2RN�n,U|U=1

ky � yrk2L2 ,

subject to:

y(t) = C eAt x0 + C

Z t

0

eA� Bu(�)d�,

yr(t) = CU
�
eU

|AU t x0 +

Z t

0

eU
|AU� U|Bu(�)d�

�
,

which can also be viewed as a weighted least-squares problem (4.11).
As opposed to the gramian-based approach, which utilizes a �nite-rank transformed variant
of the convolution operator (3.2), the state reduction using the input-to-output mapping
aims to extract the dominant base components (modes) from the in�nite dimensional con-
volution operator.
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4. Optimization-Based Combined Reduction

4.3. Combined Reduction

The optimization-based combined state and parameter reduction joins the parameter reduc-
tion from Section 4.1 with the state reduction from Section 4.2. This combined reduction
method is of iterative nature, which successively enlarges the state- and parameter-space
bases and hence improves the state and parameter projections.
In each iteration, the next parameter �I+1, representing the currently worst approximated
parameter subspace, is obtained from the Tikhonov-regularized greedy optimization (with
� = 1) and orthogonalized into the parameter projection �. Then, a trajectory for this
parameter x(�I+1) is computed from which the dominant mode x̄ I+1 is extracted based
on either input-to-state (Section 4.2.1), state-to-output (Section 4.2.2) or input-to-output
(Section 4.2.3) mappings. Including this mode into the state-space projection U by orthog-
onalization completes an iteration:

�I+1 = argmax
�2RP

ky(� )� yr(�I�
|

I � )k2L2 � �2k�k
2
2,

subject to:

�x(t) = f (x(t),u(t),� ),

y(t) = g(x(t),u(t),� ),

�xr(t) = U| f (Uxr(t),u(t),� ),

yr(t) = g(Uxr(t),u(t),� ),

x(0) = x0(4.13)

xr(0) = U|x0

�I+1 = f�I [ (�?I \ �I+1)g,
UI+1 = fUI [ (U?I \ pod1(x(�I+1)))g,

with linear48 functionals f and g. Thus, the selected parameter �I+1 determines the location
for the trajectory of states or outputs from which the next state-space base selection is made.
In the subsequent iteration, the next parameter is determined with regard to the state and
parameter reduced model from the previous iteration. Overall, this approach to combined
reduction is an L1 method in terms of the parameter-space reduction due to the greedy
sampling minimizing the maximum error, while the state-space is reduced by an L2 method.
In this method, two optimization problems need to be solved in each iteration. First, the
greedy sampling over the parameter-space, which can be implemented by a regularized un-
constrained optimization (minimization), see Section 4.1.3. Second, the dominant modes in
the state-space need to be found, for which a least-squares method can be used. From a nu-
merically point of view, the simplest method to compute the state projection is the input-to-
state mapping, since a TSVD of discrete trajectory yields the leading POD mode as principal
left singular vector (Section 4.2.1),

x̄ I+1 = pod1(x(�I+1)).

48Linearity with respect to the state.
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4. Optimization-Based Combined Reduction

4.3.1. Basic Algorithm

Following, the basic optimization-based combined state and parameter reduction approach
is summarized from an algorithmic point of view in Algorithm 4. Proposed in [113], this is
essentially a time-dependent variant of the algorithm from [31, 151].
First, an initial parameter is set to some nominal (prior) parameter �0 = �̄ , which is also
the �rst base vector �0 = �0 of the parameter base �. The state base U is initialized by a
selection from a snapshot U0 = x(�0) associated to initial parameter choice �0.
Second, for a preset target reduced parameter-space dimension the greedy sampling is em-
ployed to determine the next parameter base vector �I , which is then incorporated into the
parameter base �I�1 by orthogonalization. The state base UI�1 is augmented by a selec-
tion from a snapshot x(�I), also by orthogonalization. Since the orthogonalization (orth) is
crucial to the ROM construction it is discussed separately in Section 4.3.3.

Algorithm 4: Basic Optimization-Based Combined Reduction

�0 � �̄
�0 � �0
U0 � pod1(x(�0))
for I = 1 : R do

�I  � argmin�J(� ;UI�1,�I�1) +R2(� ;�I�1)

�I � orth(�I�1,�I)
x̄ I  � pod1(x(�I))
UI  � orth(UI�1, x̄ I)

Alternatively, to a preselected reduced parameter-space dimension R, the iteration can be
continued until a certain output error threshold " in the output residual is met, for example
in the L2-norm output error:

ky(�I)� yr(�I�
|

I �I)kL2 � �.

Hence, Algorithm 4 can be rewritten using an indetermined while-loop instead of a for-loop
with predetermined iteration count as shown in Algorithm 5.

Algorithm 5: Basic Optimization-Based Combined Reduction II

�0 � �̄
�0 � �0
U0 � pod1(x(�0))
while ky(�I�1)� yr(�I�1�

|

I�1�I�1)kL2 > � do
�I  � argmin�J(� ;UI�1,�I�1) +R2(� ;�I�1)

�I � orth(�I�1,�I)
x̄ I  � pod1(x(�I))
UI  � orth(UI�1, x̄ I)
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4. Optimization-Based Combined Reduction

4.3.2. Regularization Coe�cients

A practical problem of the previous Algorithms 4 and 5 is the selection of the weighting
coef�cient �2 in the regularization operator. In the scope of this work these weights are se-
lected manually for the speci�c problem by heuristic testing of predetermined regularization
weights, for example:

�2 2 f10�5, 10�4, 10�3, 10�2, 10�1g.

An automation of this approach is the L-curve method [103].

4.3.3. Base Expansion

Both, the state and parameter reduced order bases, require an orthogonalization of the re-
spective new base components in each iteration of the algorithm. In Algorithms 4 and 5 the
orthogonalization is symbolized by orth.
Various algorithms are available for this task [88, Ch. 5], for example: Householder re�ec-
tions, Givens rotations or the Gram-Schmidt process. Since an existing orthogonal basis Q is
extended with new base vectors v, the Gram-Schmidt process,

v? = v �Q I(Q
|

I v),

Q I+1 =
�
Q I v?

�
,

is a suitable choice. In exact arithmetic, the Gram-Schmidt process would yield an orthog-
onal base. In �nite precision arithmetic the resulting base is most likely not (completely)
orthogonal to precision, due to rounding errors, and numerically unstable.
To counteract this roundoff error, an extension to the Gram-Schmidt process is proposed in
[28]; in this extension the orthogonalization is repeated until the 2-norm of the orthogonal-
ized new base vector surpasses a threshold �. Algorithm 6 lists this re-iterated Gram-Schmidt
process from [28], which is used for the optimization-based combined reduction.

Algorithm 6: Re-Iterated Gram-Schmidt

Q|Q = 1

b 0
while b < � do

v v �Q(Q|v)

b kvk2
v b�1v

Q 
�
Q v

�
Since the orthogonality of the state and parameter projections is essential for the quality of
the ROM, the plain Gram-Schmidt algorithm is not suf�cient and requires a more accurate
orthogonalization method such as the re-iterated Gram-Schmidt process.
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4. Optimization-Based Combined Reduction

4.3.4. System Stability

If the parametrization of the underlying control system for the model constrained optimiza-
tion problem involves the dynamical system as in (4.2), then, in addition to the optimality
condition [152, Ch. 3.3.2], the stability of the system has to be considered.
If, in case of a linear system, the systemmatrix is parametrized by amap k from the parameter-
space � to an N � N matrix,

k : �! R
N�N ,

� 7! A(� ),

then a constraint on the eigenvalues of A(� ) may be necessary to ensure stability of the
solution. This may be achieved by a constrained optimization which explicitly excludes
subspaces of the parameter-space that would produce unstable systems.
Practically, it is often suf�cient to initialize the optimization algorithm inside a stable region
of the parameter-space.

4.3.5. Inference for Prediction

The inference for prediction (IFP) approach, introduced in [150], is a hybrid method of the
gramian-based balanced truncation and the optimization-based reduction. It is based on
two attributes of a pair consisting of a model and data. While balanced truncation evaluates
controllability (see Section 3.2.1) and observability (see Section 3.2.2) of the model, the
IFP method assesses the model's observability, the prediction observability, and the data
observability, the experiment observability. The IFP algorithm aims to enable predictions
for parameters based on experimental data without solving a (possibly high-dimensional)
inverse problem.
The experiment observability, or short experimentability, is de�ned as the energy transferred
from parameters � to measured outputs yd :

L(� ) := kydk2 = kOe�k2 = �|O |

e Oe� = �|WO,e� ,

by the experiment observability gramian WO,e.
Similarly, the prediction observability, or predictability, is introduced as the transfer of energy
from parameters to simulated outputs y:

L(� ) := kyk2 = kOp�k2 = �|O |

p Op� = �|WO,p� ,

by the prediction observability gramian WO,p.
The experiment observability operator Oe and prediction observability operator Op can be un-
derstood as solution operators for a given parameter to an underlying control-system-type
model. These two observability gramians can be balanced and truncated, like the controlla-
bility and observability gramian for balanced truncation in Section 3.2.4 and yield a reduced
basis for the parameter-space.
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4. Optimization-Based Combined Reduction

4.4. Data-Driven Regularization

In this section an extension to the previous algorithm is presented, which is designed for in-
verse problems. While the basic algorithm from Section 4.3.1 aims to reduce the model over
the whole admissible parameter-space; with this extension the resulting ROM approximates
the original model over a subspace of the parameter-space which is de�ned by an additional
soft constraint on the greedy sampling.
The original optimization-based combined (state and parameter) reduction introduced in
[151] is aimed at (Bayesian) inverse problems. For inverse problems, naturally, some ob-
served output data yd exists, to be matched to the model's output during the inversion; for
example in the least-squares sense:

�d = argmin
�2RP

kyd � y(� )k2L2 .

For model reduction prior to an inversion, the available output data can be utilized during
the reduction process to re�ne the ROM for a subsequent inversion.
The model reduction methods in this work approximate the FOM's output y by the ROM's
output yr , hence a optimization can be performed using the ROM:

�d � argmin
�2RP

kyd � yr(� )k2L2 .

This motivates a regularization term based on the data-mis�t related to [114]: the distance
of the FOM's output to the measured output data,

R�d
(� ) := �dkyd � y(� )k2L2 ,(4.14)

and has the purpose of con�ning the ROMs to subspaces which are relevant to the measured
data. The objective function of the greedy algorithm (4.6) augmented by the data-driven
regularization (4.14) then reads:

�I = argmax
�2RP

Jd(� ;UI ,�I),

Jd(� ;UI ,�I) = J(� ;UI ,�I)�R�2
(� )�R�d

(� )

= ky(� )� yr(�I�
|

I � )k2L2 � �2k�k
2
2 � �dkyd � y(� )k2L2 ,

with an associated weight coef�cient �d 2 [0,1]. By this data-driven regularization, the
base vectors for the parameter projection are selected in a manner to enhance the parameter
optimization during the inversion of the data by the ODE-constrained optimization using the
ROM. The additional computational complexity introduced by the data-driven regularization
term is negligible, as the output trajectory y(� ) can be reused from the residual J .
Including the data-mis�t minimization as a regularization into the reduction process has two
consequences. First, part of the inversion is already performed during the model reduction
which can speed up the actual inversion. Second, the resulting ROM is speci�c to the mea-
sured data yd and most likely not re-usable for another dataset. Even though the ROM is
only valid for a certain dataset, this extension is applicable in settings which perform many
inversions on a single dataset, i.e. hypothesis testing.
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4. Optimization-Based Combined Reduction

4.4.1. Enhanced Algorithm

Next, the previously introduced data-driven regularization from Section 4.4 is incorporated
into the basic algorithm as well as some minor modi�cations. The following Algorithm 7
lists the enhanced variant of the previous optimization-based combined reduction method.

Algorithm 7: Enhanced Optimization-Based Combined Reduction

�0 � �̄
�0 � �0
U0 � pod1(x(�0))
for I = 1 : R do

�I  � argmin�J(� ;UI�1,�I�1) + �2R2(� ;�I�1) + �dRd(� )

�I  � orth(�I�1,�I)
x?(�I) � x(�I)� UIU

|

I x(�I)

x̄ I  � pod1(x
?(�I))

UI  � orth(UI�1, x̄ I)

Additional to the inclusion of the data-driven regularization term into the cost functional of
the optimization performing the greedy sampling, instead of expanding the basis with the
principal POD mode from a state-space simulation for the state-space projection, the state
basis can be augmented with the principal POD mode of the state-space projection error, as
proposed for the POD-Greedy method in [55].
This modular variant of the optimization-based combined reduction algorithm only abstractly
describes a central component of the reduction process, which is the maximization method.
The energy maximization to determine greedily the best parameter subspace is effectively
computed by a reformulation as a minimization problem with negative cost functional (4.7),
which, as described in Section 4.1.3, can be solved by an unconstrained optimization method
due to the (Tikhonov) regularization, or in case of further conditions on the base vectors,
like system stability by constraint optimization.
Newton (or Quasi-Newton) methods are established methods for optimization procedures.
The major computational challenge is the computation of the �rst and second order deriva-
tive information. An analytical computation of the derivatives is often impractical, hence
an approximation, for example by a �nite difference scheme for the Jacobian with a �nite
difference h, is chosen:

� i
h
:= � +�Pi h,

@ y

@ �i
=

y(� )� y(� i
h
)

h
,

) J �
�
@ y
@ �1

. . . @ y
@ �P

�
.

Alternatively, automatic differentiation [93] is a tool to accelerate the computation of the
Jacobian or (approximate) Hessian if analytical derivatives are not available.
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4.5. Nonlinear Systems

The previously presented optimization-based approach to combined state and parameter re-
duction can be extended directly to nonlinear systems, yet without a theoretical justi�cation,
but with a similar argument as for the empirical gramians: Given a method to obtain discrete
(output) trajectories for nonlinear IVPs, the linear system gramians can be generalized to em-
pirical gramians for nonlinear systems (near a steady-state); hence, given methods for the
nonlinear optimization-based parameter-space and state-space reduction, the optimization-
based combined reduction can also be generalized to nonlinear systems near a steady-state.
Broadening the scope of the optimization-based approach to nonlinear systems relies heav-
ily on state-space simulations, hence the (asymptotic) stability of the considered systems is
paramount to the computation of a ROM.

4.5.1. Parameter Reduction

Since the abstract Algorithm 7 is not relying on the linear structure of the model, it princi-
pally applies also to nonlinear models, but the practical computation of the ROM requires a
maximization (minimization) method for nonlinear optimization problems:

�I+1 = argmax
�2�

ky(� )� y(�I�r)k2L2 � �2k�k
2
2,

subject to:

�x(t) = f (x(t),u(t),� ),

y(t) = g(x(t),u(t),� ),

x(0) = x0,

�r = �
|

I � ,

�
|

I�I = 1 .

Except for the (control system) constraint, this optimization problem is formulated similar
to the linear greedy sampling formulation (4.5), which now comprises a general (and thus
possibly nonlinear) control system and usually a nonlinear mapping from the parameter-
space to the control system model. The greedy sampling used to assemble the parameter
reducing projection, formulated as a minimization problem (4.7), then reads

�I+1 = argmin
�2�

�ky(� )� y(�I�r)k2L2 + �2k�k
2
2,

and as such can be solved with a (regularized) nonlinear least-squares method, like variants
of the Newton's method [179]. For nonlinear systems or systems with nonlinear parametriza-
tion, the regularization might require a weighting matrix � , as in (4.8), to ensure the mini-
mization excludes parameters which destabilize the system or produce unde�ned results.
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4. Optimization-Based Combined Reduction

4.5.2. State Reduction

Like the optimization-based parameter-space reduction, also the optimization-based state-
space reduction principally extends directly to nonlinear systems, but some practical matters
of the computation have to be considered.
As noted in Section 4.2, computing the state reducing projection from the input-to-state map
is equivalent to obtaining a projection based on the dominant PODmodes. These PODmodes
can be determined from discrete trajectories xh(th) using the SVD, and hence (only) requires
the discrete numerical solutions to the IVP for the underlying nonlinear control system.
In the nonlinear setting, an adjoint system is not directly available as in the linear setting,
thus an additional nonlinear model-constrained least-squares optimization problem needs to
be solved (iteratively) to obtain the state reducing projection from the state-to-output map-
ping. Similarly for the input-to-output mapping an optimization problem has to be solved.
Thus, for nonlinear systems the input-to-state mapping is the most convenient, as the state-
space reducing projection can be obtained by a TSVD and is a tested method for nonlinear
state-space reduction [141].

4.5.3. Combined Reduction

With nonlinear optimization-based parameter-space and state-space reduction approaches a
nonlinear combined reduction method can be formulated analogously to the linear setting.
Since no theoretical results are provided in this context, meaningful results can only be
expected near a steady-state. The core optimization problem for the greedy sampling then
has the following form in the nonlinear regime:

�I+1 = argmax
�2�

ky(� )� yr(�I�
|

I �r)k2L2 � �2k�k
2
2,

subject to:

�x(t) = f (x(t),u(t),� ),

y(t) = g(x(t),u(t),� ),

x(0) = x0,

�xr(t) = U
|

I f (UI xr(t),u(t),� ),

yr(t) = g(UI xr(t),u(t),� ),

xr(0) = U
|

I x0,

U
|

I UI = 1I ,

�
|

I�I = 1I .

The other components of Algorithm 4 (and Algorithm 7 for that matter) remain the same.
Since the data-driven regularization from Section 4.4 is agnostic to the model, it similarly
directly extends to nonlinear systems.
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This chapter describes the software developed to implement the methods from the previous
chapters. After an outline of the software design decisions, a generic benchmark for testing
purposes is described. Then, the implementation of the empirical-gramian-based method
from Chapter 3 and the optimization-based approach from Chapter 4 are documented and
tested.

5.1. Design Principles

Both implementations are developed using the Matlab programming language and are com-
patible with OCTAVE [42, 56, 57] and MATLAB

R [122], with the former guaranteeing a full
open-source software stack while the latter allows a wide circulation. The Matlab language
was chosen due to four properties: the availability of an open-source interpreter, its math-
ematical expressiveness, widespread use and long-term compatibility. The source code is
engineered with regard to the Matlab language best practices [130] and performance guide-
lines [5]. On the matter of performance it should be noted that, due to extensive use of
vectorization, most computational intensive operations are transferred to a basic linear al-
gebra subprogram (BLAS) backend49.
A general principle during the development of the source code representing the algorithms
is the separation of method and experiment, to encourage apart from the replicability of the
results from this work also reproducibility for similar, and reusability of these implemen-
tations in other settings. Beyond the targeted �eld of application in combined (state and
parameter) reduction, or pMOR and nMOR in general, this enables the use in further con-
trol and systems applications. To this end both implementations provide interfaces with a
minimal set of mandatory arguments, an additional set of �exible optional arguments and
a con�gurable set of options allowing a more �nely tuned selection of algorithms. Since
either method relies on computed trajectories, a default solver, described in Section 5.3.3, is
provided as well as an interface to connect custom solvers.

49See Appendix B.2 for information on the used BLAS implementation.
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5. Software Implementation

5.2. Inverse Lyapunov Procedure

Following, a process is described that utilizes the empirical gramians from Chapter 3 to gen-
erate random systems, which are used in the course of this chapter to test the software imple-
mentations. This method to generate random systems is the inverse Lyapunov procedure
(ILP), which is introduced in [206] and also listed in [41, ILP].
The ILP can be viewed as stepping through the balanced truncation algorithm backwards.
First, random eigenvalues for the controllability gramian and the observability gramian are
generated from an exponential of a uniform distribution on the interval [0, 12]. Random
eigenvectors to WC and WO are generated from an SVD of a random normally distributed
matrix. From these random system gramians a balancing transformation is computed. Sec-
ondly, a random normally distributed input matrix B and output matrix C are created. The
output matrix C is then scaled such that (BB|)ii = (C|C)ii to satisfy the requirements in
[206, Thm. 1]. Thirdly, the controllability (or observability) gramian A of the virtual system
�(WC ,B,C) is computed. Lastly, the system �(A,B,C) is stabilized by subtracting a scaled
unit matrix from A and unbalanced through the use of the inverse balancing transformation.

Algorithm 8: Inverse Lyapunov Procedure

�(WC) � exp(U N

[0, 1
2
]
)

�(WO) � exp(U N

[0, 1
2
]
)

fTC ,D, TOg  � SVD(N N�N
0,1

)

WC  � TC diag(�(WC))T
|

C

WO � TO diag(�(WO))T
|

O

fU ,D,Vg  � SVD(WCWO)

B �N N�J
0,1

C  �N O�N
0,1

Ci j  � Ci j

q
(
P

i Bi jB ji)=(
P

j C jiCi j)

A � V (
R1
0

eWC t BB| eW
|

C
t dt � 1

N 1N )U

B � VB

C  � CU

Following, the implementations of the gramian-based and optimization-based methods are
tested by a linear state-space symmetric MIMO system, generated by the ILP with an addi-
tional linear parameter dependency (3.26) including a source matrix F 2 RN�P :

�x(t) = Ax(t) + Bu(t) + F� ,

y(t) = C x(t),
(5.1)

together with zero initial state x i(0) = 0 and an impulse input ui(t) = �(t). The parameters
act as a source term and are drawn from a uniform distribution �i  U[0,1]. The state
dimension is selected as N = P = 100, the input and output dimension as M = O = 10.
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5.3. emgr - Empirical Gramian Framework

The empirical gramian framework50 (emgr) [107] encapsulates functionality to compute the
(discrete) empirical gramians presented in Chapter 3, requires only basic linear algebra op-
erations51 and has no dependencies on other toolboxes. The implementation is contained in
a single �le and spans less than 500 lines of code (LoC). Released under an open-source li-
cense (Appendix B.3) and available52 from http://gramian.de, emgr is engineered to provide
a uniform interface for various types of empirical gramians [109].
A simpli�cation of the general de�nitions of the perturbation sets in De�nition 3.22 is made
in terms of the sets of rotation matrices, which are set to Ru = f�1J ,1Jg, Rx = f�1N ,1Ng .
This choice, suggested in [142], entails many numerical simpli�cations during the assembly
of the empirical gramians, but restricts perturbations to a single component of the inputs or
initial state for each trajectory.
Following, the interface of the emgr toolbox53, the core features and the available con�g-
urable options are listed and described. Then, the functionality is veri�ed and validated by
a benchmark problem with the property from Note 3.12.

5.3.1. Interface

The signature of the emgr function encompasses �ve mandatory arguments (single letter)
and seven optional arguments (double letter), and reads:

W = emgr(f,g,s,t,w,pr,nf,ut,us,xs,um,xm);

Hence, the minimal usage:

W = emgr(f,g,s,t,w);

requires the following �ve arguments:

f function handle to a function with signature xdot  f(x,u,p), the system's vector �eld
depending on the current state x, the current input u and the (current) parameter p.
For example, in case of a linear system: f = @(x,u,p) A*x + B*u;

g function handle to a function with signature y  g(x,u,p), the system's output func-
tional depending on the current state x, the current input u and the (current) parameter
p. For example in case of a linear system: g = @(x,u,p) C*x;

s three component vector s = [J,N,O] holding number of inputs J , states N and outputs
O;

t two component vector t = [h,T] holding time step h and stop time T ;

w character selecting the gramian type, for details see Section 5.3.2.

50See the listing in Appendix B.3.
51Such as vector and matrix operations contained in the BLAS library.
52The empirical gramian framework is also listed in the Oberwolfach References on Mathematical Soft-

ware: no. 345 http://orms.mfo.de/project?id=345
53For emgr in version 3.9.
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Furthermore, seven optional arguments are provided:

pr parameters provided to the system's vector �eld and output functional during the nu-
merical simulations; the parameter gramians (WS , WI , WÏ) require a two-column ma-
trix with minimum and maximum parameter values;

vector holding the system's parameters of dimension P � 1,

matrix holdingmultiple parameter column vectors, for pMOR, described in Section 3.3.4;

nf twelve component vector encoding the option �ag settings, for details see Section 5.3.3;

ut input time series, default value: 1;

scalar setting uniform peak of impulse input to all inputs, normalized by the time-step
h to ensure the discrete input ful�lls the identity

R T
0

ui(t)dt = ut(1),

vector setting per-input component peaks to impulse input, normalized by the time-step
h to ensure the discrete input ful�lls the identity

R T
0

ui(t)dt = ut(i)

and is of dimension J � 1,

matrix holding the discrete input time series of dimension J � Th ,
handle to a function u  uf(t) which is internally discretized,

for example a Gaussian pulse at time tp and full width at half maximum h:
u = @(t) exp(-(0.5/h)*(t-tp).ˆ2)./sqrt(2.0*pi*h);

1 generates a linear chirp signal using the havercosine [226]:
u = @(t) 0.5*cos(pi*(t+10*t.*t))+0.5;

us steady-state input, default value: 0;

scalar setting steady-state input for all input components to provided value;

vector holding input during nominal or steady-state (xs) of dimension J � 1,

xs steady-state and nominal initial state, default value: 0;

scalar setting all steady-state components to provided value;

vector holding steady-state of dimension N � 1,

um input scales corresponding to Qu, default value: 1;
sub-division of scale sequence con�gurable by option �ags (see Section 5.3.3),

scalar of uniform maximum scales for all input components,

vector holding per-input scale maxima of dimension J � 1,

matrix holding multiple columns of per-input scales (used as is);

xm state scales corresponding to Q x , default value: 1;
sub-division of scale sequence con�gurable by option �ags (see Section 5.3.3),

scalar uniform maximum scale for all state components,

vector holding per-state scale maxima of dimension N � 1,

matrix holding multiple columns of per-state scales (used as is).
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5.3.2. Features

The empirical gramian framework features seven types of empirical gramians and empiri-
cal covariance matrices54. For the (parametric) state-space system gramians a single matrix
is returned. For the parameter-space gramians a cell-array55 of two matrices is returned,
the �rst element corresponds to the associated state-space gramian, the second element em-
bodies the actual parameter-space gramian. Following is a list of the computable empirical
gramians and their return values:

’c’ Empirical Controllability Gramian WC , see: Section 3.3.1;
emgr returns:

N � N empirical controllability gramian matrix

’o’ Empirical Observability Gramian WO, see: Section 3.3.2;
emgr returns:

N � N empirical observability gramian matrix

’x’ Empirical Cross Gramian WX , see: Section 3.3.3;
emgr returns:

N � N empirical cross gramian matrix

’y’ Empirical Linear Cross Gramian WY , see: Section 3.3.3;
emgr returns:

N � N empirical linear cross gramian matrix

’s’ Empirical Sensitivity Gramian WS , see: Section 3.4.1;
emgr returns:

N � N approximate empirical controllability gramian matrix

P � P empirical sensitivity gramian (diagonal) matrix

’i’ Empirical Identi�ability Gramian WI , see: Section 3.4.2;
emgr returns:

N � N empirical observability gramian matrix

P � P empirical identi�ability gramian matrix

’j’ Empirical Joint Gramian WJ , see: Section 3.4.3;
emgr returns:

N � N empirical cross gramian matrix

P � P empirical cross-identi�ability gramian matrix

The empirical variant of the non-symmetric cross gramian WZ from Section 3.2.3 is com-
putable by the empirical cross gramian (’x’) together with activating the non-symmetric
option (nf(7) = 1), and can also be used with the empirical joint gramian (’j’).

54The input function ut and the type of centering nf(1) controls whether an empirical gramian matrix or an

empirical covariance matrix is selected. For ut=1 and nf(1)=3 an empirical gramian is computed.
55A cell-array is a generic container type array in the Matlab programming language.
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5.3.3. Option Flags

The vector nf encodes twelve options, which are con�gured by an integer value at the re-
spective position; as a default value zero is assumed for unset options. It is noted, if an
option is only available for a certain subset of empirical gramians listed in Section 5.3.2.

nf(1) The method of centering simulated (output) trajectories:

= 0 zero, no centering;

= 1 initial state (output), for bPOD;

= 2 steady-state (output), for empirical covariance matrices;

= 3 arithmetic average of states (outputs) over time, for empirical gramians;

= 4 median of the states (outputs) over time;

= 5 midrange of states (outputs) over time;

= 6 root-mean-square of states (outputs) over time.

nf(2) Input scale sub-division of (scalar- and vector-valued) input scales um:

= 0 linear sub-division into four scales: um um*[0.25,0.50,0.75,1.0];

= 1 logarithmic sub-division into four scales: um um*[0.001,0.01,0.1,1.0];

= 2 geometric sub-division into four scales: um um*[0.125,0.25,0.5,1.0];

= 3 no sub-division, just a single scale: um um;

= 4 sparse sub-division into four scales: um um*[0.38,0.71,0.92,1.0].

nf(3) State scale sub-division of (scalar- and vector-valued) state scales xm:

= 0 linear sub-division into four scales: xm xm*[0.25,0.50,0.75,1.0];

= 1 logarithmic sub-division into four scales: xm xm*[0.001,0.01,0.1,1.0];

= 2 geometric sub-division into four scales: xm xm*[0.125,0.25,0.5,1.0];

= 3 no sub-division, just a single scale: xm xm;

= 4 sparse sub-division into four scales: xm xm*[0.38,0.71,0.92,1.0].

nf(4) Input transformation con�guration emulating rotations:

= 0 unit and negative unit transformations f�1,1g: um [um,�um];
= 1 unit and reciprocal transformations: um [um, 1.=um];

= 2 dyadic transformation um
 um: um um � um|;
= 3 single unit transformation 1: um um.

nf(5) State transformation con�guration emulating rotations:

= 0 unit and negative unit transformations f�1,1g: xm [xm,�xm];
= 1 unit and reciprocal transformations: xm [xm, 1.=xm];

= 2 dyadic transformation xm
 xm: xm xm � xm|;
= 3 single unit transformation 1: xm xm.
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nf(6) System preconditioning:

= 0 regular run;

= 1 double run, equilibrate based on empirical gramian diagonal [58];

= 2 scaled run, equilibrate based on steady-state (input), see [219].

nf(7) cross gramian for non-square or non-symmetric systems, only WX ,WJ :

= 0 regular cross gramian;

= 1 non-symmetric cross gramian variant, see De�nition 3.17.

nf(8) Robust parameters, only WC , WY :

= 0 plain parameters;

= 1 treat parameters as inputs, see Section 3.3.4.

nf(9) Parameter action, only WI , WJ :

= 0 parameter is a source;

= 1 parameter is not a source (applies ut for parameter perturbed simulations).

nf(10) Center parameter scales:

= 0 no centering;

= 1 centering around arithmetic mean;

= 2 centering around logarithmic mean.

nf(11) Exclusive options for parameter gramians, only WS , WI , WJ :

= 0 disabled;

= 1 if WS: computes the root-mean-square centered sensitivity gramian, see (3.28);
by default the sensitivity gramian comprises the traces of the parameter control-
lability gramians.

= 1 if WI : computes the approximate Schur-complement of the augmented observ-
ability gramian as identi�ability gramian using the approximate inverse (Appendix A.4),
see (3.30); by default the lower right block of the augmented observability gramian
is computed as approximate identi�ability gramian;

= 1 if WJ : computes the detailed Schur-complement of the joint gramian as cross-
identi�ability gramian using the pseudo-inverse; by default the approximate Schur-
complement is computed using the approximate inverse (Appendix A.4).

nf(12) Empirical gramian symmetry:

= 0 assume symmetry;

= 1 enforce symmetry by post-processing.
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Default and Custom ODE Solver

A default solver, the 2nd order Ralston's Runge-Kutta method, is available for emgr. Runge-
Kutta methods are iterative numerical integrators for nonlinear IVPs and a special case of
general linear methods for integration. The provided default solver56 for the software im-
plementations is an explicit single-step second-order Runge-Kutta method from [181]. This
Ralston Runge-Kutta-2 (RK2) method has a minimal local truncation error of all second or-
der Runge-Kutta methods, and additionally it is the only (pseudo-)energy preserving Runge-
Kutta of this order [35].

Algorithm 9: 2nd Order Ralston's Runge-Kutta Method

k1 = hf (t i , yi)
k2 = hf (t i +

2
3h, yi +

2
3k1)

yi+1 = yi +
1
4k1 +

3
4k2

The Courant-Friedrichs-Lewy (CFL) coef�cient [89] c for the above method computes as:

c =
3
2
min

�1
4
,
3
4

�
=

3
8
,

hence for a space-time discretization ratio �t
�x <

3
8 the Ralston RK2 method is strong stability

preserving (SSP) and conforms to hyperbolic conservation laws, but it is not an optimal two
stage second-order SSP method.
Generally, a custom solver, adapted to the speci�c problem, is preferable. A custom ODE
solver can be passed by creating a global variable with the name ODE which is set to the
function handle of the desired procedure. This integrator is expected to have the signature:

y  ODE(f,g,t,x,u,p);

and expects the following arguments:

f function handle to a function with signature xdot  f(x,u,p), the system's vector �eld;

g function handle to a function with signature y  g(x,u,p), the system's output func-
tional; in case g = 1, a state trajectory is expected to be returned;

t two component vector t = [h,T] holding the time step h and stopping time T ;

x vector initial condition for the state-space of dimension N � 1;

u matrix discrete input time series matrix of dimension J � Th ;

p vector column vector holding parameters of dimension P � 1;

and returns a discrete state trajectory of dimension N � Th or output trajectory of dimension
O� Th .

56See code/rk2.m in the supplementary source code archive (Appendix B.1).
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5.3.4. Veri�cation and Validation

In this section the computation of the empirical gramians using the empirical gramian frame-
work (emgr) is veri�ed and validated57. For these tests the system (5.1) is utilized. Due to
the origin of the empirical gramian method, apart from the combined reduction, the general
applicability for state-space and parameter-space reduction is tested.

Veri�cation

The correctness of the computation of the empirical gramians is veri�ed, �rst by testing the
pairwise difference of the state-space empirical gramians for the state-space symmetric test
system, and second, by comparing the empirical gramian to an algebraic system gramian
computed by solving a matrix equation. For these computations the source matrix F of the
test system is set to zero to disable the in�uence of the parameters.
Since all state-space system gramians are equal for a state-space symmetric system (3.7),
the state-space empirical gramians, which are: the empirical controllability gramian WC ,
empirical observability gramian WO, empirical cross gramian WX and empirical linear cross
gramian WY , are compared with one another in the Frobenius norm58.
For a state-space symmetric system, WC is computation-wise identical to the WY ; thus, the
Frobenius norm of the difference is also numerically zero:

kWC �WY kF = 0,

which means the error is of the order of precision of the �oating point number representa-
tion. The same holds for an observability gramian computed as the empirical controllability
gramian of the adjoint system W �C :

kWC � W �C|{z}
=WO

kF = 0.

Comparing WC with WO and WX as well as the WO with WX , with WO and WX computed
following De�nition 3.30 and De�nition 3.35 respectively, an error correlated with the times
step-size h remains:

kWC �WOkF
h!0�! 0,

kWC �WXkF
h!0�! 0,

kWO �WXkF
h!0�! 0.

This error is due to the differing assembly of the empirical gramians; whileWC utilizes state
trajectories, WO uses output trajectories and WX employs both. For more accurate simula-
tions using either smaller time-steps, or higher order integrators this error can be reduced.
Figure 5.1a illustrates the error decay for decreasing time-step size.

57See code/ch5/vernval_emgr.m in the supplementary source code archive (Appendix B.1).
58The empirical non-symmetric cross gramian is veri�ed in [117].
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Next, a system gramian W is computed �algebraically� by solving a Sylvester equation,

AW +WA= BC, AW +WA| = BB|, A|W +WA= C|C ,

which corresponds to either, the controllability, observability and cross gramian since the
test system is state-space symmetric. Now, this algebraic system gramian W is compared to
the empirical gramians WC , WO and WX in the Frobenius norm:

kWC �WkF
T !1�! 0,

kWO �WkF
T !1�! 0,

kWX �WkF
T !1�! 0.

The utilized (output) trajectories used to assemble the empirical gramians need to attain
their steady-states in all components to conform to the algebraic gramians. Since the test-
system model's dynamical system contains slow modes, the error between empirical system
gramians and (algebraic) system gramians reduces for longer integration times59. This rela-
tion is demonstrated in Figure 5.1b for varying integration time-spans used in the computa-
tion of the empirical gramians.

(a) Relative error between numerically different

but analytically equal empirical gramians

for varying time-step width in the Frobenius

norm.

(b) Relative error between different empirical

gramians but analytically equal algebraic

gramians for varying integration length in the

Frobenius norm.

Figure 5.1.: Numerical veri�cation of the empirical gramian computation.

59Additionally, the accuracy of the integration is contributing to the error.
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Validation

The validation of the empirical gramian computation is accomplished by the use of the state-
space symmetric test system from (5.1). This system is tested in terms of state-space reduc-
tion, parameter-space reduction and combined state- and parameter-space reduction.

State-Space Reduction

First, empirical-gramian-based state-space reduction is tested for variants of balanced trun-
cation and direct truncation in Figure 5.2. In this setting, the source matrix is set to zero
F = 0, to exploit the equality of all gramians. The tested methods are evaluated in the (time-
domain) `1-, `2- and `1-norm of the output error (2.15) and in the associated error bounds
and error indicators for varying reduced state-space dimensions.
Tested are:

a) balanced truncation using the empirical controllability gramian WC and empirical ob-
servability gramian WO, see Figure 5.2a;

b) balanced truncation using the empirical controllability gramian WC and adjoint em-
pirical controllability gramian W �C , see Figure 5.2b;

c) direct truncation using the empirical linear cross gramian WY ,
see Figure 5.2c;

d) direct truncation using the empirical cross gramian WX ,
see Figure 5.2d;

e) direct truncation based on balanced gains using the empirical cross gramian WX ,
see Figure 5.2e;

f) direct truncation using the empirical non-symmetric cross gramian WZ ,
see Figure 5.2f.

Figure 5.2a, Figure 5.2b, Figure 5.2c and Figure 5.2d show that for a state-space symmetric
system, the linear empirical balanced truncation (WC ,W

�
C ) and nonlinear empirical balanced

truncation (WC ,WO) as well as the linear empirical direct truncation (WY ) and nonlinear em-
pirical direct truncation (WX ) produce nearly equivalent ROMs. Similarly, the ROM obtained
by balanced gains (see Figure 5.2e) using empirical direct truncation is also almost equal to
the empirical balanced truncation and direct truncation ROMs. The direct truncation by the
non-symmetric cross gramian WZ , as reported in [117], generates a ROM (see Figure 5.2f)
for which the model reduction error decays faster, but does not reach the same accuracy as
balanced and direct truncation.
The global H1-error bound (3.9), which in turn is a bound for the L2-error (2.18), is
tight for this system with a self-adjoint Hankel operator [173]. Also, theH 2-error indicator
(3.13), follows the error in the L1-norm (2.17) closely. Lastly, the L1-error bounds all other
errors which is predicted by the Minkowski inequality [84, Ch. 2.1.5].
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(a) BT of WC , WO. (b) BT of WC , W
�

C
. (c) DT of WY .

(d) DT of WX . (e) DT of WX (balanced gains). (f) DT of WZ .

Figure 5.2.: Relative `1-, `2-, `1-norm output error, L1-, L2-norm error bound and L1-norm

error indicator for varying reduced state dimensions using six gramian-based state-

space reduction methods.
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Parametric State-Space Reduction

As a second test, the state-space reduction for the same test problem is conducted, yet now
including the linear parametrization. In this setting the parameter � 2 RP , P = N , is con-
strained to �i 2 [0,1] and the source matrix is set to the unit matrix F = 1N . For the
evaluations the parameters are selected from a uniformly random distribution U P

[0,1]
. As

described in Section 3.3.4 the parametric gramian-based reduction can be performed by av-
eraging the associated system gramians for different parameter samples. The errors are
evaluated in the joint state- and parameter-space norms (2.16). For these tests, the `1 
 `2-
norm, `2
`2- and the `1
`2-norm are employed. The results are depicted in Figure 5.3 for
the parametric tests based on four parameter samples during the construction of the ROM
and 100 uniformly random parameter samples for the ROM evaluation. Tested are the same
gramian-based state reduction methods as for the non-parametric state reduction:

a) parametric balanced truncation using the empirical controllability gramian WC and
empirical observability gramian WO, see Figure 5.3a;

b) parametric balanced truncation using the empirical controllability gramian WC and
adjoint empirical controllability gramian W �C , see Figure 5.3b;

c) parametric direct truncation using the empirical linear cross gramian WY ,
see Figure 5.3c;

d) parametric direct truncation using the empirical cross gramian WX ,
see Figure 5.3d;

e) parametric direct truncation based on balanced gains using the empirical cross gramian
WX , see Figure 5.3e;

f) parametric direct truncation using the empirical non-symmetric cross gramian WZ ,
see Figure 5.3f.

Overall, the shape of the error curves of the parametric state-space reduction tests are sim-
ilar to the errors of the non-parametric state-space reduction tests, but at a lesser accuracy.
For the parametric balanced truncation tests, illustrated in Figure 5.3a and Figure 5.3b, the
parametric direct truncation tests in Figure 5.3c and Figure 5.3d, as well as the parametric
balanced gains direct truncation in Figure 5.3e, the relative output errors also drop sharply,
yet level out already at about 10�10 instead of 10�15 for the non-parametric state-space re-
duction. This loss of accuracy is due to the averaging of the respective system gramians for
the chosen parameter samples.
The direct truncation based on the non-symmetric cross gramian Figure 5.3f performs worst
in this setting. This is due to the repeated averaging; �rst, over the input and output matrices
(see Lemma 3.18) and second, over the parameter samples. In this basic variant the non-
symmetric cross gramian is not a viable method for pMOR.
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(a) Parametric BT of WC , WO. (b) Parametric BT of WC , W
�

C
. (c) Parametric DT of WY .

(d) Parametric DT of WX . (e) Parametric DT of WX (bal-

anced gains).

(f) Parametric DT of WZ .

Figure 5.3.: Relative `1 
 `2-, `2 
 `2-, `1 
 `2-norm output error for varying reduced state

dimensions using six gramian-based parametric state-space reduction methods.
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Parameter-Space Reduction

Thirdly, empirical-gramian-based parameter-space reduction is tested for variants of direct
truncation in Figure 5.4. These tests have the same parameter setup as the parametric state-
space reduction. The following empirical parameter gramians are tested for varying reduced
parameter-space dimension over 100 uniformly random samples from the parameter-space
in the `1 
 `2-norm, `2 
 `2- and the `1 
 `2-norm:

a) direct truncation of the empirical sensitivity gramian WS ,
see Figure 5.4a;

b) direct truncation of the empirical identi�ability gramian WI ,
see Figure 5.4b;

c) direct truncation of the empirical cross-identi�ability gramian fWÏ ,
see Figure 5.4c;

d) direct truncation of the centered empirical sensitivity gramian W S ,
see Figure 5.4d;

e) direct truncation of the approximate empirical identi�ability gramian fWI ,
see Figure 5.4e;

f) direct truncation of the approximate empirical cross-identi�ability gramian WÏ ,
see Figure 5.4f.

In comparison, the controllability-based parameter reduction using the empirical sensitivity
gramian performs worst (Figure 5.4a). This is due to parameter projection being based only
on sorting the parameters by their average controllability and not composing linear combi-
nations of parameters as the observability-based methods do. And since the parameter-space
is rather homogeneous the parameters have all about the same sensitivities. The centering
of the sensitivity gramian in Figure 5.4d improves the ROMs slightly, but in relation to the
observability-based parameter reduction remains least useful. The observability-based iden-
ti�ability gramian presents a better accuracy in the ROMs than the controllability-based ap-
proach, and the (approximate) identi�ability gramian yields the overall best results reaching
an error of about 10�12; see Figure 5.4b and Figure 5.4e. Figure 5.4c shows, that the param-
eter reduction error related to the cross-gramian-based cross-identi�ability gramian, which is
also observability-based, has a comparable initial decay in errors as the (approximate) identi-
�ability gramian, but levels out at about 10�8. The approximate cross-identi�ability gramian,
in Figure 5.4f, performs with a lesser accuracy yielding ROMS with an error of about 10�5

after the initial descent. Notably, for the empirical identi�ability and cross-identi�ability
gramians, the error curves decay steeply, similar to the gramian-based state-space reduc-
tion. This indicates that the principal parameter subspace is relatively low-dimensional.
Compared to the parametric state-space reduction, the parameter-space reduction reaches
similar error levels, but not of the order of themachine precision for double-precision �oating-
point arithmetic eps � 10�15 which is used for all numerical computations in this work.
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(a) DT of WS . (b) DT of WI . (c) DT of WÏ .

(d) DT of W S . (e) DT of fWI . (f) DT of fWÏ .

Figure 5.4.: Relative `1
`2-, `2
`2-, `1
`2-norm output error for varying reduced parameter

dimensions using six gramian-based parameter-space reduction methods.
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Combined State and Parameter Reduction

Lastly, the combined (state and parameter) reduction, which fuses the three previously pre-
sented parameter reduction methods with the (empirical) gramian-based state reduction,
as described in Section 3.5, is tested in Figure 5.5. For these tests the previously employed
linear system including the linear parametrization (3.26) is utilized. Compared are the com-
bined reduction methods for varying state- and parameter-space dimensions in the `1 
 `2-
norm, `2
`2- and the `1
`2-norm over uniformly random 100 samples from the parameter-
space:

a) balanced truncation of the approximate empirical controllability gramian and empir-
ical observability gramian ffWC ,WOg and direct truncation of the centered empirical
sensitivity gramian W S (controllability-based), see Figure 5.5a;

b) balanced truncation of the empirical controllability gramian and empirical observabil-
ity gramian fWC ,WOg and direct truncation of the approximate empirical identi�ability
gramian fWI (observability-based), see Figure 5.5b;

c) direct truncation of the empirical cross gramian WX and direct truncation of the em-
pirical cross-identi�ability gramian fWÏ (cross-gramian-based),
see Figure 5.5c;

d) controllability-based combined reduction as in a), but restricted to the same reduced
state- and parameter-space dimension n= p, see Figure 5.5d;

e) observability-based combined reduction as in b), but restricted to the same reduced
state- and parameter-space dimension n= p, see Figure 5.5e;

f) cross-gramian-based combined reduction as in c), but restricted to the same reduced
state- and parameter-space dimension n= p, see Figure 5.5f.

The pairing of balanced truncation (using the approximate controllability gramian which is
assembled during the computation of the sensitivity gramian) for state-space reduction with
direct truncation of the sensitivity gramian for parameter-space reduction in Figure 5.5a per-
forms worst, which is due to insuf�cient parameter reduction capabilities of the sensitivity
gramian. Both observability-based combined reduction methods, the combination of bal-
anced truncation (using the observability gramian which is assembled during the computa-
tion of the identi�ability gramian) for state-space reduction and direct truncation of the iden-
ti�ability gramian for parameter-space reduction illustrated in Figure 5.5b, and the cross-
gramian-based direct truncation (using the cross gramian assembled during the computation
of the cross-identi�ability gramian) for state-space reduction and the direct truncation of the
approximate cross-identi�ability gramian for parameter-space reduction (Figure 5.5c), reach
error plateaus similar to the parameter reduction errors with an initial steep decline.
The cross-section of the error surfaces for same reduced state-space and parameter-space
dimension (Figure 5.5d, Figure 5.5e, Figure 5.5f) con�rm the previous observations on the
combined reduction methods.

93



5. Software Implementation

(a) BT of fWC , WO and

DT W S .

(b) BT of WC , WO and

DT of fWI .

(c) DT of WX and

DT of WÏ .

(d) BT of fWC , WO and

DT of the W S for n= p.

(e) BT of WC , WO and

DT of the fWI for n= p.

(f) DT of WX and

DT of WÏ for n= p.

Figure 5.5.: Relative `2 
 `2-norm of the output error for varying reduced state and parameter

dimensions using three gramian-based combined reduction methods and relative

`1
`2-, `2
`2-, `1
`2-norm output error for equally varying reduced state and

parameter dimension.
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5.4. optmor - Optimization-Based Model Order Reduction

The optimization-based model order reduction framework60 (optmor) [108] provides an im-
plementation of the algorithms in Chapter 4 and is designed to allow a modular combination
of the presented variants. It should be noted, that optmor is explicitly designed for the purpose
of combined state- and parameter-space reduction. optmor is also a single �le implementa-
tion of less than 300 LoC with no dependencies on other toolboxes and is released under an
open-source license (Appendix B.4).
The use of optmor is similar to emgr, yet as opposed to emgr this implementation directly re-
turns the low-rank state- and parameter-space truncated projections. The core component of
optmor is the inner optimization algorithm of the greedy sampling, for which default choices
as well as an interface for custom optimizers are available.
Following, the interface of the optmor toolbox61, the core features and the available con�g-
urable options are listed and described. Then, the functionality is veri�ed and validated
using the benchmark problem from (5.1).

5.4.1. Interface

The signature of the optmor function encompasses six mandatory arguments (single letter)
and �ve optional arguments (double letter), and reads:

XP = optmor(f,g,s,t,r,q,nf,ut,x0,co,yd);

Hence, the minimal usage:

XP = optmor(f,g,s,t,r,q);

requires six mandatory arguments:

f function handle to a function with signature xdot  f(x,u,p), the system's vector �eld
depending on the current state x, the current input u and the (current) parameter p.
For example, in case of a linear system: f = @(x,u,p) A*x + B*u;

g function handle to a function with signature y  g(x,u,p), the system's output func-
tional depending on the current state x, the current input u and the (current) parameter
p. For example in case of a linear system: g = @(x,u,p) C*x;

s three component vector s = [J,N,O] holding number of inputs J , states N and outputs
O;

t two component vector t = [h,T] holding time-step h and stop time T ;

r positive scalar either an integer setting a target reduced order to the parameter-space
or a �oating-point number (< 1) setting the overall target output error;

q vector holding the prior or nominal parameters of dimension P � 1, initializing the
greedy sampling.

60See the listing in Appendix B.4.
61For optmor in version 2.5.
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Furthermore, �ve optional arguments are provided:

nf six component vector encoding the option settings, for details see Section 5.4.3.

ut input time series, default value: 1;

scalar setting uniform peak of impulse input to all inputs, normalized by the time-step
h to ensure the discrete input ful�lls the identity

R T
0

ui(t)dt = ut(1),

vector setting per-input component peaks to impulse input, normalized by the time-
step h to ensure the discrete input ful�lls the identity

R T
0

ui(t)dt = ut(i) and is
of dimension J � 1,

matrix holding the discrete input time series of dimension J � Th ,
handle to a function u  uf(t) which is internally discretized,

for example a Gaussian pulse at time tp and full width at half maximum h:
u = @(t) exp(-(0.5/h)*(t-tp).ˆ2)./sqrt(2.0*pi*h),

1 generates a linear chirp signal using the havercosine [226]:
u = @(t) 0.5*cos(pi*(t+10*t.*t))+0.5

x0 nominal initial state, default value: 0;

scalar sets all initial state components to provided value;

vector holding initial state of dimension N � 1,

co prior covariance information, default value: 0;

scalar uniform prior variance on all parameter components,

vector holding per parameter component prior variance of dimension P � 1,

matrix holding variance-covariance matrix of dimension P � P;

yd matrix of dimension O� Th holding the discrete target time-series; required argument
for data-driven regularization from Section 4.4 activated by nf(4)>0.

5.4.2. Features

The optimization-based model order reduction toolbox features the concurrent computation
of

� a state-space Galerkin projection and

� a parameter-space Galerkin projection,

which are returned as a cell-array of two projection matrices in XP. Contained in the �rst
component XP{1} is the state-space projection matrix, while the second component XP{2}

holds the parameter-space projection matrix. The different variants of the greedy sampling
over the parameter-space and the selection of state-space modes can be con�gured by the
option vector nf.
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5.4.3. Option Flags

The con�gurable options are encoded in a six component vector passed by the argument nf,
wherein each component represents a separate option.

nf(1) Type of optimization algorithm utilized for the greedy sampling, default value: 0;

= 0 unconstrained optimization62 (Quasi-Newton) ,

= 1 derivative-free optimization63 (Nelder-Mead),

=-1 custom optimizer.

nf(2) Non-negative �oating-point weighting coef�cient �1 for L1 regularization operator64

in the greedy cost functional, default value: 0.

nf(3) Non-negative �oating-point weighting coef�cient �2 for L2 regularization operator in
the greedy cost functional see (Section 4.1.3), default value: 1

10 .

nf(4) Non-negative �oating-point weighting coef�cient �d for data-driven regularization op-
erator in the greedy cost functional, see Section 4.4, default value: 0.

nf(5) Non-negative integer setting themaximumnumber of iterations in the greedy sampling
optimization algorithm per iteration, default value: 4.

nf(6) Selects the greedy sampling initial parameter;

= 0 last iterations maximizer,

= 1 last iterations maximizer with added multivariate standard normal distribution
sample.

In case a custom optimizer is to be used via nf(1)=-1, a function handle to (a wrapper function
around) the optimization procedure is passed through a global variable named FMIN and
expects the following signature:

p  FMIN(J,p0).

with the arguments:

J function handle to the cost function with signature c  J(p), which given a parameter
p returns an associated scalar cost c;

p0 vector column vector holding the initial nominal parameter of dimension P;

and returns the next error maximizing parameter p. Standard minimizing algorithms are
applicable here, since the cost value is internally negated (4.7). This minimal interface can
also be used indirectly to supply additional information to the optimizer by nested wrapper
functions.
A custom solver for the computation of the (output) trajectories, required by the state-space
reduction and the optimization algorithms, can be set in the same manner as in Section 5.3.3
by passing an integrator function handle by a global variable named ODE.

62Uses fminunc, see also: octave.sourceforge.net/octave/function/fminunc.html .
63Uses fminsearch, see also: octave.sourceforge.net/octave/function/fminsearch.html .
64The L1 regularization is not evaluated in this work.
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5.4.4. Veri�cation and Validation

In this section the computation of the combined state and parameter reduction using the
optimization-based model order reduction (optmor) is veri�ed and validated65. Since optmor

is exclusively targeted at system with a high-dimensional parameter-space only the paramet-
ric setting is considered.

Veri�cation

To verify the computations of the optimization-based approach, multiple ROMs are computed
using the default options and validated for the (same) test system (5.1) with varying nominal
(initial) parameters. The resulting ROMs are compared in terms of parametric state-space
reduction, parameter-space reduction and combined reduction in the joint `2 
 `1-norm
over 100 uniform random parameter samples U P

[0,1]
in Figure 5.6.

The parametric state-space reduction in Figure 5.6a, the parameter-space reduction in
Figure 5.6b and the combined state- and parameter-space reduction with evenly reduced
state and parameter dimensions in Figure 5.6c, show that the resulting errors are contained
in a narrow range in the initial steep decline. Even though this does not substantiate a unique
ROM, it indicates very similar ROMs for varying nominal parameters.

(a) Output error for the para-

metric state-space reduc-

tion.

(b) Output error for the

parameter-space reduction.

(c) Output error for the even

combined state and param-

eter reduction.

Figure 5.6.: Output errors in the `2 
 `1-norm for optimization-based reduced order models

computed with varying nominal parameters.

65See code/ch5/vernval_optmor.m in the supplementary source code archive (Appendix B.1).
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Validation

The validation for the optimization-based model order reduction is performed using the
parametric state-space symmetric system (5.1) generated by the ILP. Following, four tests are
conducted: the ROM quality is compared for different Tikhonov regularization coef�cients,
different maximum iterations of the inner optimization procedure, varying prescribed error
thresholds and different data-driven regularization coef�cients.

Tikhonov Regularization

First, the in�uence of the regularization coef�cient �2 for the Tikhonov regularization op-
eratorR�2

(see Section 4.1.3) in the optimization algorithm of the greedy sampling is tested.
The regularization coef�cient balances the soft constraint of the optimization problem against
the maximization. Even though this coef�cient is speci�c to the test problem, it can provide
a starting point for other systems.
The following values of coef�cient �2 are tested, for varying reduced state- and parameter-
space dimensions over 100 uniform random samples from the parameter-space, using the
relative output error in the joint `2 
 `1-norm in Figure 5.7:

a) optimization-based combined reduction without Tikhonov regularization, meaning
�2 = 10�16 � 0, see Figure 5.7a;

b) optimization-based combined reduction using a Tikhonov regularization coef�cient
�2 = 10�4, see Figure 5.7b;

c) optimization-based combined reduction using a Tikhonov regularization coef�cient
�2 = 10�3, see Figure 5.7c;

d) optimization-based combined reduction using a Tikhonov regularization coef�cient
�2 = 10�2, see Figure 5.7d;

e) optimization-based combined reduction using a Tikhonov regularization coef�cient
�2 = 10�1, see Figure 5.7e;

f) optimization-based combined reduction using a Tikhonov regularization coef�cient
�2 = 1, see Figure 5.7f.

Overall, the error is dominated by the parameter-space reduction. Figure 5.7a shows, that
the optimization-based combined reduction without regularization of the greedy sampling
(�2 = 0) produces the worst results; the error surface �attens already at a relative error
of about 10�5 and continues to decay slowly. For the regularization coef�cients
�2 2 f10�4, 10�3, 10�2g the error falls steeply to about 10�6 for either, the varying reduced
state- and parameter-space dimension as illustrated in Figure 5.7b, Figure 5.7c, Figure 5.7d.
Given equal in�uence of the Tikhonov regularization and the maximization term �2 = 1,
with results depicted in Figure 5.7f; the error also falls to about 10�7 as for �2 < 10�1, but
continues to decay slightly steeper. The best results are obtained for �2 = 10�1, for which
the error steeply declines to an error plateau at about 10�8 concurrently for reduced state-
and parameter-spaces, as illustrated in Figure 5.7e.
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(a) Optimization-based

combined reduction

with �2 = 10�16 � 0.

(b) Optimization-based

combined reduction

with �2 = 10�4.

(c) Optimization-based

combined reduction

with �2 = 10�3.

(d) Optimization-based

combined reduction

with �2 = 10�2.

(e) Optimization-based

combined reduction

with �2 = 10�1.

(f) Optimization-based

combined reduction

with �2 = 1.

Figure 5.7.: Relative output error in the `2 
 `1-norm for varying reduced state and pa-

rameter dimensions, using different Tikhonov regularization coef�cients for the

optimization-based combined reduction.
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Inner Greedy Sampling Iterations

As it is not necessary and usually not feasible to require a certain error tolerance from the
optimization algorithm to be reached in each iteration of the greedy sampling, a �xed num-
ber of iterations is prescribed to the optimizer. In this second test, the optimization-based
combined reduction is tested for different numbers of iterations in the optimization method
realizing the maximization in each cycle of the greedy sampling. This test is speci�cally
conducted for the unconstrained optimization algorithm; for alternative choices such as the
derivative-free optimization or a custom optimizer these results are not valid. An increasing
number of iterations nI is tested, for varying reduced state- and parameter-space dimensions
over 100 uniform random samples from the parameter-space, using the relative output error
in the joint `2 
 `1-norm in Figure 5.8:

a) optimization-based combined reduction using nI = 2 iterations in the optimizer, see
Figure 5.8a;

b) optimization-based combined reduction using nI = 3 iterations in the optimizer, see
Figure 5.8b;

c) optimization-based combined reduction using nI = 4 iterations in the optimizer, see
Figure 5.8c;

d) optimization-based combined reduction using nI = 5 iterations in the optimizer, see
Figure 5.8d;

e) optimization-based combined reduction using nI = 6 iterations in the optimizer, see
Figure 5.8e;

f) optimization-based combined reduction using nI = 10 iterations in the optimizer, see
Figure 5.8f.

Figure 5.8a shows that two iterations of the inner optimization are not suf�cient to reach a
comparable accuracy. The error declines steeply to 10�5 and continues onward to decline
gradually, dominated by the parameter-space error. For three and four iterations, as depicted
in Figure 5.8b and Figure 5.8c, the error to the FOM falls steeply to about 10�7 for the state-
and parameter-space error. While for three iterations the error slowly decreases after the
initial drop, using four iterations the error �attens out already at a lower level. In case of
�ve (see Figure 5.8d) or more iterations (Figure 5.8e, Figure 5.8f) the error decreases to
about 10�8.
The number of iterations predominantly de�nes the overall computational complexity of the
optimization-based approach. Unlike the choice of regularization coef�cients, the number of
iterations does not only affect the accuracy of the ROM, but also the duration of its construc-
tion. This test system does not bene�t from more than four iterations, yet models with more
complex vector �elds, output functionals or parametrizations may improve with additional
iterations. Hence, a heuristic selection of a suitable number of iterations balancing accuracy
and complexity may be necessary.
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(a) Optimization-based

combined reduction

with nI = 2.

(b) Optimization-based

combined reduction

with nI = 3.

(c) Optimization-based

combined reduction

with nI = 4.

(d) Optimization-based

combined reduction

with nI = 5.

(e) Optimization-based

combined reduction

with nI = 6.

(f) Optimization-based

combined reduction

with nI = 10.

Figure 5.8.: Relative output error in the `2
`1-norm for varying reduced state and parameter

dimensions, using different numbers of optimizer iterations for the optimization-

based combined reduction.
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Threshold Determined Reduced Order

For the �rst two tests a parameter-space reduced order is prescribed and determines the
number of iterations of the optimization-based combined reduction algorithm. In this third
test a threshold on the output error of the full to the state and parameter reduced model
is selected, which is tested with each iteration's approximate maximizer from the greedy
sampling,

"max = ky(�I)� yr(�I�
|

I �I)k`2 .

Following, for different error thresholds "max, the `2
`1 error for varying reduced state- and
parameter-space dimensions is depicted in Figure 5.9 over 100 samples from the parameter-
space:

a) optimization-based combined reduction with a threshold "max = 10�2,
see Figure 5.9a;

b) optimization-based combined reduction with a threshold "max = 10�4,
see Figure 5.9b;

c) optimization-based combined reduction with a threshold "max = 10�6,
see Figure 5.9c;

d) optimization-based combined reduction with a threshold "max = 10�8,
see Figure 5.9d;

e) optimization-based combined reduction with a threshold "max = 10�10,
see Figure 5.9e;

f) optimization-based combined reduction with a threshold "max = 10�12,
see Figure 5.9f.

First of all it should be noted, that the error threshold "max is not a guaranteed bound on the
resulting error of the ROM. This is due to the �xed number of iterations in the optimization
implementing the greedy sampling, since a maximizer is most likely not found after the
prescribed small number of iterations. Hence, "max has to be understood as a virtual error
indicator.
For the threshold "max = 10�2 an error of about 10�2 is reached, while for "max = 10�4 an
error of about 10�5 is obtained. With a thresholds "max = 10�6 and "max = 10�8 only an
error level of about 10�5 is reached. Using a threshold "max = 10�10 provides a ROM with
an error of about 10�6 and lastly for "max = 10�12 an error of 10�7 is achieved. These results
illustrate the previous comment on "max; even though lower values of "max result in lower
errors, it is does not bound the resulting error. An improved signi�cance of this virtual error
indicator "max can be obtained for better approximations of the maximizer �I . The use of
the threshold-based reduced order selection requires careful selection of the error indicating
threshold.
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(a) Optimization-based

combined reduction

with "MOR = 10�2.

(b) Optimization-based

combined reduction

with "MOR = 10�4.

(c) Optimization-based

combined reduction

with "MOR = 10�6.

(d) Optimization-based

combined reduction

with "MOR = 10�8.

(e) Optimization-based

combined reduction

with "MOR = 10�10.

(f) Optimization-based

combined reduction

with "MOR = 10�12.

Figure 5.9.: Relative output error in the `2
`1-norm for varying reduced state and parameter

dimensions, using different error thresholds dynamically selecting the reduced order

for the optimization-based combined reduction.
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Data-Driven Regularization

Lastly, the in�uence of the data-driven regularization from Section 4.4 tested. For this test, a
single uniformly distributed random sampled parameter �d is selected, and the reduced order
models obtained with and without data-driven regularization are tested over 100 multivari-
ate normally distributed random samples N�d ,

1
10
. The errors are compared in the `2 
 `1-

norm for varying data-driven regularization coef�cients �d . The Tikhonov regularization
coef�cient is kept at its default value �2 = 1

10 , and an associated output trajectory yd(�d)

is passed to the reduction algorithm in case of �d 6= 0. Figure 5.10 shows the evaluation
for varying reduced state- and parameter-space dimensions for the following data-driven
regularization weights �d :

a) optimization-based combined reduction without data-driven regularization, meaning
�d = 0, see Figure 5.10a;

b) optimization-based combined reduction using a data-driven regularization coef�cient
�d = 10�12, see Figure 5.10b;

c) optimization-based combined reduction using a data-driven regularization coef�cient
�d = 10�8, see Figure 5.10c;

d) optimization-based combined reduction using a data-driven regularization coef�cient
�d = 10�4, see Figure 5.10d;

e) optimization-based combined reduction using a data-driven regularization coef�cient
�d = 10�2, see Figure 5.10e;

f) optimization-based combined reduction using a data-driven regularization coef�cient
�d = 10�1, see Figure 5.10f.

Without using the data-driven regularization, the resulting errors for a �xed parameter in
Figure 5.10a correspond to the previous results, with a steep decline in error for both, the
reduced state and parameter dimension, to a plateau near 10�7.
In the tests using relatively larger regularization coef�cients �d = f10�4, 10�2, 10�1g, the ob-
tained ROMs exhibit lesser accuracy in the combined reduction error than the ROMs without
data-driven regularization, which is illustrated in Figure 5.10d, Figure 5.10e
and Figure 5.10f. Yet, the ROMs from the test with smaller regularization coef�cients
�d = f10�12, 10�8g are more slightly accurate than the ROMs without data-driven regular-
ization, as shown in Figure 5.10b and Figure 5.10c. The disparity in scale of regularization
coef�cients �d and �2 is to be expected since the associated operators evaluate different
expressions. While R2 computes a weighted norm of a parameter vector, Rd provides the
norm of a residual of trajectories. Thus, for a suitably selected regularization coef�cient �d ,
this regularization can accelerate the assembly of the ROMs and improve their accuracy.
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(a) Optimization-based

combined reduction

with �d = 0.

(b) Optimization-based

combined reduction

with �d = 10�12.

(c) Optimization-based

combined reduction

with �d = 10�8.

(d) Optimization-based

combined reduction

with �d = 10�4.

(e) Optimization-based

combined reduction

with �d = 10�2.

(f) Optimization-based

combined reduction

with �d = 10�1.

Figure 5.10.: Relative output error in the `2 
 `1-norm for varying reduced state and pa-

rameter dimensions, using different data-driven regularization coef�cients for the

optimization-based combined reduction.
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5.5. Nonlinear Benchmark

In this section an additional test66 is conducted, which compares the implementation for
the empirical-gramian-based and optimization-based methods for a nonlinear benchmark
system to establish the evaluation criteria for the numerical experiments in Chapter 7.

Figure 5.11.: Circuit diagram for the nonlinear RC ladder model.

5.5.1. Nonlinear RC Ladder

The considered benchmark67 is a model of a circuit with linear resistor and capacitor (RC)
elements as well as nonlinear diode components. This benchmark for nonlinear model re-
duction was established in [40] and is used among others in [44, 45, 43, 110, 113].
The model depicted in Figure 5.11 embodies a cascade of nonlinear resistors and capacitors,
the latter are set to a unit value. A nonlinear resistor is composed of a linear resistor and
a diode linked in parallel. This so-called nonlinear RC ladder is a parametric SISO system
with N stages:

�x(t) =

0
BBBBBBB@

�g(x1(t))� g(x1(t)� x2(t))

g(x1(t)� x2(t))� g(x2(t)� x3(t))
...

g(xk�1(t)� xk(t))� g(xk(t)� x x+1(t))
...

g(xN�1(t)� xN (t))

1
CCCCCCCA
+

0
BBBBBBB@

�2�1 + �2
�1 � 2�2 + �3

...
�k�1 � 2�k + �k+1

...
�N�1 � �N

1
CCCCCCCA
� x(t)+

0
BBBBBBB@

1
0
...
0
...
0

1
CCCCCCCA
u(t),

y(t) = x1(t),

with a nonlinear function g : R! R,

g(x i(t)) = s evx i(t)�1,

and scalar constants s 2 R and v 2 R that characterize the nonlinear resistors (diodes)
modelled by to the simple non-ideal diode model [182, Ch. 5.5]. The linear resistor values
are individually parametrized, thus each stage gives rise to a parameter component and
forms a P = dim(� ) = dim(x(t)) = N dimensional parameter-space.

66See code/ch5/compare_rc.m in the supplementary source code archive (Appendix B.1).
67The nonlinear RC ladder is a benchmark listed in the MORwiki [41, Nonlinear RC Ladder].
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5.5.2. System Dimensions

For the subsequent tests a network with N = 100 nodes, and constants s = 1, v = 40 as well
as a scalar-valued step input signal,

u(t) =

¨
1, t � 0.3

0, t > 0.3
,

is selected and the parameter � 2 R
100 is drawn from a uniform random distribution

�i 2 U[0,2].

5.5.3. Combined Reduction

The combined state and parameter reduction is performed in case of the empirical-gramian-
based approach using the empirical joint covariance matrix, yielding a empirical cross co-
variance matrix for the state-space reduction and a empirical cross-identi�ability covariance
matrix for the parameter-space reduction. For the greedy-optimization-based combined re-
duction approach a Tikhonov regularization coef�cient �2 =

1
10 is used.

5.5.4. Combined Reduction Error

In Figure 5.12 the resulting ROMs are evaluated by comparing the relative output error
in the joint `2 
 `2- and `2 
 `1-norms for varying reduced state- and parameter-space
dimensions. The model reduction error of the gramian-based and optimization-based ROMs
for the `2 
 `2-norm is depicted in Figure 5.12a and Figure 5.12c, for the `2 
 `1-norm in
Figure 5.12b and Figure 5.12d.
Initially, the combined reduction error of the ROMs from both approaches and in both norms
declines steeply, but for the optimization-based approach the error �attens out at about
10�5, while the error continues to decrease for the gramian-based approach to about 10�15.
Notably, the error surfaces for the `2 
 `2- and `2 
 `1-norms exhibit a similar shape. In
comparison the combined reduction error is dominated by the contribution of the parameter-
space reduction for the optimization-based approach. For the gramian-based the state- and
parameter-space reduction contribute equally to the combined reduction error.
Additionally, the combined reduction error is assessed for a cross-section of the previous
error surfaces for the ROMs with a equally reduced state- and parameter-space dimension
in Figure 5.13. This plot shows that a ROM obtained by the empirical joint gramian with a
reduced state- and parameter-space dimension of n = p = 50 is suf�cient to reach an error
that near machine precision. For the optimization-based approach a ROM with state- and
parameter-space dimension n = p = 20 yields the lowest error and can be assembled by 20
iterations of the algorithm. This initial decline in error over the ROMs up to order 20 runs
equally for both methods in either norm as shown in Figure 5.13a and Figure 5.13b.
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Figure 5.12.: Numerical results for the combined state and parameter reduction of the nonlinear

RC ladder.
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Figure 5.13.: Relative output errors of the reduced order nonlinear RC ladder model for equally

reduced state-parameter-space dimensions n= p.
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Figure 5.14.: Comparison of timings for the nonlinear RC ladder model with highlighted per

iteration durations in seconds.

5.5.5. Combined Reduction Performance

In Figure 5.14 the of�ine times of the gramian-based ROM and the optimization-based ROM
are compared. The indicated duration of each iteration highlights the considerably slower
performance of the optimization-based approach.
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5.5.6. ROM Analysis

Following, the combined reduction error behavior of the gramian-based and optimization-
based ROMs is analyzed. This enables an interpretation of the results as well as insight into
the selection of the reduced basis components. For both methods the construction of the
respective state- and parameter-space reducing projections is examined, and the ROM and
FOM outputs are compared for speci�c parameters.

Gramian-Based ROMs

A byproduct of the cross-gramian-based state- and parameter-space reducing projections
of the empirical cross gramian and empirical cross-identi�ability gramian, are the associ-
ated singular values. Figure 5.15 shows the singular values of the utilized empirical grami-
ans. Since the absolute values of the eigenvalues of the cross gramian are equivalent to the
HSVs (Section 3.11) and thus quantify the input-output coherence for a linear symmetric
system, the singular values of the empirical cross gramian WX can at least act as an indica-
tor (Section 3.4.4) for this nonlinear symmetric system. The steep decline of the singular
values of the empirical cross gramian in Figure 5.15a suggests that all dominant dynamics
are contained in the �rst twenty modes. Similarly, the singular values of the empirical cross-
identi�ability WÏ indicate the state-to-output in�uence of the parameters. An even steeper
decline in the singular values of the empirical cross-identi�ability gramian in Figure 5.15b
implies that less than ten reduced parameters are suf�cient to represent the parameter-space.
Furthermore, the magnitude of the largest singular value of WÏ of the order 10

�7 shows the
lesser in�uence of the parameters in relation to the states for this variant of the benchmark.
For a �xed parameter �� sampled from U[0,2], the ROM's output is compared to the FOM's
output at two selected reduced orders in Figure 5.16 alongside with the error between this
speci�c ROM and the FOM. In Figure 5.16a, the reduced order n = p = 20 is chosen, at
which the error in the `2 
 `2-norm is computed to be 10�3. Simulating trajectories for
the �xed parameter �� , the ROMs output matches the FOM's output already closely, and the
relative error, in the `2-norm, between the ROM and the FOM is 10�8. This agrees with the
`2 
 `2-norm, which is only approximated by sparsely sampling the parameter-space due to
its high dimension. In case of the reduced order n = p = 50, for which the output is shown
in Figure 5.16b, the error in the `2 
 `2-norm is at 10�15. For the �xed parameter �� , the
relative `2 error reaches 10�17, which also agrees with the `2 
 `2-norm. Hence, the error
of both ROMs conforms to the predicted combined reduction error.
In this example, the singular values of the utilized empirical gramians do not directly map to
a tight error indicator, but practically, the magnitude of the singular values can serve as an
indicator for the quality of the ROM. This is underscored by the simulation for n = p = 20,
in which the ROM output matches the FOM output, at least super�cially, very closely. Addi-
tionally, the singular values could be used to estimate the rank of the reducing projections,
for example by an iterative computation of the SVD, with termination criteria based on the
singular values, as in [38].

111



5. Software Implementation

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

0 20 40 60 80 100

(a) Empirical cross gramian.

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

0 20 40 60 80 100

(b) Empirical cross-identi�ability gramian.

Figure 5.15.: Singular values of the empirical gramians for nonlinear the RC ladder.
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n= p = 50.

Figure 5.16.: Comparison of FOM and gramian-based combined reduction ROM output for a

�xed randomly sampled parameter.
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Optimization-Based ROMs

Opposed to the gramian-based combined reduction method, the ROMs constructed by the
optimization-based approach do not reach a model reduction error near machine precision
in the considered `2
 `1- and `2
 `1-norms. To examine the related reduced order accu-
racies, the outputs of different ROMs are compared to the output of the FOM in Figure 5.17.
First, in Figure 5.17a, the FOM and ROM output as well as the relative error between FOM
and ROM for a parameter �1 contained in the parameter-space basis, is shown. This error
is of the order 10�15, which con�rms that a �trained� parameter is accurately approximated
by the combined state and parameter reduced order model. In Figure 5.17b, the FOM and
ROM output and the relative error between FOM and ROM for the parameter �1, but addi-
tively perturbed by a sample drawn from N P

0, 1
10

is illustrated. The error, which is of order

10�7, is much higher compared to error for the unperturbed parameter �1 even though the
perturbation is relatively small.
Next, the optimization-based ROMs of reduced orders n = p = 20 and n = p = 50 are
evaluated, using a �xed parameter �� sampled from U[0,2], in Figure 5.18. Figure 5.18a and
Figure 5.18b depict the FOM and ROM output for n= p = 20 and n= p = 50 respectively as
well as their associated relative error between the FOM and ROMoutputs. The comparatively
small improvement in the output error from 1.7 � 10�6 for order n= p = 20 to 1.6 � 10�6 for
order n= p = 50 agrees with the previously sampled `2 
 `1-norm errors of 1.5 � 10�4 and
1.2 � 10�4. Yet, the ROM output matches the FOM output closely even for n= p = 20.
Since the maxima determined by the inner greedy sampling of the optimization-based ap-
proach are local and not unique, it can be assumed that due to the overall �t of the ROM
output, no signi�cant further maximization is achievable by the adaptive greedy strategy
in its default setup. Improvements in accuracy of the utilized inner optimization method
may yield lower errors, yet would come at the cost of longer assembly durations of the
state and parameter projections. In comparison to the gramian-based combined reduction,
the optimization-based combined reduction requires 41 times longer for this con�guration,
hence a prolonged duration does not seem viable.
For this experiment, a numerical approximation of the (Hessian) derivative information re-
quired by the inner optimization is used, which consumes the dominant fraction of the com-
putational time. If analytical derivatives with respect to the parametrization are available,
the computational complexity, and thus the assembly time, can be greatly reduced. Alterna-
tively, an empirical gramian could also reduce the computational time of the optimization-
based approach. In [12, 149], the relation between the observability gramian and Hessian
for source inversion is explained. Such a setting would also allow to use an empirical observ-
ability gramian, and in case of a parameter inversion the empirical identi�ability gramian
may be utilized as a Hessian approximation. Yet, since in the scope of this work the gramian-
based and optimization-based combined reduction methods are compared this relation is not
exploited.
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Figure 5.17.: Comparison of FOM and optimization-based combined reduction ROM output for

a trained and perturbed trained parameter.
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Figure 5.18.: Comparison of FOM and optimization-based combined reduction ROM output for

a �xed randomly sampled parameter.
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An important effort in systems neuroscience is the investigation of individual and universal
networks between different brain regions. Such mesoscale brain connectivity models [211]
encode the propagation of information in causal neuronal activity.
Since neuronal activity cannot be measured directly, indirect measurements conveying in-
formation on this hidden process have to be recorded. In this work, models for two classes
of functional neuroimaging techniques68 are considered. First, measurements of the blood-
oxygen level dependent response (BOLD), embodying neuronal oxygen intake through the
blood, that indicates an increased neuronal activity. These hemodynamic measurements are
conducted with functional magneto resonance imaging (fMRI) or functional near infrared
spectroscopy (fNIRS) based on the magnetic susceptibility of the blood. Second, measure-
ments of electromagnetic �elds originating in the neuronal ion exchange during the informa-
tion propagation by so called action potentials, which are spike impulses ( ) emitted
by neurons under a preprogrammed stimulus pattern. Regional synchronous neuronal activ-
ity (action potentials) can be recorded by Electroencephalography (EEG) measuring voltage
changes or by Magnetoencephalography (MEG) measuring magnetic �elds induced by these
ionic currents.
Modeling the neuronal activity by a dynamic network with parametrized connectivity and
the indirect measurements as function of the neuronal activity, yields an inverse problem
constrained by a control system model. Inference on the connectivity parameters of the net-
work model using a Bayesian statistics approach leads to the dynamic causal modelling

framework introduced in [77], which is also summarized in [106] for both considered mod-
els.
To reconstruct the connectivity between (many) network nodes, the associated inverse prob-
lem may become computationally prohibitively expensive. Hence, commonly the measured
data undergoes a dimension reduction, for example by a PCA (Section 2.5.1). Alternatively,
model reduction techniques, such as combined reduction, can be utilized to accelerate the
inversion69.

68For an overview of neuroimaging techniques see [129]
69Previous efforts to introduce model reduction into neuroscience can be found, for example, in [135].
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6.1. Neuronal Networks

The network representing the connectivity can be modelled by a graph-theoretic ansatz.
For a linear control system (2.6), the system matrix A can be interpreted as the adjacency
matrix [84, Ch. 8.1.2] representing a directed graph of the associated network by encoding
the connection from the j-th region to the i-th region by the component Ai j .
To model the activation of the neuronal network, a function representing the �ring rate of
action potentials is introduced.

De�nition 6.1 (Sigmoid Function)
A sigmoid function & : R! R is an �S�-shaped function which is differentiable, has horizontal

asymptotes for x !�1 and a derivative of the form: &0(x) = &(x)(1� &(x))> 0.

An example of a sigmoid function is a scaled and shifted hyperbolic tangent, visualized in
Figure 6.1, parametrized by � 2 (0,1] controlling the incline of the slope:

&�(x) =
1
2
tanh

��
2
x
�
+
1
2

�
=

1
1+ e��x

�
.

Figure 6.1.: Plot of a sigmoid function &�(x) for varying �.

6.1.1. Hyperbolic Network Model

The hyperbolic network model [178] is a nonlinear extension to the linear control system
(2.6) utilizing a component-wise hyperbolic tangent - a sigmoid-like activation function.

De�nition 6.2 (Hyperbolic Network Model)
For a linear time-invariant control system�(A,B,C) and a diagonal gainmatrix K, Ki,i 2 (0,1],
the associated hyperbolic network model is given by:

�x(t) = Atanh(Kx(t)) + Bu(t),

y(t) = C x(t).
(6.1)

The exponential stability of (6.1) follows from the exponential stability of the system matrix
A as a consequence of diagonal stability [94, Ch. 9].
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6.2. Dynamic Causal Modelling

Dynamic causal modelling (DCM) [77] is a framework for inferring connectivity between
brain regions from functional neuroimaging data. The construction of a dynamic causal
model is based on modelling the transformation of neuronal activity to observable measure-
ments of a single brain region as a SISO system. Several of these single regions are then
coupled by a set of connectivity rules to a MIMO system describing the networked neuronal
activity. Hence, each model consists of two components [213]: a dynamic submodel de-
scribing the change in neuronal activity over time, and a forward submodel transforming
the neuronal activity to the measured output (Figure 6.2).

Figure 6.2.: Schematic illustration of dynamic and forward submodels for a three node (region)

network with input u, network nodes x i , per-region states zi , and measurable out-

puts yi .

These dynamic causal models do not regard location of the considered brain regions, thus
they are considered spatially zero-dimensional and the dynamics are represented by ODEs
with respect to time.
Foremost, the parametrizations represent the connectivity between the analyzed brain re-
gions, but also include parameters allowing variability in the behavior among the individual
network nodes. The latter group of �physiological� parameters is kept constant in the scope
of this work, and thus is excluded from the parameter identi�cation and reduction proce-
dures. The former set of connectivity parameters in the considered models enclose two
subsets: effective connectivity parameters and lateral connectivity parameters. Effective
connectivity characterizes the permanent coupling between regions while the lateral con-
nectivity describes input or activity dependent interconnection. This work considers only
the parameters related to effective connectivity.
Models for two classes of neuroimaging techniques are investigated, which due to their
means of recording have different dynamic and forward submodels. The �rst class includes
fMRI and fNIRS methods, the second class encompasses EEG and MEG techniques. Both
classes of models are originally nonlinear and a linearization is considered.
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6.3. fMRI & fNIRS Dynamic Causal Model

Based on the observation that more active regions of the brain consume more oxygen, the
fMRI and fNIRS neuroimaging techniques measure deoxygenated hemoglobin in relation to
the blood volume of designated recorded volume elements (voxels) yielding the BOLD signal.
A single voxel or patch of voxels70 can describe a brain region, for which the hemodynamic
forward submodel converts the local neuronal activity to the associated BOLD output. The
networked neuronal activity is modeled by the multi-region dynamic submodel that com-
prises the connectivity between the various regions. Together, the joint model consists of a
MIMO system (dynamic submodel) where each node has a SISO system (forward submodel)
attached to generate the measurable output signal [77].

6.3.1. Dynamic Submodel

Under the assumption that the change in neuronal activity over time follows some nonlinear
dynamics, the general dynamical system (2.5) is approximated in [77] using the Taylor se-
ries. Following, this linear approximation is derived around the zero steady-state with zero
input:

�x(t) = f (x(t),u(t),� )

� f (0,0,� ) +
@ f

@ x
x(t) +

@ f

@ u
u(t) (6.2)

) ��x(t) = Ax(t) + Bu(t).

The linear approximation (6.2) corresponds to the vector �eld of the linear control system
(2.6) and represents the effective connectivity between regions by the system matrix A and
the action of the external input by the input matrix B. Higher order components of the Taylor
series would introduce lateral connectivity, for example the bilinear approximation in [77]
would enable the in�uence of external input on the connectivity. For a model of k regions,
the parametrization71 of the model is given by the components of the matrix A 2 R

k�k;
this means a vectorization (see Appendix A.2) of A yields the parameter vector � which is of
dimension k2:

� = vec(A) 2 Rk2

) A(� ) = vec�1(� ) (6.3)

! �x(t) = A(� )x(t) + Bu(t).

The off-diagonal parameter components of A(� ) model the connectivity between two re-
gions (nodes) and the diagonal components represent the self-regulatory decay of local
(per-region) activity ensuring the (asymptotic) stability of the dynamics, which is an ob-
vious assumption for a regular operating neuronal network.
The local neuronal activity x i of the fMRI & fNIRS linear dynamic submodel acts as an input
to the subsequent forward model transforming these hidden states to a measurable BOLD
response.

70This includes a linear combination of voxels obtained for example through a PCA.
71In [77] also the components of B 2 Rk�M are parametrized, which is also omitted in this setting.
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6.3.2. Forward Submodel

The hemodynamic forward submodel transforms the non-physiological neuronal activity to
the measured BOLD response. A description of the model is given in [76] and [77] in con-
junction with the dynamic submodel and is brie�y summarized here.
Based on the balloon model, which correlates blood �ow with the BOLD response, the ex-
tended balloon model [76, Sec. 2] relates a neuronal activity signal to the BOLD signal. A
change in the vasodilatory72 signal �si(t) is induced by the neuronal activity in the i-th associ-
ated network node x i(t) from the dynamic submodel (6.2), which acts as input to this SISO
system. The parameter � characterizes the decay of the signal si , while  determines the self-
regulating feedback from the in�ow fi . Change in in�ow �fi(t) linearly relates to the signal
si(t) and the normalized change in blood volume �vi(t) is given by the difference between
in�ow fi(t) and out�ow vi(t)

1
� , which is regulated by the parameter �, the so-called Grubb's

exponent. Similarly, the normalized change in deoxyhemoglobin content �qi(t) is given by

the difference of the normalized in�ow-related oxygen extraction fraction 1 � (1 � �)
1

fi (t)

(� represents the resting oxygen extraction fraction) and the released out�ow-dependent
fraction vi(t)

1
�
qi(t)

vi(t)
. The change in volume and content is normalized by the mean hemody-

namic transit time � of the oxygen from the blood vessel to the neuron. A combination73 of
volume vi(t) and content qi(t) weighted by k1, k2 2 R and normalized by the resting blood

volume fraction V0 2 R generates the output yi(t) that corresponds to the BOLD signal. In
condensed form, the SISO forward system (see also Figure 6.3) is represented in per-region
hemodynamic state zi(t) by:

�zi(t) :=

0
BBBBB@
�si(t)

�fi(t)

�vi(t)

�qi(t)

1
CCCCCA=

0
BBBBB@

x i(t)� �si(t)� ( fi(t)� 1)

si(t)

1
�( fi(t)� vi(t)

1
� )

1
�(

1
� fi(t)(1� (1��)

1

fi (t) )� vi(t)
1
�
qi(t)

vi(t)
)

1
CCCCCA

| {z }
=:hi

,

yi(t) = V0(k1(1� qi(t)) + k2(1� vi(t)))| {z }
=:gi

.

The equilibrium and considered initial state is given by the zero input response:

zi,0 :=

0
B@
si,0
fi,0
vi,0
qi,0

1
CA=

0
B@
0
1
1
1

1
CA .

The stability of the hemodynamic forward submodel can be examined locally through the
spectrum of the Jacobian [121, 133] resulting from linearization of hi around zi,0, which is
conducted next.

72The term vasodilatory means widening of blood vessels.
73A third component in [77] embodying the ratio of volume and content is omitted here as in [133].
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Figure 6.3.: Schematic illustration of the hemodynamic forward submodel.

Further following [133], a linearization at the equilibrium steady-state using:

Ah =
@ hi
@ zi

����
zi,0

, Bh =
@ hi
@ x i

����
zi,0

, C =
@ gi
@ zi

����
zi,0

,

yields a linear forward submodel:

�zi(t) =

0
BBBBB@
�� � 0 0

1 0 0 0

0 1
� � 1

�� 0

0 (1�(1��)(1�ln(1��)))
�� �1��

�� � 1
�

1
CCCCCA

| {z }
=:Ah

zi(t) +

0
BBBBB@
1

0

0

0

1
CCCCCA

|{z}
=:Bh

x i(t),

yi(t) = V0
�
0 0 �k1 k2

�| {z }
=:Ch

zi(t).

For this linearized hemodynamic model, the equilibrium and initial state becomes:
zi,0 =

�
0 0 0 0

�|
. Using an eigenvalue analysis of the system matrix Ah, which cor-

responds to the Jacobian of the nonlinear system at the steady-state, the stability of the
linearized model can be assessed, as in [133], by the negativity of the real parts of the eigen-
values �1...4(Ah):

�1(Ah) = �
1
�

�>0
< 0,

�2(Ah) = �
1
��

��>0
< 0,

�3,4(Ah) = �
1
2�
�
vt 1

4�2
� 1


>0
< 0.

This con�rms the global asymptotic stability for the linearized and the local asymptotic sta-
bility for the nonlinear hemodynamic forward submodel near the zero steady-state.
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6.3.3. Joint Model

The joint model in state-space system form for the fMRI & fNIRS dynamic causal model has
a 5k-dimensional state-space and is given in the nonlinear setting by:0

BB@
�x(t)
�z1(t)
...

�zk(t)

1
CCA=

0
BB@

A(� )x(t)

h1(z1(t), x1(t))
...

hk(zk(t), xk(t))

1
CCA+

0
BB@
B

0
...
0

1
CCAu(t),

y(t) =
�
g1(z1(t)) . . . gk(zk(t))

�|
.

For a more ef�cient numerical evaluation, the (forward submodel) system components are
re-ordered by grouping the individual regions' components si , fi , vi and qi together. This
leads to the following representation of the nonlinear joint model:

0
BBB@
�x(t)
�s(t)
�f (t)
�v(t)
�q(t)

1
CCCA=

0
BBBB@

A(� )x(t)

x(t)��s(t)� ( f (t)� ~1k)
s(t)

1
�( f (t)� v(t)

1
� )

1
�(

1
� f (t)(~1k � ((1��) ~1k)

1

f (t) )� v(t)
1
�
�1 � q(t))

1
CCCCA+

0
BBB@
B

0
0
0
0

1
CCCAu(t),

y(t) = V0(k1(~1k � q(t)) + k2(~1k � v(t))),

(6.4)

with ~1 representing a vector of ones, the element-wise Hadamard product �, and all expo-
nentiations understood as element-wise operations74.
In the linear(ized) case, also sorted by components, the joint forward submodel has the form:0
BBB@
�x(t)
�s(t)
�f (t)
�v(t)
�q(t)

1
CCCA=

0
BBBB@
A(� ) 0 0 0 0
1k ��1k �1k 0 0
0 1k 0 0 0
0 0 1

� 1k � 1
�� 1k 0

0 0 (1�(1��)(1�ln(1��)))
�� 1k �1��

�� 1k � 1
� 1k

1
CCCCA
0
BBB@
x(t)

s(t)

f (t)

v(t)

q(t)

1
CCCA+
0
BBB@
B

0
0
0
0

1
CCCAu(t),

y(t) =
�
0 0 0 �V0k1 1 V0k2 1

�
0
BBB@
x(t)

s(t)

f (t)

v(t)

q(t)

1
CCCA .(6.5)

Lastly, the dynamic submodel and forward submodel evolve on similar scales if the dynamic
submodel's systemmatrix A(� ) is normalized [77], hence a joint integration of the submodels
is feasible.

74Similarly, ((1 � �) ~1k)
1

f (t) is given by the element-wise reciprocal entries of f (t) as exponents applied

element-wise to its base.
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6.3.4. Parametrization

The parameter-space for both, the nonlinear and the linearized model, is given by a
k2-dimensional space of (effective) connectivity strength coef�cients, which map to the com-
ponents of the system matrix A(� ) (6.3). Notably, the dimension of the parameter-space ex-
ceeds the state-space dimension for k > 5. Since the neuronal activity and thus the dynamic
submodel is expected to evolve in a stable regime, restrictions have to be imposed on the
parameters � such that the system matrix A(� ) induces a stable system (2.4). In [77] the
elements of A(� ) are normalized by a factor � 2 R, such that the diagonal elements, which
are assumed homogeneous, become aii = �1:

A= �

0
BBB@
�1 a12 . . . a1k

a21 �1 ...
...

. . . a(k�1)k
ak1 . . . ak(k�1) �1

1
CCCA ,

and the off-diagonal components are selected relative to the diagonal. Here, the system ma-
trix diagonal components are shifted by addition of a scaled unit matrix to facilitate stability
justi�ed by Gershgorin's circle theorem (see for example: [88, Thm. 7.2.1]):

A= �k1k+

0
@a11 . . . a1k

...
. . .

...
ak1 . . . akk

1
A , �k+ aii

!
>max(

kX
i=1
i 6= j

jai jj,
kX
j=1
i 6= j

jai jj).

The remaining parameters, such as the components of the input matrix B, the dynamic
hemodynamic parameters f�,,�,�,�g and output hemodynamic parameters fV0, k1, k2g
are �xed to constant values, since the focus of this work rests on the connectivity parame-
ters. While the components of the input matrix are preset depending on the experiments,
the constant hemodynamic parameters are listed in Table 6.4, which are taken from [77,
Tab. 1, Eq. (4)].

Signal Decay Rate � [s�1] 0.065
Flow-Dependent Elimination Rate  [s�1] 0.41
Hemodynamic Transit Time � [s] 0.98
Resting Oxygen Extraction Fraction � 0.34
Grubb's Exponent � 0.32
Resting Blood Volume Fraction V0 0.02
Volume Weight k1 2.38
Concentration Weight k2 0.48

Table 6.4.: fMRI & fNIRS model �xed hemodynamic parameters.
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6.4. EEG & MEG Dynamic Causal Model

The EEG and MEG functional neuroimaging techniques measure electric potentials or mag-
netic �elds induced by the former originating from neuronal ionic currents. Each sensor
records the average change in voltage over time associated to a local region of the neural
mass. Thus, these neural mass models represent the mean state of neuronal activity [48].
Contrary to the fMRI & fNIRS model, the EEG & MEG dynamic submodel is physiologically
motivated and the forward model accounts only for a sensory offset.

6.4.1. Dynamic Submodel

The dynamic submodel is a hierarchical model. Each individual region consists of three
hardwired sub-regions that make up a SISO system. Several such regions are then connected
by a set of connectivity rules yielding the MIMO system [47, 48].
For a causal, exponentially decaying synaptic impulse response,

g(t) =

¨
H t
� e
� t
� , t � 0

0, t < 0
,(6.6)

with a maximum amplitude75 H and a lumped parameter rate �. The convolution of the
(pre-synaptic) input u(t) with the impulse response kernel g(t) results in the average post-
synaptic membrane potential v(t):

v(t) = (g � u)(t)

)v̈(t) =
H

�
u(t)� 2

�
�v(t)� 1

�2
v(t)

)
¨
�x(t) = v(t)

�v(t) = H
� u(t)� 2

� x(t)� 1
�2
v(t)

.

(6.7)

This so-called Jansen model is a second-order ODE reduced to a system of �rst-order ODEs.
Following [169], a brain region (in layer 4 of the mammalian cortex) is modelled by three
different layers of neuronal sub-populations, which in turn are composed of altogether �ve
sub-regions (6.7). The �rst, supragranular layer, which contains an inhibitory (interneuron)
sub-population encloses an excitatory and an inhibitory sub-region. Second, an excitatory
(spiny-cell) sub-population in the granular layer that also receives the external input consists
of a single excitatory sub-region. Lastly, the third, infragranular (pyramidal cell) layer, is an
excitatory (pyramidal-cell) sub-population modelled by an excitatory and an inhibitory sub-
region.
These three layers are interconnected by intrinsic (intra-region) connections illustrated in
Figure 6.5. The supra-granular inhibitory layer has a two-way connection to the infra-
granular excitatory layer 1,5 as well as a self connection 2. The granular excitatory
layer also has a two way connection to the infra-granular excitatory layer 3,4.

75For the impulse response (6.6) H is rather an initial quantity, yet for the �nal model it will represent the

maximum amplitude.
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Figure 6.5.: Single region neural mass model schematic.

Input from one subregion to another76 is then transformed from a membrane potential to a
�ring rate of action potentials using a sigmoid-like function &̄�(v(t)) related to De�nition 6.1.
Thus, the dynamical system is nonlinear due to the coupling of the sub-regions by the non-
linear sigmoid-like function.
The joint single-region model with all �ve subregions, divided into three layers, has a ten-
dimensional state-space:

�v1(t) = x1(t),

�x1(t) =
He

�e
1&̄�(v4(t)� v5(t))�

2
�e

x1(t)�
1
�2e

v1(t),

�v2(t) = x2(t),

�x2(t) =
Hi

�i
2&̄�(v1(t)� v2(t))�

2
�i

x2(t)�
1

�2
i

v2(t),

�v3(t) = x3(t),

�x3(t) =
He

�e
3&̄�(v4(t)� v5(t))�

2
�e

x3(t)�
1
�2e

v3(t) +
He

�e
u(t), (6.8)

�v4(t) = x4(t),

�x4(t) =
He

�e
4&̄�(v3(t))�

2
�e

x4(t)�
1
�2e

v4(t),

�v5(t) = x5(t),

�x5(t) =
Hi

�i
5&̄�(v1(t)� v2(t))�

2
�i

x5(t)�
1

�2
i

v5(t),

with a zero initial state vi,0 = x i,0 = 0, of which a solution v(t) represents the average
membrane potentials over time. The index e and i of the physiological parameters H,�
denote their af�liation to an excitatory or inhibitory sub-region, respectively.
The stability of this system can be assessed near a steady-state by a linearization of the
sigmoid-like function, see (6.10), and an eigenvalue analysis of the resulting system matrix
of the linearized system as in [169].

76Or to itself.
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Sorting by �rst-order and second-order terms and separating (6.8) into a linear and a non-
linear part then yields the following representation of the system:�

�v(t)
�x(t)

�
=

�
0 15

�T2 �2T

��
v(t)

x(t)

�
+

�
0
Av

�
&̄�(A&v(t)) +

He

�e
�10�18,1 u(t),(6.9)

T =

0
BBBBB@

1
�e

0 0 0 0
0 1

�i
0 0 0

0 0 1
�e

0 0
0 0 0 1

�e
0

0 0 0 0 1
�i

1
CCCCCA , Av =

0
BBBBB@

He

�e
1 0 0 0 0

0 Hi

�i
2 0 0 0

0 0 He

�e
3 0 0

0 0 0 He

�e
4 0

0 0 0 0 Hi

�i
5

1
CCCCCA , A& =

0
BBB@
0 0 0 1 �1
1 �1 0 0 0
0 0 0 1 �1
0 0 1 0 0
1 �1 0 0 0

1
CCCA ,

modelling a single region in which the sigmoid-like function is assumed to act element-wise
on its vector-valued argument. The multi-region model has essentially the same structure as
(6.9), and without coupling each scalar of the single region model becomes a block contain-
ing a diagonal matrix. Hence, a model for k regions has a 10k dimensional state-space and
v(t), x(t) 2 R5k. For the coupling of multiple regions, the connectivity scheme from [47] is
employed, which is illustrated in Figure 6.6.

Figure 6.6.: Forward, backward and lateral connectivity rules for the neural mass model.

This coupling scheme allows three types of connections, which all originate in the source re-
gion's infra-granular (excitatory) sub-region. A forward connection terminates in the target
region's granular layer, a backward connection couples to supragranular and infragranular
layers of the target region, and the lateral connection links to all target region's subregions.
The networked multi-region model is then given by:�

�v(t)
�x(t)

�
=

�
0 15k

�T2 
 1k �2T 
 1k

��
v(t)

x(t)

�
+

�
0
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�
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�e
(�10�18,1 
 B)u(t),

Av =

0
BBBBB@

He

�e
(AB + AL + 1 1k) 0 0 0 0

0 Hi

�i
2 1k 0 0 0

0 0 He

�e
(AF + AL + 3 1k) 0 0

0 0 0 He

�e
4 1k

He

�e
(AB + AL)

0 0 0 0 Hi

�i
5 1k

1
CCCCCA ,

with AF (�F ) 2 R
k�k encoding forward, AB(�B) 2 R

k�k backward, AL(�L) 2 R
k�k lateral

connections, which, similar to the fMRI & fNIRS dynamic submodel (6.3), are parametrized
by an inverse vectorization A� = vec�1(��), and B 2 Rk�M modelling input dispersion.
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The sigmoid-like activation function selected in [47] reads in the hyperbolic tangent repre-
sentation:

&̄�(x) =
1

1+ e��x
� 1
2
= &�(x)�

1
2
=

1
2
tanh

��
2
x
�
.

Following [169], a linearization of the previous dynamic submodel is given by a linear ap-
proximation of the sigmoid-like function around the steady-state (x = v = 0):

&̄�(x)� &̄�(0) +
d&̄�(0)
dx

x = 0+ (
�

4
(1� tanh2(�x))

��
x=0

)x =
�

4
x . (6.10)

The slope of the sigmoid-like activation function de�nes the sigmoid gain [169] charac-
terizing the linear approximation. Then, the non-trivial part of the linearized dynamical
submodel has the form:�

�v(t)
�x(t)

�
=

�
0 15k

�T2 
 1k �2T 
 1k

��
v(t)

x(t)

�
+

�
0

AvA&

�
�

4
v(t) +

He

�e
(�10�18,1 
 B)u(t).

This dynamic submodel is a second-order control system in �rst-order form and considered
around the zero steady-state in the nonlinear and linearized case.

6.4.2. Forward Submodel

The forward submodel connects the neural mass dynamic submodel with the EEG & MEG
observations and is of linear nature. In case of a single region, the measurable output is gen-
erated by the difference in membrane potentials inside the granular excitatory sub-region:

y(t) = v4(t)� v5(t).

This is the same signal that is forwarded to connected regions in a multi-region model. The
forward submodel for a multi-region model is a linear combination of the output membrane
potentials represented by the contribution matrix L 2 R

k�k:

y(t) = L(v4(t)� v5(t))

=
�
0 0 0 L �L

�
v(t)

=
�
0 0 0 L �L 0 0 0 0 0

��v(t)
x(t)

�
,

which accounts for the contributions of the individual regions to a sensor's readings and the
mean (dipole) orientation77 of the considered region's neuronal populations.
Usually, this linear transformation also describes the spatial distribution of the sensors. In
special cases, such as intracranial EEG (iEEG) recordings, the contribution matrix L is diag-
onal and thus only weights the considered regions signals individually; such a model will be
assumed over the course of this work.

77A synchronously active neuronal region acts as a dipole of which its mean orientation is re�ected by the

sign of the associated entry in the contribution matrix.

126



6. An Application in Neuroscience

6.4.3. Joint Model

The joint models in state-space form for the EEG & MEG dynamic causal model is given in
the nonlinear case by:�

�v(t)
�x(t)

�
=

�
0 15k

�T2 
 1k �2T 
 1k

��
v(t)

x(t)

�
+

�
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He

�e
(�10�18,1 
 B)u(t),

y(t) =
�
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��v(t)
x(t)

�
.(6.11)

and in the linear(ized) case by:�
�v(t)
�x(t)
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�
0 15k
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v(t)
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(�10�18,1 
 B)u(t),
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0 0 0 L �L 0 0 0 0 0

��v(t)
x(t)

�
.(6.12)

Both models consists of second-order systems, reduced to �rst order, with associated state-
spaces of dimension 10k.

6.4.4. Parametrization

Only forward connections are considered, thus AB = AL = 0 and AF = AF (� ) = vec�1(� )
with parameter-space dimension of k2. For the parametrization of the connectivity a shift,
like for the fMRI & fNIRS model parametrization, is generally not required to ensure stability
as the intrinsic connections dampen the local activity. Similar to the fMRI & fNIRS model,
the physiological parameters fHe,Hi ,�e,�i ,1,2,3,4,5,�g are �xed at their respective
prior mean value, while the matrix L is assumed to be a unit matrix L = 1k. These constant
parameters of the models are listed in Table 6.7, and are taken from [169, Tab. 1].

Excitatory Maximum Post-Synaptic Potential He [mV] 4
Inhibitory Maximum Post-Synaptic Potential Hi [mV] 32
Excitatory Average Lumped Rate Constant �e [ms] 4
Inhibitory Average Lumped Rate Constant �i [ms] 16
Intrinsic Connection Strength 1 1 64
Intrinsic Connection Strength 2 2 16
Intrinsic Connection Strength 3 3 128
Intrinsic Connection Strength 4 4 128
Intrinsic Connection Strength 5 5 64
Sigmoid Slope � [mV�1] 0.56

Table 6.7.: EEG & MEG model �xed physiological parameters.
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6.5. Bayesian Inference

To estimate the connectivity parameters from the previous presented models, a Bayesian
approach is employed; its outline follows the concise description in [71].
Bayesian inference is based upon Bayes' rule,

P(� jyd) =
P(yd j� )P(� )

P(yd)
,

which states, that a posterior distribution P(� jyd) on the parameter � for the data yd is
given by the likelihood distribution P(yd j� ) of the data for the parameter multiplied by a
prior distribution P(� ) representing beforehand beliefs on the parameter, divided by the
evidence P(yd). Since the evidence is only a normalizing factor, the posterior distribution is
proportional to the product of likelihood and prior distribution:

P(� jyd)/ P(yd j� )P(� ).
If the data is assumed to be the model's output that contains some additive noise,

yd = y(� ) + �,

the likelihood distribution can be expressed in terms of the noise:

) �= yd � y(� )

) P(�) = P(yd � y(� ))

) P(� jyd)/ P(yd � y(� ))P(� ).

In case of Gaussian noise � = N0,v with zero mean, the likelihood is also speci�ed by a
Gaussian distribution with mean �yj� 2 RP and covariance �yj� 2 RP�P :

P(yd j� )/ exp
�
� 1
2
ky(� )� ydk2��1

yj�

�
.

If also a Gaussian prior with mean �� 2 RP and covariance �� 2 RP�P is provided,

P(� )/ exp
�
� 1
2
k� ���k2��1

�

�
,

then the posterior is speci�ed by:

P(� jyd)/ exp
�
� 1
2
ky(� )� ydk2��1

yj�

� 1
2
k� ���k2��1

�

�
,

which is most-likely not Gaussian in case of a nonlinear parameter mapping � 7! y(� ).
A Bayesian variant of the maximum-likelihood (ML) estimator is the maximum-a-posteriori
(MAP) estimator, which maximizes the product of likelihood and prior distribution. This is
equal to minimizing the sum of negative log-likelihood and negative log-prior:

�MAP = argmax
�2RP

exp
�
�1
2
k f (� )� ydk2��1

yj�

� 1
2
k� ���k2��1

�

�
= argmin

�2RP

�
1
2
k f (� )� ydk2��1

yj�

+
1
2
k� ���k2��1

�

�
. (6.13)

This can be seen as a weighted least-squares optimization with Tikhonov regularization.
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In this chapter the gramian-based and optimization-based model reduction approaches are
evaluated for several models with respect to the presented model reduction techniques. For
the gramian-based approach, the empirical (non-symmetric) cross gramian fromDe�nition 3.17
and Section 3.3.3 with the implementation described in Section 5.3 is employed, and for the
optimization-based approach, the enhanced variant from Section 4.4.1 with the implemen-
tation described in Section 5.4 is utilized.
Three sets of numerical experiments are considered. The respective underlying models for
these experiments are:

1. the hyperbolic network model from Section 6.1;

2. the fMRI & fNIRS dynamic causal model from Section 6.3;

3. the EEG & MEG dynamic causal model from Section 6.4.

Each of these models is investigated in its original nonlinear form as well as in a linearized
variant in terms of combined state- and parameter-space reduction. Additionally, a com-
bined reduction is performed for the fMRI & fNIRS model in a Bayesian inverse problem
context. This parameter inference corresponds to the neuroscienti�c application of statisti-
cal connectivity reconstruction from measured outputs yd :

�d = argmin
�

ky(� )� ydk2L2 .

The consideredmodels cover various classes of systems. While the hyperbolic networkmodel
is a mildly nonlinear system, the fMRI & fNIRS model comprises various nonlinearities and
the EEG & MEG model is of second-order. A commonality among all models is the high-
dimensional, yet homogeneous78 parameter-space, which motivates the parameter-space re-
duction. The state-spaces for these experiments are relatively small, as the focus lies on the
parameter-space and combined reduction.

78Since for the dynamic causal models all parameters embody connectivity between network nodes, they are

of the same scale and mapping.
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7.1. Experimental Setup

All presented numerical experiments are structured in a common scheme: after the compu-
tation of the gramian-based ROM using emgr (see Section 5.3) or optimization-based ROM by
optmor (see Section 5.4), the ROMs are compared to the nonlinear FOM in the joint norms.
Additionally, performance measurements during the computation and the evaluation of the
ROMs are conducted.
The source code for the following experiments is openly available from the locations refer-
enced in the code availability section Appendix B.1. A speci�cation of the employed compu-
tational environment is given in Appendix B.2.

7.1.1. Error Measures

For the presentedMORmethods, a joint state- and parameter-space time-domain norm of the
output error trajectory between the original and reduced parametrized systems, as described
in Section 2.4, is of interest. Both considered methods use a L2-norm based method to com-
pute the state-space ROM; the parameter-space ROM is obtained from a L2-norm method
for the gramian-based approach and from an L1-norm method for the optimization-based
approach. Hence, the output error of the discrete trajectories for the state and parameter
reduced systems is evaluated in the joint `2 
 `2-norm (2.16b) and the joint `2 
 `1-norm
(2.16d). For the parameter-space component of the error assessment, a set of random pa-
rameter samples is generated with statistics speci�c to the respective experiment, since a
systematic sampling of the considered parameter-spaces is infeasible due to their high di-
mension.

7.1.2. O�ine and Online Phases

The experiments consist of two phases. During the �rst phase, which is called of�ine phase,
the global ROM is assembled. In the second phase, subsequently called online phase, the
ROM is utilized, which in this setting means their evaluation79 to obtain model reduction
errors in the aforementioned joint norms. For the inverse problem experiments, the statistical
parameter inference, outlined in Section 6.5, using the ROM is considered the online phase.

7.1.3. Performance Measurement

The computational ef�ciency of the presented methods is evaluated in terms of compute re-
quirements, which is indirectly measured through time consumption. Therefore, to analyze
the performance of the gramian-based and the optimization-based approaches, the dura-
tions of the of�ine and online phases are recorded separately as elapsed wall-time. Since
the optimization-based method assembles the reducing projections incrementally the dura-
tion of each iteration is highlighted. The memory consumption is not relevant due to the
small state-space dimensions for the following experiments.

79The FOM evaluation is treated as an online phase without a prior of�ine phase.
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7.2. Hyperbolic Network Model

A �rst set of experiments utilizes the hyperbolic network model from Section 6.1.1. In this
setting a parametric ROM obtained by combined state and parameter reduction is evaluated
for the nonlinear model and a linearized variant.

7.2.1. Parametrization

In this setting the (diagonal) gain matrix K 2 RN�N is parametrized by mapping each diag-
onal entry to an individual parameter component �i:

K(� ) :=

¨
Kii = �i

Ki j = 0, i 6= j
.(7.1)

Hence, the parameter-space dimension is equal to the state-space dimension P = N and the
parameters are constrained to � 2 (0,1]P . Such a parametrization is used, for example, in
neural networks since the learning rate is related to the gain of the activation function [221].

7.2.2. Nonlinear Model

For this experiment, the parametrized variant of the original hyperbolic networkmodel (6.1),

�x(t) = Atanh(K(� )x(t)) + Bu(t),

y(t) = C x(t),
(7.2)

is used. The hyperbolic network model is mildly nonlinear and has a similar structure as the
linear control system, yet the nonlinear parametrization occurs inside the nonlinearity.

7.2.3. Linearized Model

The linear variant of (6.1) uses a linearization around the steady-state x i(0) = 0 and, as in
(6.10), the sigmoid-like function &̄(x(t)) is linearly approximated by:

tanh(Ki�x(t)) = tanh(�i x i(t))� �i x i(t).

This results in the following linear state-space system:

�x(t) = AK(� )x(t) + Bu(t),

y(t) = C x(t),
(7.3)

with the same parametrization of the gain matrix as the nonlinear model (7.1). In this
nonlinear parametrization of the linearized hyperbolic network model, the gain matrix K(� )
becomes a slope matrix.
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7.2.4. System Dimensions

For this experiment, the dimensions of the system components are selected as follows: The
input and output dimensions are set to J = O = 1 yielding a SISO system, and the
state and parameter dimensions are set to N = P = 100. A system matrix A 2 R100�100

is generated as a sparsely populated matrix of 10% density with elements drawn from a
uniform random distribution U[0,10]. To ensure a stable system the diagonal entries are set
to Aii = �10 ([228]). The components of the parameter � constituting the (diagonal of the)
gain matrix K 2 R100�100 are constraint to the interval �i 2 [ 1

10 , 1]. A sparse input matrix
B 2 R100�1 also of density 10% with elements drawn from a uniform random distribution
U[0,10] is utilized. To excite the network, a delta impulse is selected as an external input
source u(t) = �(t). The components of the output matrix C 2 R1�100 are sampled from a
uniform random distribution U[0,1]. An RK2 time-discretization of 200 uniform time-steps
�t = 1

100 on the interval [0,2] is utilized to generate trajectories.

7.2.5. Combined Reduction

To both, the nonlinear and the linearized hyperbolic network models, the gramian-based
and optimization-based combined reduction methods are applied and the resulting ROMs
are compared in the `2 
 `2- and `2 
 `1-norms to the nonlinear FOM over 100 uniformly
distributed random samples from the parameter-space [ 1

10 , 1]
100. The gramian-based com-

bined reduction is performed by the empirical joint gramian from De�nition 3.38, which
yields an (empirical) cross gramian (De�nition 3.32) for the state-space reduction and an
(empirical) cross-identi�ability gramian (De�nition 3.39) for the parameter-space reduction.
Since (7.2) and (7.3) resemble SISO systems for the selected input/output components, the
regular cross gramian can be applied. The optimization-based combined reduction (4.13)
is accomplished using the enhanced algorithm variant from Section 4.4.1, and for the inner
optimization the Tikhonov regularization coef�cient is set to �2 =

1
10 .

7.2.6. Combined Reduction Error

The numerical results80 in Figure 7.1 and Figure 7.2 show the relative `2 
 `2-norm and
`2 
 `1-norm output error surfaces for varying state and parameter dimensions resulting
from the gramian-based and optimization-based combined reduction for the nonlinear and
linearized hyperbolic network model respectively. For the nonlinear hyperbolic network
model, Figure 7.1a and Figure 7.1c depict the combined reduction error of the ROMs from
the gramian-based approach in the `2
 `2- and `2
 `1-norm; Figure 7.1b and Figure 7.1d
illustrate the combined reduction error of the ROMs from the optimization-based approach
in the `2
 `2- and `2
 `1-norm. For the linearized hyperbolic network model, Figure 7.2a
and Figure 7.2c visualize the combined reduction error of the ROMs from the gramian-based
approach in the `2 
 `2- and `2 
 `1-norm; Figure 7.2b and Figure 7.2d show the com-
bined reduction error of the ROMs from the optimization-based approach in the `2
`2- and
`2 
 `1-norm.

80See code/ch7/hnm.m in the supplementary source code archive referenced in Appendix B.1.
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Figure 7.1.: Numerical results for the combined state and parameter reduction of the nonlinear

hyperbolic network model.
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Figure 7.2.: Numerical results for the combined state and parameter reduction of the linearized

hyperbolic network model.
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Figure 7.3.: Relative output errors of the reduced order hyperbolic network models for equally

reduced state-parameter-space dimensions n= p.

For both combined reduction methods the joint error is dominated by the parameter-space
reduction error. While the gramian-based method generates ROMs of similar accuracy for
the nonlinear and linearized model, which eventually approach machine precision in both
norms, the optimization-based method constructs less accurate ROMs for the nonlinear
model and fails to produce usable ROMs for the linearized model. Notably, the errors are
not decaying for ROMs with a small number of base components, but require about half of
the FOM's order in state- and parameter-space dimension.
A comparison of the combined reduction error of both methods81 for concurrently reduced
state- and parameter-space dimensions n= p is diagrammed in Figure 7.3. Figure 7.3a and
Figure 7.3b show the error in the `2 
 `2- and `2 
 `1-norm respectively. In case of the
gramian-based approach, the ROMs derived from the nonlinear and linearized models reach
an accuracy of 10�6 for n = p � 50 and of 10�12 for n = p � 60 with a similar slope for
both considered norms, with the linearized variant exhibiting slightly better accuracy. The
optimization-based approach yields ROMs for the nonlinear model with an error of 10�2 for
n= p � 70 and of 10�4 for n= p � 76, the ROMs from the linearized model do not surpass
an error of 10�3. Comparing the respective ROMs, the error of the gramian-based ROMs
declines steeply, while the error of the (nonlinear) optimization-based ROMs decays slowly.
The sudden drop in the error of the optimization-based ROMs appears only for n= p = 64.

81See also the additional �gures in Appendix C.1.

135



7. Numerical Results

0 10 20 30 40 50 60 70 80 90 
 
 
L
i
n
e
a
r
i
z
e
d
 
 
N
o
n
l
i
n
e
a
r
 
 
 

[s]

(a) Of�ine times for gramian-based combined re-

duction in seconds.

0 1000 2000 3000 4000 5000 6000 7000 8000 
 
 
L
i
n
e
a
r
i
z
e
d
 
 
N
o
n
l
i
n
e
a
r
 
 
 

[s]

(b) Of�ine times for optimization-based combined

reduction with highlighted per 10 iteration du-

rations in seconds.

Figure 7.4.: Comparison of of�ine timings (note the different scales) for the combined reduction

of the hyperbolic network models.

7.2.7. Combined Reduction Performance

In Figure 7.4 the of�ine times for the nonlinear and the linearized model of the gramian-
based ROM (Figure 7.4a) and the optimization-based ROM (Figure 7.4b) are compared. The
gramian-based approach needs 95s with the nonlinear model and about 84s (�13%) with
the linearized model. For P = 100 iterations, the optimization-based approach needs about
8700s with the nonlinear model and about 4300s (�51%) with the linearized model. On
average an iteration of the optimization-based method needs for the nonlinear model 87 s
and 43s (�51%) for the linear model; thus the of�ine time of the gramian-based method
takes less than the duration of two iterations of the optimization-based approach.
This comparison is only an indicator of performance, since for the gramian-based ROM a full
SVD of the empirical cross gramian and empirical cross identi�ability gramian is computed.
To lower of�ine times in large-scale settings [18] a truncated SVD, based on the singular
values, is used to obtain reducing projections from the empirical gramians, for example by
an adaptive Lanczos procedure [24, 38]. For the optimization-based reduction, the error
indicator (Section 5.4.4) can be used to avoid iterating many times.

7.2.8. Assessment

In a direct comparison in terms of accuracy and performance, the gramian-based approach,
utilizing the empirical joint gramian, produces better results, as the model reduction error
of the ROMs decays to lower levels and this method consumes less than 2% of the overall
of�ine time of the optimization-based approach. This difference in performance results from
the number of required simulated trajectories, which relates linearly to the parameter-space
dimension for the gramian-based approach and superlinearly for the optimization-based ap-
proach (see also: (8.1), (8.2)).
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7.3. fMRI & fNIRS Dynamic Causal Model

The second set of numerical experiments encompasses a combined state and parameter re-
duction of the nonlinear and linearized fMRI & fNIRS dynamic causal models presented in
Section 6.3.

7.3.1. Parametrization

The parametrized connectivity matrix A(� ) is set up as for a hypothesis test experiment.
A hypothesis on the connectivity is selected as a sparse and stabilized matrix A1 2 R

k�k,
A1,ii = �1. The parameter � 2 Rk2 is then scaling the elements of the hypothesis:

A(� ) = A1 � vec�1(� ),

by the Hadamard product with the inverse vectorization of the parameter.

7.3.2. Nonlinear Model

The fMRI & fNIRS model is a coupled system of a linear component (�x) with nonlinear
parametrization, a second-order component (�s, �f ) and nonlinear components (�v, �q). For
observed k regions of the brain, the joint dynamic and forward submodel,
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has total state-space dimension of N = 5k. For a single input and due to the number of
O = k outputs, this is a single-input-multiple-output (SIMO) system.

7.3.3. Linearized Model

By a linearization of the forward submodel's components of the vector �eld and the output
functional, the linear joint dynamic and forward model is given by (6.5):0
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with the same total state-space dimension and parametrization as the nonlinear model.
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7.3.4. System Dimensions

For these experiments the number of brain regions is set to k = 16, thus the state-space
dimension is N = 5k = 80 and the parameter-space dimension is P = k2 = 256. Since
the parameters can affect the stability of the system, the hypothesis matrix A1 is selected
as sparse and uniform random distributed with a density of about 6% and elements drawn
from U[0,1]. The parameter components �i associated to off-diagonal elements of vec�1(� )
are drawn from a log-normal random distribution lnN0, 1

4
, and parameters corresponding to

diagonal elements from lnN0, 1
40
. A single source of input J = 1 is considered resulting in

B 2 R80�1 driven by an impulse input u(t) = �(t); the input matrix B is generated as a sparse
matrix with a single nonzero entry which is drawn from a uniform random distributionU[0,1].
For all methods an RK2 time-discretization of 200 uniform time-steps�t = 1

10 on the interval
[0,20] is utilized to generate trajectories. The �xed parameters f�,,�,�,�,V0, k1, k2g are
taken from Table 6.4.

7.3.5. Combined Reduction

To both, the nonlinear and the linearized fMRI & fNIRS dynamic causal models, the gramian-
based and optimization-based combined reduction methods are applied and the resulting
ROMs are compared in the `2
`2- and `2
`1-norms to the nonlinear FOM over 100 sparse
log-normally distributed random samples. The gramian-based combined reduction is per-
formed by the empirical joint gramian from De�nition 3.38 in the non-symmetric variant due
to the SIMO nature of the system, which yields an (empirical) non-symmetric cross gramian
(De�nition 3.17) for the state-space reduction and an (empirical) cross-identi�ability gramian
(De�nition 3.39) for the parameter-space reduction. The optimization-based combined re-
duction (4.13) is accomplished using the enhanced algorithm variant from Section 4.4.1, and
for the inner optimization of the greedy sampling, the Tikhonov regularization coef�cient is
set to �2 =

1
10 .

7.3.6. Combined Reduction Error

The numerical results82 in Figure 7.5 and Figure 7.6 show the relative `2 
 `2-norm and
`2 
 `1-norm output error surfaces for varying state and parameter dimensions resulting
from the gramian-based and optimization-based combined reduction for the nonlinear and
linearized fMRI & fNIRS dynamic causal model respectively. For the nonlinear fMRI & fNIRS
dynamic causal model, Figure 7.5a and Figure 7.5c depict the combined reduction error of
the ROMs from the gramian-based approach in the `2 
 `2- and `2 
 `1-norm; Figure 7.5b
and Figure 7.5d illustrate the combined reduction error of the ROMs from the optimization-
based approach in the `2
 `2- and `2
 `1-norm. For the linearized fMRI & fNIRS dynamic
causal model, Figure 7.6a and Figure 7.6c visualize the combined reduction error of the
ROMs from the gramian-based approach in the `2
 `2- and `2
 `1-norm; Figure 7.6b and
Figure 7.6d show the combined reduction error of the ROMs from the optimization-based
approach in the `2 
 `2- and `2 
 `1-norm.

82See code/ch7/mri.m in the supplementary source code archive referenced in Appendix B.1.
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`1 output error for optimization-

based combined reduction.

Figure 7.5.: Numerical results for the combined state and parameter reduction of the nonlinear

fMRI & fNIRS dynamic causal model.
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`1-norm error for optimization-

based combined reduction.

Figure 7.6.: Numerical results for the combined state and parameter reduction of the linearized

fMRI & fNIRS dynamic causal model.
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Figure 7.7.: Relative output errors of the reduced order fMRI & fNIRS dynamic causal models

for equally reduced state-parameter-space dimensions n= p � 80.

For both approaches the joint error is relatively dominated by the state-space reduction error
and the ROMs from the respective linearized variants show a slightly preferably slope in
error decay. In case of the gramian-based combined reduction, the ROMs derived from the
nonlinear and linearized models are of similar accuracy; the ROMs from the optimization-
based combined reduction show a similar behavior for lower order ROMs, yet the combined
reduction error from the nonlinear variant reaches a lower level than from the linearized
variant.
A comparison of the combined model reduction error of both considered methods83 for
the �rst n = p � N = 80 concurrently reduced state- and parameter-space dimensions
is diagrammed in Figure 7.7. Figure 7.7a and Figure 7.7b show the error in the `2 
 `2-
and `2 
 `1-norm respectively. These visualizations show that the optimization-based ap-
proaches produce more accurate models than the gramian-based approaches for n= p � 44.
For n= p � 44, the gramian-based method reaches an error of order 10�8 using the nonlin-
earmodel, but utilizing the linearized variant an error of order 10�10 is obtained. The error of
the ROMs from the linearized optimization-basedmethod �attens out at 10�8 for n= p � 24,
while error of the ROMs from the nonlinear optimization-based method decays up to order
10�12 for n = p � 72. Compared to the gramian-based approach the optimization-based
approach needs about 20 fewer reduced state and parameter base components to reach an
error of about 10�8.

83See also the additional �gures in Appendix C.2.
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Figure 7.8.: Comparison of of�ine timings (note the different scales) for the combined reduction

of the fMRI & fNIRS dynamic causal model.

7.3.7. Combined Reduction Performance

In Figure 7.8 the of�ine times for the nonlinear and the linearized model of the gramian-
based ROM (Figure 7.8a) and the optimization-based ROM (Figure 7.8b) are compared.
The gramian-based approach needs about 440s with the nonlinear model and about 180s
(�40%) with the linearized model. For P = 100 iterations, the optimization-based approach
needs about 71000s with the nonlinear model and 27000s (�62%) with the linearized
model. As this model has a more complicated structure and contains several nonlinearities
compared to the hyperbolic network model from Section 7.2 this acceleration is not surpris-
ing. On average an iteration of the optimization-basedmethod needs for the nonlinear model
276s and 105s (�62%) for the linear model; thus the of�ine time of the gramian-based
method takes less than the duration of two iterations of the optimization-based approach.
The parameter-space dimension is the driving factor for the performance of the experiments
in this chapter. Compared to the experiment in Section 7.2, the parameter-space dimension
is 2.56 times larger. And while the gramian-based approach has a 4.6 (2.1) times longer
of�ine phase, the optimization-based approach takes 8.1 (6.3) times longer.

7.3.8. Assessment

In this experiment the optimization-based combined reduction producesmore accurate ROMs,
yet the gramian-basedmethod requires only 0.7% of the overall of�ine time of the optimization-
based method. Also, a model reduction error near machine precision is not reached. Due
to the sparse and sequential structure, the fMRI & fNIRS dynamic causal model has only lit-
tle redundant information, which does not encourage a modularized reduction of the SISO
components as in [118]. This is underscored by the slowly decaying HSVs of an individual
SISO hemodynamic forward system (see Appendix A.5).
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7.4. EEG & MEG Dynamic Causal Model

The third set of numerical experiments investigates a combined state and parameter reduc-
tion of the nonlinear and linearized EEG & MEG dynamic causal model from Section 6.4.

7.4.1. Parametrization

A similar parametrization as for the fMRI & fNIRS experiments in Section 7.3.1 is selected
for the forward connectivity matrix AF (� ) of the EEG & MEG model. For the parametrized
AF (� ) a sparse matrix A1 2 Rk�k with a zero diagonal A1,ii = 0 is set up. The parameter

� 2 Rk2 is then scaling the elements of the hypothesis:

AF (� ) = A1 � vec�1(� ),

by the Hadamard product with the inverse vectorization of the parameter.

7.4.2. Nonlinear Model

For k considered regions (sensors) of the brain, the joint dynamic and forward submodel of
the nonlinear EEG & MEG dynamic causal model, described in Section 6.4,�
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has total state-space dimension of N = 10k. This is a nonlinear second-order system, with
the nonlinearity contained in the sigmoid-like function &̄. The parametrization encompasses
an element-wise parameter mapping as in (6.3) of the forward connectivity matrix AF (� ),
which is part of a block in Av(� ),
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7.4.3. Linearized Model

By a linearization of the dynamic submodel's nonlinear component of the vector �eld as
detailed in (6.11), the linear joint dynamic and forward model is given by (6.12):�
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with the same total state-space dimension and parametrization as the nonlinear model.
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7.4.4. System Dimensions

For this experiment the number of considered brain regions is also set to k = 16, thus the
state-space dimension is N = 10k = 160 and the forward connectivity matrix of the dynam-
ical submodel is then of dimension AF (� ) 2 R16�16, while the parameter-space dimension is
P = k2 = 256. The elements of the hypothesis matrix A1 are drawn from a sparse and uni-
form random distributionU[0,32] with a density of about 6%, and the parameter components
�i , associated to off-diagonal elements of vec�1(� ), are drawn from a log-normal random
distribution lnN0, 1

4
, while parameters corresponding to diagonal elements are drawn from

lnN0, 1
40
. An impulse input u(t) = �(t) excites the system through a sparse input matrix

B 2 R16�1 with a single non-zero element drawn from a uniform random distributionU[0,1].
For all trajectories an RK2 time-discretization of 200 uniform time-steps �t = 1

100 on the
interval [0,2] is utilized. The �xed parameters fHe,Hi ,�e,�i ,1,2,3,4,5,�g are taken
from Table 6.7.

7.4.5. Combined Reduction

To both, the nonlinear and the linearized EEG & MEG dynamic causal models, the gramian-
based and optimization-based combined reduction methods are applied and the resulting
ROMs are compared in the `2
`2- and `2
`1-norms to the nonlinear FOM over 100 sparse
log-normally distributed random samples. For the SIMO systems (7.4) and (7.5) the non-
symmetric joint gramian is applied using the structure-preserving balancing variant from
Section 3.2.4, which yields a (empirical) non-symmetric cross gramian (De�nition 3.17) for
the state-space reduction and an (empirical) cross-identi�ability gramian (De�nition 3.39)
for the parameter-space reduction. The optimization-based combined reduction (4.13) is
accomplished using the enhanced algorithm variant. For the inner optimization of the greedy
sampling, the Tikhonov regularization coef�cient is set to �2 =

1
10 . Either method uses solely

�position� information for the state reduction.

7.4.6. Combined Reduction Error

The numerical results84 in Figure 7.9 and Figure 7.10 show the relative `2 
 `2-norm and
`2 
 `1-norm output error surfaces for varying state and parameter dimensions resulting
from the gramian-based and optimization-based combined reduction for the nonlinear and
linearized EEG & MEG dynamic causal model respectively. For the nonlinear EEG & MEG
dynamic causal model, Figure 7.5a and Figure 7.9c depict the combined reduction error of
the ROMs from the gramian-based approach in the `2 
 `2- and `2 
 `1-norm; Figure 7.9b
and Figure 7.9d illustrate the combined reduction error of the ROMs from the optimization-
based approach in the `2 
 `2- and `2 
 `1-norm. For the linearized EEG & MEG dynamic
causal model, Figure 7.10a and Figure 7.10c visualize the combined reduction error of the
ROMs from the gramian-based approach in the `2
`2- and `2
`1-norm; Figure 7.10b and
Figure 7.10d show the combined reduction error of the ROMs from the optimization-based
approach in the `2 
 `2- and `2 
 `1-norm.

84See code/ch7/eeg.m in the supplementary source code archive referenced in Appendix B.1.
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Figure 7.9.: Numerical results for the combined state and parameter reduction of the nonlinear

EEG & MEG dynamic causal model.
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Figure 7.10.: Numerical results for the combined state and parameter reduction of the lin-

earized EEG & MEG dynamic causal model.
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Figure 7.11.: Relative output errors of the reduced order EEG & MEG dynamic causal models

for equally reduced state-parameter-space dimensions n= 2p � 160.

It should be noted, that due to the structure-preserving state-space reduction, each additional
state base vector increases the ROM's state order by two.
For both methods, super�cially, the error behavior of the nonlinear and linearized variants
is similar. Yet, while the error of the optimization-based ROMs decays slowly, dominated by
the parameter-space error, the gramian-based ROMs exhibit a steep decline in error. And as
for the previous experiments, the respective `2
`2- and `2
`1-norms produce comparable
error surfaces, except for the optimization-based approach using the linearized model which
yields for n� 120 and p � 144 unstable ROMs.
A comparison of the combined reduction error of both methods85 for concurrently reduced
state- and parameter-space dimensions is diagrammed in Figure 7.11. Figure 7.11a and
Figure 7.11b show the error in the `2 
 `2- and `2 
 `1-norm respectively. In case of the
gramian-based approach, the ROMs derived from the nonlinear model reaches an accuracy
of 10�8 for n � 80, p � 40 and of 10�10 for n � 128, p � 64, the linearized variant also
achieves an accuracy of 10�10 for n � 80, p � 40 yet of 10�12 for n � 88, p � 44. The
optimization-based approach in its nonlinear and linearized variant exhibits an accuracy of
10�3 for n � 80, p � 40, and the ROMs have very similar error decay. Comparing the re-
spective ROMs obtained from the gramian-based and the optimization-based method, the
ROMs of gramian-based approach are at more than four orders of magnitude lower in joint
model reduction error for n� 80, p � 40.

85See also the additional �gures in Appendix C.3.
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Figure 7.12.: Comparison of of�ine timings (note the different scales) for the combined reduc-

tion of the EEG & MEG dynamic causal model.

7.4.7. Combined Reduction Performance

In Figure 7.12 the of�ine times for the nonlinear and the linearized model of the gramian-
based ROM (Figure 7.12a) and the optimization-based ROM (Figure 7.12b) are compared.
The gramian-based approach needs about 460s using the nonlinear model and about 416s
(�10%) utilizing the linearized model. For P = 256 iterations, the
optimization-based approach needs about 111000s for the nonlinear model and 69500s
(�37%) for the linearized model. On average an iteration of the optimization-based method
requires in case of the nonlinear model 433s and 272s (�37%) for the linearizedmodel; thus
the of�ine time of the gramian-based method takes less than the duration of two iterations
of the optimization-based approach.
The linearization of the model has less impact on the of�ine time requirements in this ex-
periment. This is due �rst, to the second-order structure of the model, which also effectively
doubles the state-space dimension compared to the experiment in Section 7.3. Second, due
to the use of a nonlinearity of a single type which additionally can be evaluated in vectorized
form as in Section 7.2.

7.4.8. Assessment

The gramian-based method, more speci�cally the empirical joint gramian outperforms the
optimization-based strategy in ROM accuracy and assembly time. In terms of the quality,
this is in part due to the difference in the construction of the ROMs: the gramian-based
methods select (or construct) only the position or velocity components necessary, which
does not affect the empirical gramian computation prior to the direct truncation, yet for the
optimization-based method inside each inner iteration a (non-structure-preserving) state-
reduction is performed. The of�ine times are of the similar orders as for the previous fMRI
& fNIRS experiment for the respective methods.
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7.5. Combined Reduction for Inverse Problems

A last set of experiments explores combined state and parameter reduced models for the
fMRI & fNIRS dynamic causal model in the context of inverse problems.

7.5.1. Reduced Inverse Problem

Independent from the speci�c method of neuroimaging, a general data model is assumed by
a control-system-type model,

�x(t) = f (x(t),u(t),� ),

y(t) = g(x(t),u(t),� ),

wherein measured output y is assumed to be distorted by white noise. This is re�ected in the
data model by including an additive Gaussian noise component " =N0,v with zero mean,

yd = y(�d) + ".

Given measurements yd , which are postulated to obey this data model, an inverse problem
is formed by the identi�cation of a parameter �d , that minimizes the error compared to the
observed data:

�d � argmin
�2�

kyd � y(� )k.

Practically, the most likely parameter can be determined by a regularized least-squares opti-
mization problem:

�d � argmin
�2�

kyd � y(� )k2`2 + �2k�k
2
2.

Instead of the FOM, a ROM obtained by combined reduction,

�xr(t) = fr(xr(t),u(t),�r),

yr(t) = gr(xr(t),u(t),�r),

can be used as underlying model. An adaption of the data model,

yd � yr(�d,r) + ",

leads to the reduced order inversion by an optimization problem utilizing the reduced state-
and parameter-space,

�d,r � argmin
�r2�r

kyd � yr(�r)k2`2 + �2k�rk
2
2.(7.6)

Opposed to directly selecting an underlying model with less states or a smaller parameter-
space, the ROM approximates the behavior of the FOM and thus the combined reduction has
to be understood as a part of the inversion and not as part of the modelling.
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Figure 7.13.: fMRI & fNIRS DCM synthetic data signal.

7.5.2. Synthetic Signal Generation

The setup of the inverse problem experiment is analogous to the forward problem combined
reduction experiments in Section 7.3. First, for a random but sparse connectivity pattern, a
parameter �d is sampled fromN1,1 for the elements mapping to the off-diagonal components
and from N1, 1

100
for the elements mapping the diagonal components. Then, a trajectory is

simulated using either nonlinear dynamic causal model for this parameter to which white
Gaussian noise for a signal-to-noise ratio (SNR) of 10dB is added. These synthetic fMRI /
fNIRS (Figure 7.13) signals act as data for the subsequent inverse problems.

7.5.3. Parameter Inference

For the fMRI & fNIRS dynamic causal model, the connectivity parameters are inferred86 from
the FOM and from the gramian-based and optimization-based ROMs in a Bayesian setting by
computing87 the MAP (6.13). The parameter inference is performed by an unconstrained88

optimization algorithm with Tikhonov regularization with �2 = 10�4. As a start value for
the optimization the expectation of the prior parameter is used.

86Originally in [77], an expectation-maximization algorithm is used for the parameter inference.
87See code/ch7/bayinv.m in the supplementary source code archive referenced in Appendix B.1.
88Here, �unconstrained� refers to hard constraints.
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7.5.4. fMRI & fNIRS Dynamic Causal Model

For the fMRI & fNIRS DCM a parameter inference is performed using the FOM, a gramian-
based ROM following Section 7.3, an optimization-based ROM also following Section 7.3
and an optimization-based ROM additionally utilizing the data-driven (DD) regularization
enhancement from Section 4.4. The ROMs are assembled using the nonlinear fMRI & fNIRS
DCM for the gramian-based and optimization-based approach, since for either combined
reduction method those yield the best results. Based on the results from Section 7.3, the
reduced order for the (nonlinear) gramian-based method is set for state- and parameter-
space to n = p = 40, and for the (nonlinear) optimization-based method to n = p = 24.
For the data-driven regularized optimization-based variant, the associated regularization
coef�cient is set to �d = 10�4.
The results of the parameter inference for the fMRI & fNIRS DCM using the gramian-based
and optimization-based ROMs are summarized in Table 7.14, which shows that the statis-
tical parameter estimation for the FOM and ROMs is of similar quality. For the inference
of the FOM and the ROMs, the output error kyd � y(� )k`2 using the inferred parameter �
is of the order 10�2. Even though the output error is in an acceptable range, the relative
parameter error k�d � �k2 is at 25% and thus does not retrieve the parameter �d , the data
was generated with. Yet, this examples was not chosen to demonstrate its absolute accuracy
but the performance improvement considering the relative accuracy of the ROMs compared
to the FOM. In terms of online timings the gramian-based ROM needs 34% less time for
the parameter inference compared to the FOM, the optimization-based ROM and the data-
driven regularized optimization-based ROM merely 16% of the FOM online time. For an
online phase the gramian-based approach consumes 60% total time (of�ine + online time)
in relation to the FOM. The data-driven regularized variant shortens the of�ine phase by
19% for the optimization-based method.

fMRI & fNIRS Gramian-Based Optim.-Based Optim.-Based
DCM FOM ROM ROM ROM (DD)

Parameter Dim. 256 40 24 24
Output Error 0.01 0.01 0.01 0.01

Parameter Error 0.25 0.25 0.25 0.25
Of�ine Time - 381s 11957s 9774s
Online Time 1447s 488s 233s 226s

Single Total Time 1447s 869s 12190s 10000s
Multi Breakeven - 1 10 8

Table 7.14.: Inference performance for the fMRI & fNIRS DCM FOM and ROM.

Furthermore, the plots in Figure 7.15 show the synthetic data and the FOM outputs for the
inferred parameters. In Figure 7.15a the output associated to the parameter obtained by
inference using the FOM is depicted, while Figure 7.15b shows the output for the parame-
ter inference based on the gramian-based ROM. Figure 7.15c and Figure 7.15d present the
output for the parameters inferred by utilization of the basic and the data-driven regularized
optimization-based ROM.
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(b) Via gramian-based ROM.
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(c) Via optimization-based ROM.
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(d) Via optimization-based ROM (DD).

Figure 7.15.: Comparison of synthetic output model data with fMRI & fNIRS dynamic causal

ROM outputs using the inferred parameter.
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Following, a comparison and evaluation of the combined reduction methods, with respect to
the previous numerical results, is conducted as well as a layout of prospective advancements
for the presented techniques.

8.1. Summary

This work investigated the combined state- and parameter-space reduction for nonlinear sys-
tems. Two classes of methods for combined reduction have been explored. First, a gramian-
based approach (Chapter 3), with special focus on the empirical (non-symmetric) cross
gramian and the related empirical joint gramian inducing the empirical cross-identi�ability
gramian. Second, an optimization-based approach (Chapter 4), connecting a greedy param-
eter reductionwith POD-related state reduction. While the gramian-basedmethods originate
in (linear) system theory, the optimization-based methods root in inverse problem solution.
An implementation of the empirical-gramian-based method and of the optimization-based
method was described and tested in Chapter 5. And an application from the �eld of sys-
tems neuroscience, aimed at connectivity inference for neuronal networks based on dynamic
causal models, for fMRI & fNIRS and EEG & MEG neuroimaging techniques, was detailed in
Chapter 6 and evaluated in Chapter 7 alongside with the related generic hyperbolic network
model.
Overall, both methods are capable of producing reduced order models of suf�cient quality.
The experiments in Chapter 7 indicate that it depends on the model which method provides
better results, but the (empirical-cross-)gramian-based method seems to obtain more ac-
curate results in general. Furthermore, the optimization-based method takes signi�cantly
longer (using the default inner optimizers) to compute the ROMs. For the considered data-
driven combined reduction methods it was also observed, that the use of the original non-
linear model for the generation of snapshots, instead of a linearization, can improve the
ROM.
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8.2. Abstract Comparison

Both methods for the combined state and parameter reduction of nonlinear systems rely on
simulated trajectories from which the information, encoding the system's dynamics, is ex-
tracted. Exemplary for the gramian-based approach, the cross-gramian-based joint gramian
(Section 3.4.3) constructs the state-space reducing projection from the input-output rela-
tions, while the parameter-space reducing projection is obtained from state-to-output effects.
The enhanced optimization-based approach (Section 4.4.1) uses input-to-state information
for the state-space reducing projection and input-output relations for the parameter-space
reducing projection (see Table 8.1).

Cross-Gramian-Based Optimization-Based
State Reduction Input-Output Input-State

Parameter Reduction State-Output Input-Output

Table 8.1.: Comparison of combined reduction methods by subspace constructions.

Both methods could be extended to assemble the reducing projection based on input-output
behavior for state and parameter reduction. For the cross-gramian-based approach using the
joint gramian to acquire the parameter reducing projection, this would entail to include as
many inputs as parameters which was initially proposed for the joint gramian in [109]. Yet,
for high-dimensional parameter-spaces a joint gramian of dimension N+P�N+P would have
to be stored instead of N+P�N and also additional trajectories of order P would be required,
since each parameter would have to be perturbated separately by an input. In case of the
optimization-based approach the state reducing projection would have to be augmented
using the goal-oriented approach from [229], which means a second optimization problem
would have to be solved in each iteration for a general nonlinear model. Hence, fully input-
output derived ROMs would result in higher computational loads for both approaches.
A central difference lies in the conceptual assembly of the ROM. For the gramian-based
method one or more empirical gramians of the order of the full order system are computed
fromwhich the reducing projections are extracted. In case of the empirical joint gramian this
means a memory bound is given by the gramian matrix dimension of N �N + P. This is not
the case for the optimization-based method, since it directly assembles a reducing projection
of desired order increasingly, but this approach is bound by the compute capabilities if no
derivative information is supplied to the inner optimizer. In terms of the validity of the ROM,
for the empirical-gramian-based method is valid for the speci�ed operating region de�ned
(manually) through the perturbation sets, while for the optimization-based approach the
model is valid for the adaptively scanned state- and parameter-space.
Lastly, the two methods are differing in their precedence of states and parameters during the
combined reduction. In the optimization-based combined reduction, the reduced parameter-
space determines the state-space sampling points; for the empirical joint gramian the param-
eters are treated as (constant) states.
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From an implementation point of view, the empirical gramian method requires mere basic
linear algebra operations; the optimization-based approach requires the eponymous opti-
mization algorithm for the greedy search that is principal to the overall performance. Yet,
the solver to obtain the required trajectories is crucial to both methods. While the accuracy
of empirical gramian derived ROMs can be improved with more detailed knowledge on the
targeted operating region of the model, the optimization-based method can be accelerated
by derivative information on the associated residuals.
Due to the simpli�cation in the empirical gramian framework of perturbing a single compo-
nent of input, initial state or parameter component, an assessment of the presented gramian-
based and optimization-based combined reductionmethods can also be seen as a comparison
between sparse and greedy sampling.
Following, the computational complexity is summarized in terms of number of needed FOM
trajectories. The computation of the trajectories consumes the dominant fraction of overall
of�ine time in the tested settings. And while the remaining operations are (parallelizable)
matrix operations89, for nonlinear models inherently sequential methods like Runge-Kutta
integrators are usually utilized. For the empirical joint gramian, assuming a single pertur-
bation element for inputs, states and parameters, as many trajectories as the sum of inputs,
states and parameters have to be computed, which amounts to

OWJ
= J + N + P(8.1)

trajectories. In a single iteration of the optimization-based method, assuming a Gauss-
Newton inner optimization with a �rst-order �nite-difference approximation, P+1 trajecto-
ries are needed for the approximate Jacobian plus an additional trajectory for the state-space
projection. Thus for p iterations, altogether

Oopt = (p� 1)� (P + 1) + 1(8.2)

trajectories are required, since the initial iteration requires only a single trajectory as it uses
the provided nominal or prior parameter as parameter base component and no greedy sam-
pling is performed.

A Note on Frequency-Domain Validity

The work at hand considers only time-domain and not frequency-domain behavior of the
ROMs. This is especially relevant for the empirical gramian approach due to its origin in
system theory and availability of an H1-norm error indicator. But, since for parametric
systems the state-space validity is ensured essentially by averaging gramians for different
sampling points in the parameter-space, the ROMs from empirical gramians loose accuracy
rapidly in frequency-space error measures. Such behavior can be observed exemplarily for
the empirical linear cross gramian in [18]. Due to the sole consideration of state-space
accuracy of the presented combined reduction methods, a worse performance in frequency-
domain error measures is predicted. If frequency-space accuracy is targeted, for example
the Loewner framework [128], based on frequency- instead of state-space samples, is better
suited for frequency response preserving ROMs.

89Such as matrix multiplication and matrix decompositions.
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8.3. Numerical Comparison

In Chapter 7 the conducted experiments are evaluated separately for each model to assess
the quality for the tested combined reduction methods. Following, all experiments are jointly
compared in terms of numerical ef�ciency. For the purpose at hand, ef�ciency is considered
of�ine time cost in relation to the joint error the associated ROM exhibits. To illustrate
this ef�ciency concept, Figure 8.2 shows the of�ine time consumption correlated with the
respective achieved error for all experiments from Chapter 7, associated with the gramian-
based or optimization-based approach.
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Figure 8.2.: Ef�ciency comparison by gramian-based and optimization-based time consumption

versus achieved joint error in the `2 
 `2-norm for n= p < N.

The ef�ciency plot in Figure 8.2 shows the constant time requirement of the gramian-based
experiments for all accuracies. This is due to the full order SVDs which are applied to the em-
pirical cross gramian and the empirical cross-identi�ability gramian. It should also be noted,
that for the experiments involving SIMO systems, the empirical non-symmetric joint gramian
is used. To models with a large state-space dimension a TSVD can be applied which reduces
the of�ine time depending on the reduced order selected manually or based on the singular
values. For the optimization-based experiments, in which the inner optimizations approxi-
mate the derivative information numerically, longer of�ine times are required to reach the
same error levels as the gramian-based experiments. It is also shown, that little complexity
is added by reaching lower errors once a certain accuracy is reached. Additionally, for each
optimization-based experiment suitable regularization coef�cients have to be determined.
This is often requires multiple, at least partial, ROM computations.
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8.4. Outlook

In a brief outline, the prospective enhancements to the presented methods and models are
described. On the basis of the neuorscienti�c application in Chapter 6 a generalization to
(complex) networks or towards network discovery [194] is conceivable. For the featured
methods of combined reduction various further developments from an algorithmic as well
as from a technical perspective are surmisable.

8.4.1. Further Development

In further investigations of the model reduction techniques devised in this work two com-
plementary paths are pursuable. First, algorithmic enhancements can improve accuracy of
the ROM; second, the use of parallel computation can increase the performance.

Methodical Enhancements

For nonlinear systems the presentedmethods pose the disadvantage that the high-dimensional
vector �eld and output functional have to be evaluated after lifting the reduced quantities.
This lifting bottleneck can be overcome by a hyper-reduction using the empirical interpo-
lation method (EIM) [11] or the discrete empirical interpolation method (DEIM) [37]. An
example for combining DEIM with gramian-based model reduction can be found in [162]
and a combination of optimization-based model reduction with EIM in [80].
Speci�cally for the empirical-gramian-based model reduction, an extension using the con-
cepts of reproducing kernel Hilbert spaces (RKHS) [27] related to the KPCA is conceivable.
Furthermore, the cross-gramian-based methods could be improved by stability-preserving
two-sided projections, for which a starting point could be [95].
In case of the optimization-based approach, the use of L1-norm regularization [34] instead or
additionally to the Tikhonov regularization could improve the accuracy. Also an automated
selection of the regularization weights, for example by the L-curve procedure [103] may
improve the interaction of the various terms in the optimization function.

Explicit Parallelization

The presented implementations are extensively vectorized to promote implicit parallelization
by the utilized BLAS backends. Explicit parallelization is also applicable, which allows the
computation of multiple trajectories in parallel90 by a sequential general linear method on
a multi-core CPU (Central Processing Unit).
All empirical gramians could also pro�t from heterogeneous compute systems. The actual
gramianmatrix can be assembled by a massively parallel matrix multiplication91 on a GPGPU
(General Purpose Graphics Processing Unit). In case the GPU (Graphics Processing Unit) is
integrated, additionally zero-copy functionality may be exploited to prevent copies of the
discrete trajectory data between the CPU and GPU memory spaces.

90The corresponding for-loops are tagged with the keyword parfor in a comment.
91The relevant products are tagged with the keyword offload in a comment.
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A distributed memory parallelization of the empirical cross gramian, and thus also for the
empirical joint gramian and non-symmetric cross gramian, is especially promising. The em-
pirical cross gramian and its variants can be assembled column-wise, which is illustrated by
a simpli�ed empirical cross gramian wX :

wX =

JX
j=1

Z 1
0

	
j(t)dt 2 RN�N , 	

j

ab
(t) := hx j

a(t), y
b
j (t)i,

) wX ,�i =

JX
j=1

Z 1
0

 ji(t)dt 2 RN�1,  ji
a (t) := hx j

a(t), y
i
j(t)i,

and together with the use of a parallel technique for large (truncated) SVDs from [207, 208],
a low communication parallel variant may be computed.
A parallelization of the optimization-based combined reduction algorithm would have to
focus on the inner optimization method utilized for the greedy sampling. For example the
computation of the Jacobian can be accelerated by parallelly generate parameter perturbed
trajectories.

8.4.2. Future Applications

A future application for the presented methods are complex networks, which establish a
generic framework for large networked systems enabling applications beyond connectivity
in the brain, for example network cosmology [139, 26] or digital social networks. Com-
plex networks are based on random graphs (see for example [54]) and exhibit, opposed
to Erd�os-Rényi networks, topological features like small world behavior due to a scale-free
degree distribution. With the recent adoption of system-theoretic methods for network anal-
ysis, like network controllability (structural controllability) [156] and network observability
(structural observability) [157] the system identi�cation and model reduction methods in
this work present feasible tools for the study of complex networks and associated metrics
[216]. And beyond linear systems, also nonlinear networks are analyzed utilizing controlla-
bility and observability properties [227].
Such an analysis requires further investigation of parametrized time-varying systems [44],

�x(t) = A(� (t))x(t) + Bu(t),

y(t) = C x(t),

with the special case of time-varying parameters [111]. An associated nonlinear extension
could be given by the hyperbolic network model from Section 6.1.1:

�x(t) = A(� (t)) tanh(K(� (t))x(t)) + Bu(t),

y(t) = C x(t).

The cross-gramian-based empirical (non-symmetric) joint gramian could lead to insights into
small surrogate networks (model reduction) or driving input-output network components
(system identi�cation). The optimization-based approach may be used for the discovery of
likely network con�gurations from given output data (uncertainty quanti�cation).
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8. Conclusion

8.5. Concluding Remarks

The two demonstrated MOR methods allow a combined state and parameter reduction for
input-output systems, including parametric nonlinear systems. Both, the empirical-gramian-
based and the greedy-optimization-based approach, rely mainly on simulated trajectories for
the assembly of the reducing projections. Hence, if a numerical solution is computable, either
method is applicable.
While both approaches yield workable reduced order models, the empirical (cross) gramian
method produces more accurate reduced models in signi�cantly less computational time
than the optimization-based greedy sampling, which has been demonstrated numerically
for different types of linear and nonlinear systems.
In the investigation of networks in terms of connectivity reconstruction for neuronal net-
works, both methods have been demonstrated to provide suitable reduced order models.
Thus, formathematical engineering or acceleration of research-software the presentedmodel
reduction methods can be of vital use.
Lastly, in future research on nonlinear model order reduction and combined reduction, the
optimization-based, but especially the empirical-gramian-based techniques enable further
exploration of reduced order modelling based on the coherence between system inputs and
outputs.
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A. Mathematical Tools

A.1. Young's Inequality

A variant of Young's inequality holds for convolutions [232]. Given functions f 2 Lp and
g 2 Lq then the following holds:

k f � gks � k f kpkgkq,

for a Lebesgue norm k � ks with an s satisfying:

1
p
+
1
q
= 1+

1
s
.

A.2. Vectorization Operator

The vectorization operator vec maps a matrix A2 RN�N to a vector a 2 RN2

by stacking the
columns of A=

�
a1 . . . aN

�
,

vec(A) :=

0
@a1

...
aN

1
A .

This operator is isomorphic and its inverse is de�ned by its compositionwith the vectorization
operator:

vec�1(vec(A)) = A.
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A.3. Trace Norm

The trace norm of a matrix is de�ned as the sum of all singular values,

kAk� :=
NX
i=1

�i(A).

The trace norm is an unitarily invariant norm and also known as the nuclear norm, Schatten-
1 norm and Ky-Fan-N norm.

A.4. Approximate Matrix Inversion

The inverse to a regular matrix A can be computed using the Neumann series.

Lemma 9.1 (Matrix Inverse by Neumann Series)
For a regular matrix A2 RN�N its inverse is given by:

A�1 =

1X
k=0

(1�A)k.

A truncated Neumann series can be used as an approximation to the matrix inverse. Follow-
ing [230, Sec. B], utilizing an additive matrix decomposition, a coarse, yet computationally
very cheap approximate matrix inverse can be computed as follows.

Corollary 9.2 (Approximate Inverse)
For a regular matrix A and an additive decomposition A = D + E into a diagonal matrix D,

Dii = Aii and E = A� D, an approximation to A�1 is given by:

A�1 � D�1 � D�1ED�1.

The computation of this approximate inverse matrix has a complexity of O (N2).

A.5. Hankel Singular Values of a Single Region Hemodynamic Forward Model

For the hemodynamic forward model from Section 6.3.2 of a single region :

�z(t) :=

0
BBBBB@
�s(t)

�f (t)

�v(t)

�q(t)

1
CCCCCA=

0
BBBBB@

u(t)� �s(t)� ( f (t)� 1)

s(t)

1
�( f (t)� vi(t)

1
� )

1
�(

1
� f (t)(1� (1��)

1

f (t) )� v(t)
1
�
q(t)

v(t)
)

1
CCCCCA ,

y(t) = V0(k1(1� q(t)) + k2(1� v(t))),

with u(t) = �(t), the associated (approximate) Hankel singular values of this system, ob-
tained by an empirical cross gramian, compute92 as:

�hemodynamic = f1.2 � 10�1, 1.8 � 10�2, 2.2 � 10�3, 2.1 � 10�4g.

92See code/app/mri_siso.m in the supplementary source code archive referenced in Section B.1.
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B. Software Annex

B.1. Code Availability

The source code of the implementations used to compute the presented results can be ob-
tained from:

doi:10.5281/zenodo.48122

and is authored by CHRISTIAN HIMPE.

B.2. Computational Environment

Hardware

The following computer system was used to compute the numerical results:

CPU

Model AMD A10-780093 (x86-64)

Topology 1 Socket - 2 Modules - 4 Cores (4 Threads)

Clock 3.5 Ghz (Dynamic Frequency Scaling Disabled)

L1 Cache 2 � 96 KB (Instruction), 4 � 16 KB (Data)

L2 Cache 2 � 2 MB (Last Level Cache)

SIMD AVX, FMA3, FMA4 (4 � 64-bit Double Precision per module)

RAM

Type Dual Rank DDR3 (Dual Channel Con�guration)

Amount 32 GB (4 � 8GB)

Rate 2133 MT/s (max. 17000 MB/s)

Software

The following software stack was used to compute the numerical results:

Matlab Runtime GNU Octave 4.0.0 (Compiled94 with gcc 5.2.1)

Linked tcmalloc_minimal95 (Thread-Caching Memory Allocation)

Linked FlexiBLAS 1.3 (BLAS wrapper with runtime exchangeable backends [137, 138])

BLAS & LAPACK AMD Core Math Library (ACML) 6.1.0.31

C Library GNU libc 2.21

Operating System Lubuntu 15.10 (64-bit Linux Kernel 4.2)

93This APU consists of a CPU and a GPU unit; the latter is not utilized for the computations.
94Main compilation �ags: -Os -mtune=native -march=native -m64 -mfpmath=sse -malign-double
95tcmalloc is part of the gperftools (2.4) by GOOGLE
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B.3. emgr - Empirical Gramian Framework

Code Metadata

name (short name) Empirical Gramian Framework (emgr)
version (release date) 3.9 (2016-02-25)

topic (type) Model reduction (Toolbox)
author (ORCID) Christian Himpe (0000-0003-2194-6754)

license (type) 2-Clause BSD (open-source)
repository (type) github.com/gramian/emgr (git)

language Matlab
dependencies (system) Octave | Matlab (Linux, Windows)

website gramian.de

keywords empirical gramians, MOR

License

emgr is licensed under the open source BSD 2-clause license:

Copyright (c) 2013-2016, Christian Himpe

All rights reserved.

Redistribution and use in source and binary forms, with or without modi�cation, are permit-
ted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
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Source Code

function W = emgr(f,g,s,t,w,pr,nf,ut,us,xs,um,xm)
% emgr - Empirical Gramian Framework ( Version: 3.9 )
% Copyright (c) 2013-2016 Christian Himpe ( gramian.de )
% released under BSD 2-Clause License ( opensource.org/licenses/BSD-2-Clause )
%
% SYNTAX:
% W = emgr(f,g,s,t,w,[pr],[nf],[ut],[us],[xs],[um],[xm]);
%
% SUMMARY:
% emgr - EMpirical GRamian framemwork,
% computation of empirical gramians for model reduction,
% system identification and uncertainty quantification.
% Enables gramian-based nonlinear model order reduction.
% Compatible with OCTAVE and MATLAB.
%
% ARGUMENTS:
% (func handle) f - system function handle; signature: xdot = f(x,u,p)
% (func handle) g - output function handle; signature: y = g(x,u,p)
% (vector) s - system dimensions [inputs,states,outputs]
% (vector) t - time discretization [step,stop]
% (char) w - gramian type:
% * ’c’ : empirical controllability gramian (WC)
% * ’o’ : empirical observability gramian (WO)
% * ’x’ : empirical cross gramian (WX)
% * ’y’ : empirical linear cross gramian (WY)
% * ’s’ : empirical sensitivity gramian (WS)
% * ’i’ : empirical identifiability gramian (WI)
% * ’j’ : empirical joint gramian (WJ)
% (matrix,vector,scalar) [pr = 0] - parameters, each column is one set
% (vector,scalar) [nf = 0] - options, 12 components:
% + zero(0),init(1),steady(2),mean(3),median(4),midr(5),rms(6) center
% + linear(0), log(1), geom(2), single(3), sparse(4) input scales
% + linear(0), log(1), geom(2), single(3), sparse(4) state scales
% + unit(0), reciproce(1), dyadic(2), single(3) input rotations
% + unit(0), reciproce(1), dyadic(2), single(3) state rotations
% + single(0), double(1), scaled(2) run
% + regular(0), non-symmetric(1) cross gramian; only: WX, WJ
% + plain(0), robust(1) parameters; only: WC, WY
% + active(0), passive(1) parameter; only: WI, WJ
% + none(0), linear(1), logarithmic(2) parameter centering
% + default(0), exclusive options:
% * use rms-centering(1); only: WS
% * use Schur-complement(1); only: WI
% * use detailed Schur-complement(1); only: WJ
% + assume(0), enforce(1) gramian symmetry
% (matrix,vector,scalar) [ut = 1] - input; default: delta impulse
% (vector,scalar) [us = 0] - steady-state input
% (vector,scalar) [xs = 0] - steady-state and initial state x0
% (matrix,vector,scalar) [um = 1] - input scales
% (matrix,vector,scalar) [xm = 1] - initial-state scales
%
% RETURNS:
% (matrix) W - Gramian Matrix (only: WC, WO, WX, WY)
% (cell) W - {State-,Parameter-} Gramian (only: WS, WI, WJ)
%
% CITATION:
% C. Himpe (2016). emgr - Empirical Gramian Framework (Version 3.9)
% [Software]. Available from http://gramian.de . doi:10.5281/zenodo.46523 .
%
% SEE ALSO:
% gram
%
% KEYWORDS:
% model reduction, empirical gramian, cross gramian, mor
%
% Further information: <http://gramian.de>
%*

% Custom ODE Solver
global ODE;
if(isa(ODE,’function_handle’)==0), ODE = @rk2; end;
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% Version Info
if( (nargin==1) && strcmp(f,’version’) ), W = 3.9; return; end;

% Default Arguments
if( (nargin<6) || isempty(pr) ), pr = 0.0; end;
if( (nargin<7) || isempty(nf) ), nf = 0; end;
if( (nargin<8) || isempty(ut) ), ut = 1.0; end;
if( (nargin<9) || isempty(us) ), us = 0.0; end;
if( (nargin<10) || isempty(xs) ), xs = 0.0; end;
if( (nargin<11) || isempty(um) ), um = 1.0; end;
if( (nargin<12) || isempty(xm) ), xm = 1.0; end;

% System Dimensions
J = s(1); % number of inputs
N = s(2); % number of states
O = s(3); % number of outputs
M = 0; % internal variable used by WS, WI, WJ
if(numel(s)==4)

M = s(4);
end;

h = t(1); % width of time step
T = floor(t(2)/h) + 1; % number of time steps plus initial value

w = lower(w); % ensure lower case gramian type

P = size(pr,1); % number of parameters
Q = size(pr,2); % number of parameter sets

% Linear Chirp Input
if( isnumeric(ut) && numel(ut)==1 && ut==Inf )

ut = @(t) 0.5*cos(pi*(t+10*t.*t))+0.5;
end;

% Discretize Procedural Input
if(isa(ut,’function_handle’))

uf = ut;
ut = zeros(J,T);
for l=1:T

ut(:,l) = uf(l*h);
end;

end;

% Lazy Arguments
if( isnumeric(g) && g==1 ), g = @(x,u,p) x; O = N; end;

if(numel(nf)<12), nf(12) = 0; end;
if(numel(ut)==1), ut(1:J,1) = (1.0/h)*ut; end;
if(numel(us)==1), us(1:J,1) = us; end;
if(numel(xs)==1), xs(1:N,1) = xs; end;
if(numel(um)==1), um(1:J,1) = um; end;
if(numel(xm)==1), xm(1:N+(w==’y’)*(J-N),1) = xm; end;

if(size(ut,2)==1), ut(:,2:T) = 0.0; end;
if(size(us,2)==1), us = repmat(us,[1,T]); end;
if(size(um,2)==1), um = scales(um,nf(2),nf(4)); end;
if(size(xm,2)==1), xm = scales(xm,nf(3),nf(5)); end;

%% PARAMETRIC SETUP

if( (nf(8) && w~=’o’) || w==’s’ || w==’i’ || w==’j’ )

if(Q==1), error(’ERROR! emgr: min and max parameter required!’); end;

pmin = min(pr,[],2);
pmax = max(pr,[],2);

if( nf(8) || w==’s’ ) % assemble (controllability) parameter scales
pn = size(um,2);

else % assemble (observability) parameter scales
pn = size(xm,2);

end;

pl = (1.0:floor(pn/2))./floor(pn/2);
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pu = (1.0:ceil(pn/2))./ceil(pn/2);

switch(nf(10)) % parameter centering

case 1, % linear
pr = mean(pr,2);
pm = [(pmin - pr)*pl , (pmax - pr)*pu];

case 2, % logarithmic
lpmin = log(pmin);
lpmax = log(pmax);
lpavg = 0.5*(lpmax - lpmin);
pr = pmin.*exp(lpavg);
pm = [bsxfun(@times,exp((lpavg - lpmin)*pl),pmin), ...

bsxfun(@times,exp((lpmax - lpavg)*pu),pr) ];
pm = bsxfun(@minus,pm,pr);

otherwise, % none
pr = pmin;
pm = (pmax - pmin)*((1:pn)./pn);

end;

Q = 1;
end;

%% STATE-SPACE SETUP

if( w==’c’ || w==’o’ || w==’x’ || w==’y’ )

C = size(um,2); % number of input scales
D = size(xm,2); % number of state scales

switch(nf(1)) % residual types

case 1, % initial state
res = @(d) d(:,1);

case 2, % steady state
res = @(d) d(:,end);

case 3, % mean state
res = @(d) mean(d,2);

case 4, % median state
res = @(d) median(d,2);

case 5, % midrange
res = @(d) 0.5*(min(d,2)+max(d,2));

case 6, % rms
res = @(d) sqrt(sum(d.*d,2));

otherwise, % zero state
res = @(d) zeros(size(d,1),1);

end;

switch(nf(6)) % scaled runs

case 1, % preconditioned run
nf(6) = 0;
WT = emgr(f,g,s,t,w,pr,nf,ut,us,xs,um,xm);
TX = sqrt(diag(WT));
TX = TX(1:(N-(M>0 && w~=’c’)*P));
tx = 1.0./TX;
F = f; f = @(x,u,p) TX.*F(tx.*x,u,p);
G = g; g = @(x,u,p) G(tx.*x,u,p);

case 2, % steady state (input) scaled run
TU = us(:,1);
TX = xs;
TX = TX(1:(N-(M>0 && w~=’c’)*P));
TU(TU==0) = 1.0; tu = 1.0./TU;
TX(TX==0) = 1.0; tx = 1.0./TX;
F = f; f = @(x,u,p) TX.*F(tx.*x,tu.*u,p);
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G = g; g = @(x,u,p) G(tx.*x,tu.*u,p);
end;

if(nf(8)) % robust parameter
J = J + P;
ut = [ut;ones(P,T)];
us = [us;repmat(pr,[1,T])];
um = [um;pm];
if(w==’y’), xm = [xm;pm]; end;
F = f; f = @(x,u,p) F(x,u(1:J-P),u(J-P+1:J));
G = g; g = @(x,u,p) G(x,u(1:J-P),u(J-P+1:J));

end;

m = N - P*(M>0 && w==’x’); % non-zero rows if joint gramian
W = zeros(m,N); % preallocate gramian

end;

%% GRAMIAN COMPUTATION

switch(w) % empirical gramian types

case ’c’, % controllability gramian
for q=1:Q

pp = pr(:,q);
for c=1:C

for j=1:J % parfor
if(um(j,c)==0), continue; end;
if(M>0)

up = pr + sparse(M,1,um(j,c),P,1);
x = ODE(f,1,t,xs,us,up);

else
uu = us + bsxfun(@times,ut,um(j,c)*(1:J==j)’);
x = ODE(f,1,t,xs,uu,pp);

end;
x = bsxfun(@minus,x,res(x));
x = x * (1.0./um(j,c));
W = W + (x*x’); % offload

end;
end;

end;
W = W * (h/(C*Q));

case ’o’, % observability gramian
o = zeros(O*T,N);
for q=1:Q

pp = pr(:,q);
for d=1:D

for n=1:N % parfor
if(xm(n,d)==0), continue; end;
xx = xs + xm(n,d)*(1:N==n)’;
if(M>0 && n>M && nf(9))

y = ODE(f,g,t,xx(1:M),us+ut,xx(M+1:end));
elseif(M>0)

y = ODE(f,g,t,xx(1:M),us,xx(M+1:end));
else

y = ODE(f,g,t,xx,us,pp);
end;
y = bsxfun(@minus,y,res(y));
y = y * (1.0/xm(n,d));
o(:,n) = y(:);

end;
W = W + (o’*o); % offload

end;
end;
W = W * (h/(D*Q));

case ’x’, % cross gramian
if(J~=O && nf(7)==0), error(’ERROR! emgr: non-square system!’); end;
o = zeros(O,T,N);
for q=1:Q

pp = pr(:,q);
for d=1:D

for n=1:N % parfor
if(xm(n,d)==0), continue; end;
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xx = xs + xm(n,d)*(1:N==n)’;
if(M>0 && n>M && nf(9))

y = ODE(f,g,t,xx(1:M),us+ut,xx(M+1:end));
elseif(M>0)

y = ODE(f,g,t,xx(1:M),us,xx(M+1:end));
else

y = ODE(f,g,t,xx,us,pp);
end;
y = bsxfun(@minus,y,res(y));
y = y * (1.0/xm(n,d));
o(:,:,n) = y;

end;
o = permute(o,[2,3,1]); % generalized transposition
if(nf(7))

o(:,:,1) = sum(o,3);
end;
for c=1:C

for j=1:J % parfor
if(um(j,c)==0), continue; end;
uu = us + bsxfun(@times,ut,um(j,c)*(1:J==j)’);
if(M>0)

x = ODE(f,1,t,xs(1:M),uu,xs(M+1:end));
else

x = ODE(f,1,t,xs,uu,pp);
end;
x = bsxfun(@minus,x,res(x));
x = x * (1.0./um(j,c));
if(nf(7)) % non-symmetric cross gramian

W = W + (x*o(:,:,1)); % offload
else % regular cross gramian

W = W + (x*o(:,:,j)); % offload
end;

end;
end;
o = reshape(o,O,T,N); % reset

end;
end;
W = W * (h/(C*D*Q));

case ’y’, % linear cross gramian
if(J~=O && nf(8)==0), error(’ERROR! emgr: non-square system!’); end;
for q=1:Q

pp = pr(:,q);
for c=1:C

for j=1:J % parfor
if(um(j,c)==0 || xm(j,c)==0), continue; end;
uu = us + bsxfun(@times,ut,um(j,c)*(1:J==j)’);
x = ODE(f,1,t,xs,uu,pp);
x = bsxfun(@minus,x,res(x));
x = x * (1.0./um(j,c));
uu = us + bsxfun(@times,ut,xm(j,c)*(1:J==j)’);
z = ODE(g,1,t,xs,uu,pp);
z = bsxfun(@minus,z,res(z));
z = z * (1.0./xm(j,c));
W = W + (x*z’); % offload

end;
end;

end;
W = W * (h/(C*Q));

case ’s’, % sensitivity gramian
W = cell(1,2);
ps = sparse(P,1);
nf(8) = 0;
W{1} = emgr(f,g,[J,N,O],t,’c’,ps,nf,ut,us,xs,um,xm);
W{2} = zeros(P,1);
for p=1:P

V = emgr(f,g,[1,N,O,p],t,’c’,pr,nf,ut,us,xs,pm(p,:),xm);
W{1} = W{1} + V; % approximate controllability gramian
W{2}(p) = trace(V);

end;
if(nf(11))

W{2} = W{2} - mean(W{2});

169



Appendix

end;
W{2} = spdiags(W{2},0,P,P); % sensitivity gramian

case ’i’, % identifiability gramian
W = cell(1,2);
ps = sparse(P,1);
V = emgr(f,g,[J,N+P,O,N],t,’o’,ps,nf,ut,us,[xs;pr],um,[xm;pm]);
W{1} = V(1:N,1:N); % observability gramian
W{2} = V(N+1:N+P,N+1:N+P); % identifiability gramian
if(nf(11))

W{2} = W{2} - V(N+1:N+P,1:N)*ainv(W{1})*V(1:N,N+1:N+P);
end;

case ’j’, % joint gramian
W = cell(1,2);
ps = sparse(P,1);
V = emgr(f,g,[J,N+P,O,N],t,’x’,ps,nf,ut,us,[xs;pr],um,[xm;pm]);
W{1} = V(1:N,1:N); % cross gramian
%W{2} = zeros(P,P); % cross-identifiability gramian
if(nf(11))

W{2} = -0.5*V(1:N,N+1:N+P)’*pinv(W{1}+W{1}’)*V(1:N,N+1:N+P);
else

W{2} = -0.5*V(1:N,N+1:N+P)’*ainv(W{1}+W{1}’)*V(1:N,N+1:N+P);
end;

otherwise,
error(’ERROR! emgr: unknown gramian type!’);

end;

if(nf(12) && (w==’c’ || w==’o’ || w==’y’ || w==’x’) ) % enforce symmetry
W(1:m,1:m) = 0.5*(W(1:m,1:m) + W(1:m,1:m)’);

end;
end

%% ======== SCALES SELECTOR ========
function s = scales(s,d,e)

switch(d)

case 0, % linear
s = s*[0.25,0.50,0.75,1.0];

case 1, % logarithmic
s = s*[0.001,0.01,0.1,1.0];

case 2, % geometric
s = s*[0.125,0.25,0.5,1.0];

case 4, % sparse
s = s*[0.38,0.71,0.92,1.0];

otherwise, % single
%s = s;

end;

switch(e)

case 1, % reciproce
s = [1.0./s,s];

case 2, % dyadic
s = s*s’;

case 3, % single
%s = s;

otherwise, % unit
s = [-s,s];

end;
end

%% ======== FAST APPROXIMATE INVERSION ========
function x = ainv(m)

170



Appendix

d = diag(m);
d(d~=0) = 1.0./d(d~=0);
n = numel(d);
x = bsxfun(@times,m,-d);
x = bsxfun(@times,x,d’);
x(1:n+1:end) = d;

end

%% ======== DEFAULT ODE INTEGRATOR ========
function x = rk2(f,g,t,z,u,p)

if(isnumeric(g) && g==1), g = @(x,u,p) x; end;

h = t(1);
L = floor(t(2)/h) + 1;

x(:,1) = g(z,u(:,end),p);
x(end,L) = 0; % preallocate trajectory

for l=2:L % 2nd order Ralston’s Runge-Kutta Method
k1 = h*f(z,u(:,l-1),p);
k2 = h*f(z + 0.666666666666667*k1,u(:,l-1),p);
z = z + 0.25*k1 + 0.75*k2;
x(:,l) = g(z,u(:,l-1),p);

end;
end
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B.4. optmor - Optimization-Based Model Order Reduction

Code Metadata

name (short name) Optimization-Based Model Order Reduction (optmor)
version (release date) 2.5 (2016-02-28)

topic (type) Model reduction (Toolbox)
author (ORCID) Christian Himpe (0000-0003-2194-6754)

license (type) 2-Clause BSD (open-source)
repository (type) github.com/gramian/optmor (git)

language Matlab
dependencies (system) Octave | Matlab (Linux, Windows)

website gramian.github.io/optmor

keywords greedy sampling, MOR

License

optmor is licensed under the open source BSD 2-clause license:

Copyright (c) 2013-2016, Christian Himpe

All rights reserved.

Redistribution and use in source and binary forms, with or without modi�cation, are permit-
ted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
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Source Code

function XP = optmor(f,g,s,t,r,q,nf,ut,x0,co,yd)
% optmor (Version 2.5)
% by Christian Himpe, 2013-2016 ( wwwmath.uni-muenster.de/u/himpe )
% released under BSD 2-Clause License ( opensource.org/licenses/BSD-2-Clause )
%
% SYNTAX:
% W = optmor(f,g,s,t,r,q,[nf],[ut],[x0],[co],[yd]);
%
% SUMMARY:
% optmor - optimization-based model order reduction,
% for the computation of combined state and parameter
% reduced order models of state-space input-output systems.
% Compatible with OCTAVE and MATLAB.
%
% ARGUMENTS:
% (func handle) f - system function handle; signature: xdot = f(x,u,p)
% (func handle) g - output function handle; signature: y = g(x,u,p)
% (vector) s - system dimensions [inputs,states,outputs]
% (vector) t - time discretization [step,stop]
% (scalar) r - reduced order(>1) or error threshold(<1)
% (vector) q - nominal parameter
% (vector,scalar) [nf = 0] - options, 6 components:
% + Optimization Algorithm: fminunc(0), fminsearch(1), custom(-1)
% + Lasso Regularization Weight: default(0)
% + Tikhonov Regularization Weight: default(0.1)
% + Data-Driven Regularization Weight: default(0)
% + Number of Maximum Optimizer Iterations: default(4)
% + Initial Parameter: last(0), random(1)
% (matrix,vector,scalar,handle) ut - input; default: delta impulse
% (vector,scalar) x0 - initial state; default: zeros
% (matrix,vector,scalar) [co = 1] - covariance matrix: unit
% (matrix) yd - experimental data: empty
%
% RETURNS:
% (cell) XP - {State-,Parameter-} Projection
%
% CITATION:
% C. Himpe (2016). optmor - Optimization-Based Model Order Reduction
% (Version 2.5) [Software]. Available from http://github.com/gramian/optmor .
% doi: 10.5281/zenodo.46683 .
%
% KEYWORDS:
% model reduction, combined reduction, greedy sampling
%*

% Custom Solver
global ODE;
if(isa(ODE,’function handle’)==0), ODE = @rk2; end;

% Version Info
if( nargin==1 && strcmp(f,’version’) ), XP = 2.5; return; end;

%
if(~exist(’OCTAVE_VERSION’,’builtin’)), vec = @(m) m(:); end;

% Default Arguments
if( nargin<7 || isempty(nf) ), nf = 0; end; % Assume default options
if( nargin<8 || isempty(ut) ), ut = 1.0; end; % Assume impulse input
if( nargin<9 || isempty(x0) ), x0 = 0; end; % Assume zero initial state
if( nargin<10 || isempty(co) ), co = 1.0; end; % Assume covariance
if( nargin<11 || isempty(yd) ), yd = 0; end; % Assume no experimental data

% System Constants
J = s(1); % Number of inputs
N = s(2); % Number of states
O = s(3); % Number of outputs
h = t(1); % Time step width
T = floor(t(2)/h) + 1; % Number of time steps
Q = numel(q); % Number of parameters

% Linear Chirp Input
if( isnumeric(ut) && numel(ut)==1 && ut==Inf )
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ut = @(t) 0.5*cos(pi*(t+10*t.*t))+0.5;
end;

% Discretize Procedural Input
if(isa(ut,’function_handle’))

uf = ut;
ut = zeros(J,T);
for l=1:T

ut(:,l) = uf(l*h);
end;

end;

% Lazy arguments
if(numel(nf)<6), nf(6) = 0; end;
if(numel(ut)==1), ut(1:J,1) = ut./h; end;
if(numel(x0)==1), x0(1:N,1) = x0; end;
if(numel(co)==1), co(1:Q,1) = co; end;

if(size(ut,2)==1), ut(:,2:T) = 0.0; end;
if(size(co,1)==1 || size(co,2)==1), co = spdiags(co,0,Q,Q); end;

%% SETUP

% Set Abort Critera
r = abs(r);
if(r >= 1.0)

n = r;
else

n = Q;
end;

% Set Default Tikhonov Regularization Coefficient
if(nf(3)==0 && nf(2)==0)

nf(3) = 0.1;
end;

% Check for Data if Data-Driven Regularization
if(nf(4) && ( (numel(yd)==1 && yd==0) || size(yd,1)~=O || size(yd,2)~=T) )

error(’ERROR! optmor: yd data dimension mismatch!’);
end;

% Set Default Maximum Optimizer Iterations
if(nf(5)==0)

nf(5) = 4;
end;

% Set up Regularization Operators
if(nf(2)~=0 && nf(3)==0 && nf(4)==0)

R = @(p,y) nf(2)*norm(p,1);
elseif(nf(2)==0 && nf(3)~=0 && nf(4)==0)

R = @(p,y) nf(3)*norm(p,2)^2;
elseif(nf(2)~=0 && nf(3)~=0 && nf(4)==0)

R = @(p,y) nf(2)*norm(p,1) + nf(3)*norm(p,2)^2;
elseif(nf(2)==0 && nf(3)==0 && nf(4)~=0)

R = @(p,y) nf(4)*t(1)*norm(vec(y-yd),2)^2;
elseif(nf(2)~=0 && nf(3)==0 && nf(4)~=0)

R = @(p,y) nf(2)*norm(p,1) + nf(4)*t(1)*norm(vec(y-yd),2)^2;
elseif(nf(2)==0 && nf(3)~=0 && nf(4)~=0)

R = @(p,y) nf(3)*norm(p,2)^2 + nf(4)*t(1)*norm(vec(y-yd),2)^2;
elseif(nf(2)~=0 && nf(3)~=0 && nf(4)~=0)

R = @(p,y) nf(2)*norm(p,1) + nf(3)*norm(p,2)^2 ...
+ nf(4)*t(1)*norm(vec(y-yd),2)^2;

end;

%% INIT LOOP

fprintf(’optmor progress:\n’);

% Set Initial Parameter Projection
p = q;
P = q./norm(q,2);

% Compute Trajectory for Initial Parameter
z = ODE(f,1,t,x0,ut,p);

174



Appendix

[X,dtemp,vtemp] = svds(z,1);

% Set Optimizer Options
flags = optimset(’Display’,’off’,’MaxIter’,nf(5));

% Per Interation Timing
global TIMINGS;
TIMINGS = zeros(Q,1);

fprintf(’|’);

%% MAIN LOOP

for I=2:n

k = tic;

% Current reduced order model
fr = @(x,u,p) X’*f(X*x,u,p);
gr = @(x,u,p) g(X*x,u,p);
x0r = X’*x0;

% Termination Test
if(r < 1.0 && t(1)*norm(vec(ODE(f,g,t,x0,ut,p) ...

-ODE(fr,gr,t,x0r,ut,P*(P’*p))),2) < r)
break;

end;

% Set up cost function
jf = @(p,y) -t(1)*norm(vec(y-ODE(fr,gr,t,x0r,ut,P*(P’*p))),2)^2 +R(p,y);
Jf = @(p) jf(p,ODE(f,g,t,x0,ut,p));

% Initial Parameter
if(nf(6))

p = q + co * randn(Q,1);
end;

% Greedy Sampling Algorithm
switch(nf(1))

case 0, % Unconstrained (Quasi-Newton)
p = fminunc(Jf,p,flags);

case 1, % Derivative-Free (Nelder-Mead)
p = fminsearch(Jf,p,flags);

case -1, % Custom Optimizer
global FMIN;
p = FMIN(Jf,p);

end;

% Extract and Incorporate New State Base
z = ODE(f,1,t,x0,ut,p);
z = z - X * (z’ * X)’;
[x,dtemp,vtemp] = svds(z,1);
X = gramschmidt(X,x);

% Incorporate New Parameter Base
P = gramschmidt(P,p);

TIMINGS(I) = toc(k);

if(mod(I,100)), fprintf(’|’); else, fprintf(’#’); end;
end;

fprintf(’\n’);

XP = {X,P};
end

%% ======== RE-ITERATED GRAM-SCHMIDT ========
function Q = gramschmidt(Q,v)

m = size(v,2);
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for I=1:m
if(size(Q,2)>=size(Q,1))

return;
end;

w = v(:,I);
b = 0;

for J=1:10

w = w - Q * (w’ * Q)’;
b = norm(w,2);
w = w./b;
if(b>0.1)

break;
end;

end;

Q = [Q,w];
end;

end

%% ======== DEFAULT ODE INTEGRATOR ========
function x = rk2(f,g,t,z,u,p)

if(isnumeric(g) && g==1), g = @(x,u,p) x; end;

h = t(1);
L = floor(t(2)/h) + 1;

x(:,1) = g(z,u(:,end),p);
x(end,L) = 0; % preallocate trajectory

for l=2:L % 2nd order Ralston’s Runge-Kutta Method
k1 = h*f(z,u(:,l-1),p);
k2 = h*f(z + 0.666666666666667*k1,u(:,l-1),p);
z = z + 0.25*k1 + 0.75*k2;
x(:,l) = g(z,u(:,l-1),p);

end;
end

176



Appendix

C. Additional Figures

Supplementary to the plots for the experiments in Chapter 7, this section provides additional
comparisons of outputs between FOMs and ROMs for �xed reduced orders and speci�c pa-
rameters.

C.1. Hyperbolic Network Model

In Figure C.1 the outputs of the ROMs obtained from combined reduction methods are com-
pared to the output of the full order hyperbolic network model for a parameter � sam-
pled from the uniform random distribution U P

[ 1
10
,1]
. The comparison of outputs of the non-

linear FOM with the outputs from the gramian-based ROMs using the nonlinear and lin-
earized hyperbolic network model, of reduced order n = p = 60, is shown in Figure C.1a
and Figure C.1b, and with the outputs from the optimization-based ROMs using the non-
linear and linearized hyperbolic network model, of reduced order n= p = 60, is shown in
Figure C.1c and Figure C.1d.

C.2. fMRI & fNIRS Dynamic Causal Model

In Figure C.2 the outputs of the ROMs obtained from combined reduction methods are com-
pared to the output of the full order fMRI & fNIRS dynamic causal model for a parameter �
sampled from the log-normal random distribution lnN1, 1

4
for the components related to the

scaling of off-diagonal components and lnN1, 1
40

for the components related to the scaling
of diagonal components. The comparison of outputs of the nonlinear FOM with the outputs
from the gramian-based ROMs using the nonlinear and linearized fMRI & fNIRS model, of
reduced order n = p = 44, is shown in Figure C.2a and Figure C.2b, and with the outputs
from the optimization-based ROMs using the nonlinear and linearized fMRI & fNIRS model,
of reduced order n= p = 24, is shown in Figure C.2c and Figure C.2d.

C.3. EEG & MEG Dynamic Causal Model

In Figure C.3 the outputs of the ROMs obtained from combined reduction methods are com-
pared to the output of the full order EEG & MEG dynamic causal model for a parameter �
sampled from the log-normal random distribution lnN1, 1

4
for the components related to the

scaling of off-diagonal components and lnN1, 1
40

for the components related to the scaling
of diagonal components. The comparison of outputs of the nonlinear FOM with the outputs
from the gramian-based ROMs using the nonlinear and linearized EEG & MEG model, of re-
duced order n = 80, p = 40, is shown in Figure C.3a and Figure C.3b, and with the outputs
from the optimization-based ROMs using the nonlinear and linearized EEG & MEG model,
of reduced order n= 80, p = 40, is shown in Figure C.3c and Figure C.3d.
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(c) Comparison of FOM and nonlinear

optimization-based ROM for n= p = 60.
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optimization-based ROM for n= p = 60.

Figure C.1.: Comparison of FOM and ROM outputs for the hyperbolic network model.
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(c) Comparison of FOM and nonlinear

optimization-based ROM for n= p = 24.
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Figure C.2.: Comparison of FOM and ROM outputs for the fMRI & fNIRS model.
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Figure C.3.: Comparison of FOM and ROM outputs for the EEG & MEG model.
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D. List of Acronyms

ADI � Alternating Direction Implicit

APU � Accelerated Processing Unit

BIBO � Bounded-Input-Bounded-Output

BLAS � Basic Linear Algebra Subprogram

BOLD � Blood Oxygen Level Dependent

bPOD � balanced Proper Orthogonal Decomposition

BT � Balanced Truncation

CFL � Courant-Friedrichs-Lewy

CGMIL � Cross Gramian Minimum Information Loss

CPU � Central Processing Unit

DCM � Dynamic Causal Modelling

DD � Data-Driven

DEIM � Discrete Empirical Interpolation Method

DT � Direct Truncation

EEG � Electroencephalography

EIM � Empirical Interpolation Method

fMRI � functional Magneto Resonance Imaging

fNIRS � functional Near Infrared Spectroscopy

FOM � Full Order Model

GPGPU � General Purpose Graphics Processing Unit

GPU � Graphics Processing Unit

HSV � Hankel Singular Values

iEEG � Intracranial EEG

IFP � Inference for Prediction

ILP � Inverse Lyapunov Procedure

IVP � Initial Value Problem
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KPCA � Kernel Principal Component Analysis

LAPACK � Linear Algebra Package

LoC � Lines of Code

LTI � Linear Time-Invariant

MAP � Maximum A-Posteriori

MEG � Magnetoencephalography

MIMO � Multiple-Input-Multiple-Output

ML � Maximum Likelihood

MOR � Model Order Reduction

nMOR � nonlinear Model Order Reduction

ODE � Ordinary Differential Equation

PCA � Principal Component Analysis

PDE � Partial Differential Equation

pMOR � parametrized Model Order Reduction

PMTBR � Poor Man's Truncated Balanced Realization

POD � Proper Orthogonal Decomposition

QoI � Quantity of Interest

RAM � Random Access Memory

RBM � Reduced Basis Method

RC � Resistor Capacitor

RK � Runge Kutta

RK2 � Second-Order Runge-Kutta

RKHS � Reproducing Kernel Hilbert Spaces

RMS � Root Mean Square

ROM � Reduced Order Model

SIMD � Single-Instruction-Multiple-Data

SIMO � Single-Input-Multiple-Output

SISO � Single-Input-Single-Output
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SNR � Signal-to-Noise Ratio

SOBT � Second-Order Balanced Truncation

SSP � Strong Stability Preserving

SVD � Singular Value Decomposition

TSVD � Truncated Singular Value Decomposition
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E. Related Contributions

Bookchapter U. Baur, P. Benner, B. Haasdonk, C. Himpe, I. Martini and M. Ohlberger,
�Comparison of Methods for Parametric Model Order Reduction of Instation-
ary Problems�, to appear in P. Benner, A. Cohen, M. Ohlberger and K. Willcox:

�Model Reduction and Approximation: Theory and Algorithms�, 2017. See
also [18].

Article C. Himpe and M. Ohlberger, �A note on the cross Gramian for non-symmetric
systems�, in System Science and Control Engineering, 2016. See also [117].

Talk C. Himpe and M. Ohlberger, �Empirical Gramians 4 MOR�, at MOR 4 MEMS,
2015 in Karlsruhe (Germany).

Talk C. Himpe and M. Ohlberger, �Combined State and Parameter Reduction (for
Input-Output Systems)�, atModel Reduction in Industry, 2015 in Luxembourg
(Luxembourg).

Poster C. Himpe and M. Ohlberger, �The Versatile Cross Gramian�, at Model Reduc-

tion for Parametrized Systems (MoRePaS) 3, 2015 in Trieste (Italy). See also
[115].

Poster C. Himpe and M. Ohlberger, �emgr - Empirical Gramian Framework�, at Oct-
Conf, 2015 in Darmstadt (Germany).
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Solutions�, at International Conference on Scienti�c Computation And Differ-

ential Equations (SciCADE), 2015 in Potsdam (Germany).

Poster C. Himpe and M. Ohlberger, �Optimization-Based Combined Reduction for
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rameter Reduction for Large-Scale Control Systems�, in Mathematical Prob-
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Talk U. Baur, P. Benner, B. Haasdonk, C. Himpe, I. Maier and M. Ohlberger, �Com-
parison of Methods for Parametric Model Order Reduction of Instationary
Problem (II)�, held at EuropeanModel Reduction Network (EU-MORNET) Kick-

Off Meeting, 2014 in Eindhoven (Netherlands).

Talk C. Himpe and M. Ohlberger, �emgr (Software Short Communications)�, at
Reduced Basis Summer School, 2014 in Münster (Germany).

Talk C. Himpe and M. Ohlberger, �Yet Another Talk About Empirical Gramians�,
at Reduced Basis Summer School, 2014 in Münster (Germany).

Talk C. Himpe and M. Ohlberger, �Ef�cient Cross-Gramian-Based State and Pa-
rameter Reduction�, at WCCM XI / ECCM V / ECFD VI, 2014 in Barcelona
(Spain).

Proceedings C. Himpe and M. Ohlberger, �Model Reduction For Complex Hyperbolic Net-
works�, in Proceedings of the European Control Conference, 2014. See also
[111].

Talk C. Himpe and M. Ohlberger, �Model Reduction for Complex Hyperbolic Net-
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Talk C. Himpe and M. Ohlberger, �emgr - Empirical Gramian Framework�, at 4th
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